Full title

1 Section title

The energy functional in general orthogonal curvilinear coordinates (ξ, η) with respective scale factors h_{ξ} , h_{η} and Jacobian $J = h_{\xi}h_{\eta}$ is

$$\Upsilon(u) = \int_{\Omega} \left(\gamma ||\mathbf{n}|| + \frac{1}{2} \Delta \rho g u^2 + \lambda u \right) \mathrm{d}\Omega, \tag{1}$$

where $u(\xi, \eta)$ is the surface, **n** is the normal to the function $F = z - u(\xi, \eta)$, the Jacobian J is contained in the differential $d\Omega$, and the rest of the quantities are as in the typical surface tension problem. Introduce a variation $u_{\varepsilon} = u + \varepsilon v$, $|\varepsilon| \ll 1$ with v vanishing on $\partial\Omega$ with the aim to calculate $\frac{d}{d\varepsilon}\Upsilon(u_{\varepsilon})\Big|_{\varepsilon=0} = 0$. Express the normal as $\mathbf{n} = (-\nabla u \ 1)^{\mathrm{T}}$, where $\nabla u = (u_{\xi}/h_{\xi} \ u_{\eta}/h_{\eta})$. Then

$$\frac{\mathrm{d}||\mathbf{n}||}{\mathrm{d}\varepsilon}\bigg|_{\varepsilon=0} = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \Big(1 + \nabla(u + \varepsilon v) \cdot \nabla(u + \varepsilon v)\Big)^{1/2}\bigg|_{\varepsilon=0} = \frac{1}{||\mathbf{n}||} \left\{\frac{u_{\xi} + \varepsilon v_{\xi}}{h_{\xi}} \frac{v_{\xi}}{h_{\xi}} + \frac{u_{\eta} + \varepsilon v_{\eta}}{h_{\eta}} \frac{v_{\eta}}{h_{\eta}}\right\}\bigg|_{\varepsilon=0} = \frac{\nabla u \cdot \nabla v}{||\mathbf{n}||}.$$
(2a)

Taking $\mathbf{f} = \nabla u / ||\mathbf{n}||$ in the following form of the divergence theorem for an arbitrary differentiable vector function \mathbf{f} and scalar differentiable function v

$$\int_{\Omega} \mathbf{f} \cdot \nabla v \, \mathrm{d}\Omega = \oint_{\partial\Omega} v \left(\mathbf{f} \cdot \mathrm{d}\mathbf{s} \right) - \int_{\Omega} v \nabla \cdot \mathbf{f} \, \mathrm{d}\Omega \tag{2b}$$

and bearing in mind that $v \equiv 0$ on $\partial \Omega$ results in

$$\int_{\Omega} \frac{\nabla u \cdot \nabla v}{||\mathbf{n}||} \, \mathrm{d}\Omega = -\int_{\Omega} v \nabla \cdot \left(\frac{\nabla u}{||\mathbf{n}||}\right) \mathrm{d}\Omega.$$
(2c)

Then

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\Upsilon(u_{\varepsilon})\bigg|_{\varepsilon=0} = \int_{\Omega} v\bigg\{\frac{\Delta\rho g u + \lambda}{\gamma} - \nabla\cdot\left(\frac{\nabla u}{||\mathbf{n}||}\right)\bigg\}\mathrm{d}\Omega = 0,\tag{2d}$$

and the expression within the curly braces is the Euler-Lagrange equation.

1.1 Subsection title

The parabolic coordinates are defined by

$$x = \xi \eta, \quad y = \frac{1}{2} \left(\eta^2 - \xi^2 \right).$$
 (3)

The constant ξ curves are upward parabolae $y = \frac{1}{2} \left(x^2 / \xi^2 - \xi^2 \right)$ with focus at the origin and directrix $y = -\xi^2$. The constant η curves are downward parabolae $y = \frac{1}{2} \left(\eta^2 - x^2 / \eta^2 \right)$ with focus at the origin and directrix $y = \eta^2$. Figure 1 shows the mesh. The interesting feature about this system is that it allows several distinct types of domain shape. When the domain is defined by $\left\{ (\xi, \eta) \mid 0 \leq \xi \leq \xi_{ex}, \ 0 \leq \eta \leq \eta_{ex} \right\}$, it is eye-shaped (strictly speaking only the right half, the left is obtained by reflexion or $-\xi_{ex} \leq \xi \leq \xi_{ex}$), asymmetric if $\xi_{ex} \neq \eta_{ex}$. When $\left\{ (\xi, \eta) \mid 0 < \xi_{in} \leq \xi \leq \xi_{ex}, \ 0 < \eta_{in} \leq \eta \leq \eta_{ex} \right\}$, the domain is of the shape shown by the curved coloured diamond. Of course, its boundaries can be extended along any of the parabolae.

Figure 1: Parabolic coordinates: mesh and domain shape

1.1.1 Subsubsection title

The Octave code to create figure 1 is as follows.

```
clear all
figure(1); clf
xi=-2:0.1:2; lxi=length(xi);
eta=(0:0.1:3)'; leta=length(eta);
Xi=repmat(xi,leta,1);
Eta=repmat(eta,1,lxi);
X=Xi.*Eta;
Y=(Eta.^2-Xi.^2)/2;
h=plot(X,Y,X',Y');
set(h,'color',[0 0 0])
hold on
i=17:27;
j=8:18;
x=[X(i,j(1)); X(i(end),j)'; flipud(X(i,j(end))); flipud(X(i(1),j))'];
y=[Y(i,j(1)); Y(i(end),j)'; flipud(Y(i,j(end))); flipud(Y(i(1),j))'];
p1=patch(x,y,'k');
set(p1,'facecolor',[0 0.47 0.44])
```

axis equal