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The energy functional in general orthogonal curvilinear coordinates (ξ, η) with respective scale factors hξ,
hη and Jacobian J = hξhη is
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dΩ, (1)

where u(ξ, η) is the surface, n is the normal to the function F = z − u(ξ, η), the Jacobian J is contained in
the differential dΩ, and the rest of the quantities are as in the typical surface tension problem. Introduce a

variation uε = u+ εv, |ε| ≪ 1 with v vanishing on ∂Ω with the aim to calculate
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(2a)
Taking f = ∇u

/

||n|| in the following form of the divergence theorem for an arbitrary differentiable vector
function f and scalar differentiable function v

∫
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f · ∇v dΩ =

∮
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v
(

f · ds
)

−

∫
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v∇ · f dΩ (2b)

and bearing in mind that v ≡ 0 on ∂Ω results in
∫
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dΩ = 0, (2d)

and the expression within the curly braces is the Euler-Lagrange equation.
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The parabolic coordinates are defined by

x = ξη, y =
1

2

(

η2 − ξ2
)

. (3)

The constant ξ curves are upward parabolae y =
1

2

(

x2/ξ2 − ξ2
)

with focus at the origin and directrix

y = −ξ2. The constant η curves are downward parabolae y =
1

2

(

η2 − x2/η2
)

with focus at the origin and

directrix y = η2. Figure 1 shows the mesh. The interesting feature about this system is that it allows

several distinct types of domain shape. When the domain is defined by
{

(ξ, η) | 0 6 ξ 6 ξex, 0 6 η 6 ηex

}

,

it is eye-shaped (strictly speaking only the right half, the left is obtained by reflexion or −ξex 6 ξ 6 ξex),

asymmetric if ξex 6= ηex. When
{

(ξ, η) | 0 < ξin 6 ξ 6 ξex, 0 < ηin 6 η 6 ηex

}

, the domain is of the

shape shown by the curved coloured diamond. Of course, its boundaries can be extended along any of the
parabolae.
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Figure 1: Parabolic coordinates: mesh and domain shape

1.1.1 Subsubsection title

The Octave code to create figure 1 is as follows.

clear all

figure(1); clf

xi=-2:0.1:2; lxi=length(xi);

eta=(0:0.1:3)’; leta=length(eta);

Xi=repmat(xi,leta,1);

Eta=repmat(eta,1,lxi);

X=Xi.*Eta;

Y=(Eta.^2-Xi.^2)/2;

h=plot(X,Y,X’,Y’);

set(h,’color’,[0 0 0])

hold on

i=17:27;

j=8:18;

x=[X(i,j(1)); X(i(end),j)’; flipud(X(i,j(end))); flipud(X(i(1),j))’];

y=[Y(i,j(1)); Y(i(end),j)’; flipud(Y(i,j(end))); flipud(Y(i(1),j))’];

p1=patch(x,y,’k’);

set(p1,’facecolor’,[0 0.47 0.44])

axis equal
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