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1. INTRODUCTION

Throughout this article, V ¼ VðGÞ and E ¼ EðGÞ shall denote the set of vertices

and the set of edges, respectively, of a graph G. For vertices u and v in G, we let

distGðu; vÞ denote the distance between u and v, which is the length of the

shortest path joining them. For integers p; q � 0, a labeling of a graph

’ : VðGÞ�!f0; 1; . . . ; ng, for a certain n � 0, is called an Lðp; qÞ-labeling if it

satisfies:

j’ðuÞ � ’ðvÞj � p; if distGðu; vÞ ¼ 1;

j’ðuÞ � ’ðvÞj � q; if distGðu; vÞ ¼ 2:

The p; q-span of a graph G, denoted �ðG; p; qÞ, is the minimum n for which an

Lðp; qÞ-labeling exists. The problem of determining �ðG; p; qÞ for certain graphs

or classes of graphs (or at least finding good lower or upper bounds) has been

studied before, see for example, [6–10,16]. The main inspiration for Lðp; qÞ-
labelings in those articles comes from problems related to the Frequency

Assignment Problem on large-scale telecommunication networks.

Determining �ðG; 1; 0Þ amounts to finding the chromatic number �ðGÞ and for

the planar graphs, we have the famous 4-Color Theorem.

Theorem 1.1 (Appel and Haken [2], Appel et al. [3], Robertson et al. [15]).
If G is a planar graph, then �ðGÞ � 4.

For general p, the above is easily seen to yield the following upper bound.

Corollary 1.1. If G is a planar graph, then �ðG; p; 0Þ � 3 p.

Now we shall look at the case when q � 1. The problem of finding an Lð1; 1Þ-
labeling amounts to finding a proper coloring of the square of G. The square of

a graph G (denoted G2) is defined such that VðG2Þ ¼ VðGÞ, and two vertices u

and v are adjacent in G2 iff distGðu; vÞ 2 f1; 2g. It is easy to see that we have the

relation �ðG2Þ ¼ �ðG; 1; 1Þ þ 1.

The question of finding the best possible upper bound for the chromatic

number of the square of a planar graph seems to first have been put forward in

Wegner [17] in 1977. Wegner conjectured the following.

Conjecture 1.1. (Wegner [17]). Let G be a planar graph with maximum

degree �, then

�ðG2Þ �
�þ 5; if 4 � � � 7;

b3
2
�c þ 1; if � � 8:

(

Wegner also gave examples illustrating that these upper bounds are best

possible and proved that the square of a planar graph with � ¼ 3 can be color-

ed with 8 colors. He conjectured that in fact 7 colors should suffice. More

information and problems relating coloring and distances in graphs can be found

in Jensen and Toft [12, Section 2.18].
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This may be a good point to note that one has to be careful when analyzing

straightforward greedy algorithms to obtain bounds on �ðG2Þ (or �ðG; p; qÞ for

that matter). For instance, it is well known that one can order the vertices of a

planar graph G as v1; . . . ; vn such that vi has at most 5 neighbors in fv1; . . . ; vi�1g.

In a greedy labeling of G using this order, one would give the label 0 to v1 and

then assign to each vertex the smallest available label. One would like to argue

that, since the vertex vi has at most 5 neighbors in fv1; . . . ; vi�1g, it also has at

most 5 ð�� 1Þ vertices at distance two in fv1; . . . ; vi�1g (which would prove a

bound �ðG2Þ � 5�þ 1). But this is not necessarily the case, since vertices at

distance two from vi in fv1; . . . ; vi�1g are not necessarily adjacent to a neighbor

of vi in fv1; . . . ; vi�1g. So the number of vertices in fv1; . . . ; vi�1g at distance two

from vi in G can be much larger than 5 ð�� 1Þ.
Nevertheless, it is possible to obtain the following upper bounds. The ideas

from the proof can be found in Jonas [13].

Theorem 1.2. If G is a planar graph with maximum degree � � 5, then

�ðG2Þ � 9�� 19.

Proof. Order the vertices of the planar graph G as v1; . . . ; vn, in such a way

that each vi has at most 5 neighbors in fv1; . . . ; vi�1g. We greedily assign colors

to v1; . . . ; vn in that order. So we must show that every vertex vi has at most

9�� 20 vertices at distance one or two in G in fv1; . . . ; vi�1g. Suppose vi has

k neighbors in fv1; . . . ; vi�1g, for some 0 � k � 5, hence there are k vertices at

distance one from vi in fv1; . . . ; vi�1g. Suppose w is a vertex in fv1; . . . ; vi�1g at

distance two from vi, so there is a path viuw in G.

If u 2 fv1; . . . ; vi�1g, then there can be at most �� 1 neighbors w of u in

fv1; . . . ; vi�1g, hence there can be at most k ð�� 1Þ paths viuw with

u;w 2 fv1; . . . ; vi�1g.

Now consider the case u =2 fv1; . . . ; vi�1g. There are at most �� k of such u.

Also, since u has at most 5 neighbors in fv1; . . . ; vj�1g, and one of those

neighbors is vi, u can have at most 4 neighbors in fv1; . . . ; vi�1g. So the number

of paths viuw with u =2 fv1; . . . ; vi�1g but w 2 fv1; . . . ; vi�1g is at most

4 ð�� kÞ.
Combining everything, we find at most k þ k ð�� 1Þ þ 4 ð�� kÞ vertices at

distance one or two from vi in fv1; . . . ; vi�1g. It is easy to see that for � � 5 and

0 � k � 5, this number is at most 9�� 20. &

Using a somewhat more involved argument, it is proved in Jonas [13] that for a

planar graph G with � � 5, we have �ðG; 2; 1Þ � 8�� 13. A small modification

of the proof in Jonas [13] will give the upper bound �ðG2Þ � 8�� 22 for a

planar graph G with � � 7.

As a special case of Theorem 1.4 to be formulated later, we improve this lower

bound to the following:

Theorem 1.3. If G is a planar graph with maximum degree �, then �ðG2Þ �
2�þ 25.
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A straightforward argument shows that if G is a graph with maximum

degree �, then we must have �ðG; p; qÞ � q�þ p� q. It is not too hard to

construct planar graphs G with �ðG; p; qÞ ¼ 3
2
q�þ c1ðp; qÞ, where c1ðp; qÞ is a

constant depending only on p and q. For instance, start by taking a graph

consisting of three vertices v1; v2; v3. Between v1 and v2 add k paths of length two

(i.e., paths with one internal vertex); between v1 and v3, and between v2 and v3,

add one edge and k � 1 paths of length two. The resulting graph G is a simple

planar graph on 3 k þ 1 vertices, with � ¼ 2 k, and each pair of vertices has

distance at most two. So we find, for p not too large, �ðG; p; qÞ ¼ ðjVðGÞj � 1Þ
q ¼ 3 k q ¼ 3

2
q�. And in particular �ðG2Þ ¼ jVðGÞj ¼ 3

2
�þ 1, showing that

the second bound in Conjecture 1.1 would be sharp.

As far as upper bounds for �ðG; p; qÞ are concerned, in Chang and Kuo [7], it is

shown that �ðG; 2; 1Þ � �2 þ�. This suggests that for graphs in general, the

best possible upper bound for �ðG; p; qÞ will be of the order q�2. When G is

planar, we can reduce the order of the upper bound. Using a greedy algorithm

for labeling, if we assign a certain label to a vertex at distance one from a certain

vertex v, then this reduces the number of labels available to v with at most

2 p� 1, whereas assigning a label to a vertex at distance two from v can ‘‘forbid’’

at most 2 q� 1 labels for v. With these observations and those from the proof of

Theorem 1.2, it is easy to show that for a planar graph G with maximum degree

� � 5, we have

�ðG; p; qÞ � 5 ð2 p� 1Þ þ ð9�� 25Þ ð2 q� 1Þ
¼ ð18 q� 9Þ�þ 10 p� 50 qþ 20:

Our main result shows this upper bound can be reduced significantly.

Theorem 1.4. If G is a planar graph with maximum degree � and p; q are

positive integers with p � q, then

�ðG; p; qÞ � ð4 q� 2Þ�þ 10 pþ 38 q� 24:

Theorem 1.3 follows immediately from Theorem 1.4 by setting p ¼ q ¼ 1 and

using the observation �ðG; 1; 1Þ ¼ �ðG2Þ � 1.

The remainder of this article will form the proof of Theorem 1.4. The proof

can be found in Section 2. This proof relies on two lemmas, guaranteeing

existence of certain ‘‘unavoidable configurations’’ in planar graphs. These two

lemmas will be proved in the final section.

Since the completion of the first version of this article, new results concerning

coloring the square of planar graphs have come to our attention. Using a some-

what different proof technique, in Agnarsson and Halldórsson [1] a better upper

bound �ðG2Þ � b9
5
�c þ 2 is proved, provided � � 749. The upper bound

�ðG2Þ � d9
5
�e þ 1 is proved in Borodin et al. [4,5], but then for the case

� � 47. A further improvement was made in Molloy and Salavatipour [14] to
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�ðG2Þ � 5
3
�þ 78, and �ðG2Þ � 5

3
�þ 24 for � � 241. The preprints [5,14] also

contain results on Lðp; qÞ-labelings of planar graphs.

2. PROOF OF THEOREM 1.4

Let G be a graph. For a vertex v 2 V , we let NGðvÞ denote its neighbor set, use

dGðvÞ ¼ jNGðvÞj for its degree, and let Ev denote the set of edges incident to v
(we omit the subscript G in most cases).

Now let G be a simple planar graph with a fixed embedding in the

plane. For an edge e 2 E, let tðeÞ denote the number of triangular faces

containing e, and for a vertex v 2 V let tðvÞ be the number of triangular faces

containing v.

We need two structural lemmas which give specific unavoidable configurations

for planar graphs. The proofs of these lemmas can be found in Section 3. The first

lemma is sufficient to prove the main theorem for graphs with maximum degree

� � 12.

Lemma 2.1. Let G be a simple planar graph. Then there exists a vertex v with k

neighbors v1; v2; . . . ; vk with dðv1Þ � � � � � dðvkÞ such that one of the following

is true:

(i) k � 2;

(ii) k ¼ 3 with dðv1Þ � 11;

(iii) k ¼ 4 with dðv1Þ � 7 and dðv2Þ � 11;

(iv) k ¼ 5 with dðv1Þ � 6, dðv2Þ � 7, and dðv3Þ � 11.

To be able to prove the main result for graphs with maximum degree less than

12, we need a second lemma, giving a different collection of unavoidable

configurations.

Lemma 2.2. Let G be a simple planar graph. Then there exists a vertex v with k

neighbors v1; v2; . . . ; vk with dðv1Þ � � � � � dðvkÞ such that one of the following

is true:

(i) k � 2;

(ii) k ¼ 3 with dðv1Þ � 5;

(iii) k ¼ 3 with tðvviÞ � 1 for some i;

(iv) k ¼ 4 with dðv1Þ � 4;

(v) k ¼ 4 with tðvviÞ ¼ 2 for some i;

(vi) k ¼ 5 with dðviÞ � 4 and tðvviÞ � 1 for some i;

(vii) k ¼ 5 with dðviÞ � 5 and tðvviÞ ¼ 2 for some i;

(viii) k ¼ 5 with dðv1Þ � 7 and tðvviÞ � 1 for all i;

(ix) k ¼ 5 with dðv1Þ � 5, dðv2Þ � 7, and for each i with tðvviÞ ¼ 0 it holds

that dðviÞ � 5.
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Proof of Theorem 1.4. Let G be a planar graph and let � be its maximum

degree. If � � 5, then the theorem can be proven using a straight-forward

‘‘greedy’’ coloring method. In fact, in this case the theorem holds even when the

planarity condition is removed. The only essential observations are that for any

vertex in a graph H with maximum degree �, the number of vertices at distance 1

from v is at most � and the number of vertices at distance 2 is at most � ð�� 1Þ.
Moreover, if we assign a certain label to a vertex at distance 1 from v, then this

reduces the number of labels available to v with at most 2 p� 1, whereas as-

signing a label to a vertex at distance two from v can ‘‘forbid’’ at most 2 q� 1

labels for v. We leave the verification of the further details to the reader.

In the remainder, we are solely interested in the case � � 6. We shall prove

Theorem 1.4 by induction on the number of vertices and edges. Let G be a planar

graph such that for all planar graphs H with jVðHÞj þ jEðHÞj < jVðGÞj þ jEðGÞj
the theorem is true. We note first that we can assume that G is simple and � � 6.

For an edge e 2 E let G=e denote the graph obtained from G by contracting e.

For a vertex v 2 V , let G � v denote the graph obtained by deleting v and for each

u 2 NðvÞ adding an edge between u and u� and between u and uþ if these edges

do not exists in G already. We will use Lemmas 2.1 and 2.2 to show that there is a

vertex v 2 V such that dðvÞ � 5, the number of vertices at distance 2 from v is at

most 2�þ 19, and at least one of the following is true:

(a) �ðG=eÞ � � for some e 2 Ev;

(b) �ðG � vÞ � �.

The following proposition formulates the essential properties of the vertex

degrees and distances after the operations G=e and G � v have been performed.

Proposition 2.1. Let G be a simple graph, v a vertex and e ¼ vu an edge in G.

(i) Let H ¼ G=e, and let v0 be the vertex in H corresponding to the edge vu.

Then for each w 2 VðHÞnfv0g we have dHðwÞ � dGðwÞ, and dHðv0Þ ¼
dGðvÞ þ dGðuÞ � 2 � tGðvuÞ.

(ii) Let H ¼ G � v. Then for each w 2 VðHÞ we have dHðwÞ ¼ dGðwÞ if w =2
NGðvÞ, and dHðwÞ ¼ dGðwÞ þ 1 � tGðvwÞ if w 2 NGðvÞ.

(iii) Let H ¼ G=e, and let v0 be the vertex in H corresponding to the edge vu.

Then for any two vertices w;w0 2 VðHÞnfv0g it holds that distHðw;w0Þ �
distGðw;w0Þ and distHðw; v0Þ � distGðw; uÞ.

(iv) Let H ¼ G � v and suppose dGðvÞ � 5. Then for any two vertices w;
w0 2 VðHÞ it holds that distHðw;w0Þ � distGðw;w0Þ.

Now define a vertex v 2 VðGÞ, possibly an edge e 2 EðGÞ, and a graph H as

follows:

(2.1) If � � 12, then let v be as described in Lemma 2.1, and set e ¼ vv1 and

H ¼ G=e.
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(2.2) If 6 � � � 11 and one of Lemma 2.2 (i), (ii), or (iv) holds, then let v be

as described, and set e ¼ vv1 and H ¼ G=e.

(2.3) If 6 � � � 11 and Lemma 2.2 (iii) holds, then let v be as described,

set e ¼ vvi with tðvviÞ � 1, and set H ¼ G=e.

(2.4) If 6 � � � 11 and Lemma 2.2 (v) holds, then let v be as described,

set e ¼ vvi with tðvviÞ ¼ 2 and set H ¼ G=e.

(2.5) If 6 � � � 11 and Lemma 2.2 (vi) holds, then let v be as described,

set e ¼ vvi with dðviÞ � 4 and tðvviÞ � 1, and set H ¼ G=e.

(2.6) If 6 � � � 11 and Lemma 2.2 (vii) holds, then let v be as described,

set e ¼ vvi with dðviÞ � 5 and tðvviÞ ¼ 2, and set H ¼ G=e.

(2.7) If 6 � � � 11 and Lemma 2.2 (viii) holds, then let v be as described and

set H ¼ G � v.

(2.8) If 6 � � � 11 and Lemma 2.2 (ix) holds, then let v be as described and

set H ¼ G � v.

In the cases (2.1)–(2.6), identify the end vertex of e different from v with the

vertex in H corresponding to the contracted edge e. Then using Proposition 2.1,

we find that in cases (2.1)–(2.7), dHðwÞ � dGðwÞ for all w 2 VðHÞ, hence

�ðHÞ � �ðGÞ ¼ �. In case (2.8), we can have dHðwÞ ¼ dGðwÞ þ 1 for a vertex

w 2 NðvÞ with tðvwÞ ¼ 0, but then dGðwÞ � 5, and we still find �ðHÞ � �. By

induction, this means

�ðH; p; qÞ � ð4 q� 2Þ�þ 10 pþ 38 q� 24:

Set n ¼ ð4 q� 2Þ�þ 10 pþ 38 q� 24 and let ’H : VðHÞ �! f0; 1; . . . ; ng be

an Lðp; qÞ-labeling of H. Again using Proposition 2.1, for any two vertices

w;w0 2 VðHÞ it holds that distHðw;w;0 Þ � distGðw;w0Þ. Therefore, to find an

Lðp; qÞ-labeling for G, we need only extend ’H to G by giving v an appropriate

color. For each w 2 VðHÞ let ’ðwÞ ¼ ’HðwÞ.
For any vertex v 2 VðGÞ, the number of vertices at distance 2 from v is equal to

X
u2NðvÞ

dðuÞ � dðvÞ � 2 tðvÞ: ð1Þ

Since v was chosen according to (2.1)–(2.8), dðvÞ � 5 and Equation (1) gives that

there are at most 2�þ 19 vertices at distance 2 from v. So, since

n ¼ ð4 q� 2Þ�þ 10 pþ 38 q� 23 ¼ 5 � ð2 p� 1Þ þ ð2�þ 19Þ � ð2 q� 1Þ;

we can choose a color ’ðvÞ 2 f0; 1; . . . ; ng such that

j’ðuÞ � ’ðvÞj � p; if distGðu; vÞ ¼ 1;

j’ðuÞ � ’ðvÞj � q; if distGðu; vÞ ¼ 2:
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Choosing such a color for v, we see that ’ is an Lðp; qÞ-labeling for G. It now

follows that

�ðG; p; qÞ � n ¼ ð4 q� 2Þ�þ 10 pþ 38 q� 24;

which completes the induction step. &

Concerning algorithmic aspects of our bound, the proof above implies that it

is possible to label the vertices in a greedy fashion. If � � 5, then the greedy

algorithm described in the first paragraph of the proof will suffice. Otherwise, we

can order the vertices as v1; v2; . . . ; vn in the following manner. Letting G0 ¼ G

and Gi ¼ Gnfv1; . . . ; vig for i � 1, at each step i, we choose a vertex vi such that

dGi�1
ðviÞ � 5 and either

(a) �ðGi�1=eÞ � � for some e 2 Evi ; or

(b) �ðGi�1 � viÞ � �.

We label the vertices in a greedy fashion beginning with vn and working

backwards, labeling each vertex with the smallest available label. For each vertex,

the number of forbidden labels will be at most

5 � ð2 p� 1Þ þ ð2�þ 19Þ � ð2 q� 1Þ ¼ ð4 q� 2Þ�þ 10 pþ 38 q� 24:

3. DISCHARGING AND UNAVOIDABLE CONFIGURATIONS

In this section, we shall give proofs for Lemmas 2.1 and 2.2. We use the well-

known method of ‘‘discharging,’’ already used in Heawood [11] to prove the

5-Color Theorem, and later used extensively in Appel and Haken [2] and Appel

et al. [3] in the proof of the 4-Color Theorem. Discharging is a method by which

one can establish the existence of small, so-called ‘‘unavoidable configurations’’

in certain planar graphs. This method is tantamount to the proof of the 4-Color

Theorem, and we refer the reader to a recent proof of this theorem in

Robertson et al. [15] which follows the same strategy as the Appel and Haken

proof, but is vastly simpler in the discharging phase. To our knowledge, the

method of discharging has not been previously used in bounding �ðG; p; qÞ for

planar graphs G.

Now let G be a simple connected planar graph with a fixed embedding in

the plane. Let F denote the set of faces of G. For each f 2 F let dðf Þ be

the number of edges belonging to f , where cut-edges are counted twice.

Recall the definition of the degree dðvÞ for the degree of a vertex v, and tðeÞ
and tðvÞ for the number of triangular faces containing an edge e and a vertex v,

respectively.
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Using Euler’s formula, one easily obtains that (see, e.g., Jensen and Toft

[12, Section 2.9])

X
v2V

ðdðvÞ � 4Þ þ
X
f2F

ðdð f Þ � 4Þ ¼ �8: ð2Þ

We shall associate a charge ’ðvÞ to each vertex v 2 V where ’ðvÞ ¼ dðvÞ � 4.

Similarly, we associate a charge ’ð f Þ ¼ dð f Þ � 4 to each face f 2 F. According

to Equation (2), the sum of the charges taken over all vertices and faces will be

negative. We shall transfer the charge of vertices and faces to the edges of the

graph, in such a way that the total charge remains constant. There are three steps

to perform:

(3.1) For an edge e ¼ uv 2 E, we give e a basic charge ’bðeÞ where, given e

belongs to faces f ; g 2 F, we set

’bðeÞ ¼
’ðuÞ
dðuÞ þ

’ðvÞ
dðvÞ þ

’ðf Þ
dðf Þ þ

’ðgÞ
dðgÞ : ð3Þ

If e belongs to only one face f 2 F, then we give e a basic charge as in the

above taking g ¼ f .

(3.2) For each triangular face with vertices u; v;w, where 3 � dðuÞ � 5,

dðvÞ � 6, and dðwÞ � 6, do the following:

Transfer a charge of 1
2
ð’ðvÞ
dðvÞ � 1

3
Þ from vw to uw.

Transfer a charge of 1
2
ð’ðwÞ
dðwÞ � 1

3
Þ from vw to uv.

(3.3) For each triple u; v; v0 in V , with uv; uv0 2 Eu, dðuÞ ¼ 5, dðvÞ � 6,

dðv0Þ � 6, tðuvÞ ¼ 2, and tðuv0Þ ¼ 0 transfer a charge of 1
6

from uv0 to uv.

After doing all possible charge transfers once, let ’ðeÞ be the resulting charge on

each edge e 2 E. Since the total charge on the edges is seen to be equal to the

total charge on the vertices and faces, we have from Equation (3) that

X
v2V

X
e2Ev

’ðeÞ ¼
X
e2E

2’ðeÞ ¼
X
e2E

2’bðeÞ ¼ �16: ð4Þ

The following properties, whose proofs follow by following the two dis-

charging methods given above, are used at numerous places in the sequel,

although usually implicitly.

Proposition 3.1. Let G be a simple planar graph with a fixed embedding and let

e ¼ uv be an edge in G.

(i) If ’bðeÞ < 0 , then dðuÞ � 5 or dðvÞ � 5, and ’ðeÞ � ’bðeÞ.
(ii) If ’bðeÞ � 0, then ’ðeÞ � 0.
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Let v be a vertex and vu an edge in a simple planar graph with a fixed embedding.

If the edge vw is an edge which directly precedes vu, counting the edges of

Ev moving clockwise around v, then we shall denote w by u�. If vw directly

succeeds vu, then we denote w by uþ.

First common steps in the proofs of Lemmas 2.1 and 2.2. Both lemmas are

proved by contradiction. So let G be a simple, planar graph with a fixed embed-

ding in the plane, and suppose that G is a counterexample to one of the lemmas.

According to Equation (4) there is a vertex v 2 V where
P

e2Ev
’ðeÞ < 0.

Suppose w is such a vertex and suppose w has m neighbors w1; . . . ;wm where

dðw1Þ � � � � � dðwkÞ. Since (i) does not hold, we know m � 3.

For j ¼ 1; 2; . . . ;m, let Tj be the set of edges between vertices in fvj; . . . ; vmg
belonging to a face containing v, and set tj ¼ jTjj.

Proof of Lemma 2.1. In this case, we may assume that G is a 2-connected

triangulation, for otherwise, we could add edges to G obtaining a triangulation G0.
If none of (i)–(iv) holds for G, then clearly none of (i)–(iv) holds for G0.

Claim 1. m 6¼ 3.

Proof. Suppose m ¼ 3. Because (ii) does not hold, dðwjÞ � 12 for all j, hence

’bðwwjÞ � � 1
3
þ 2

3
� 2 � 1

3
¼ � 1

3
. According to the procedure for transferring

charge, for each j a charge of at least 1
6

units will be transfered from both

wjw
�
j and wjw

þ
j to wwj. This gives ’ðwwjÞ � ’bðwwjÞ þ 2 � 1

6
� 0, and thusP

e2Ew
’ðeÞ � 0, contradicting the choice of w. &

Claim 2. m 6¼ 4.

Proof. Suppose m ¼ 4. Suppose first that dðwjÞ � 8 for all j. Then ’bðwwjÞ�
0 þ 1

2
� 2 � 1

3
¼ � 1

6
. According to the procedure for transferring charge, for each

j a charge of at least 1
12

units will be transfered from both wjw
�
j and wjw

þ
j to wwj.

This gives ’ðwwjÞ � ’bðwwjÞ þ 2 � 1
12
¼ 0 for all j, and thus

P
e2Ew

’ðeÞ � 0,

contradicting the choice of w.

We conclude dðw1Þ � 7. Since G does not satisfy condition (ii) in the lemma

(with v ¼ w1), we know dðw1Þ � 4 and hence ’ðww1Þ � ’bðww1Þ � 0 þ 0�
2 � 1

3
¼ � 2

3
. It also follows that dðwjÞ � 12 for all j � 2, hence ’bðwwjÞ �

0 þ 2
3
� 2 � 1

3
¼ 0 for all j � 2. According to the procedure for transferring charge,

for each edge wjw‘ 2 T2 a charge of at least 1
6

units will be transferred from wjw‘

to both wwj and ww‘. Observing that t2 ¼ 2, we haveX
e2Ew

’ðeÞ � ’bðww1Þ þ
X
j�2

’bðwwjÞ þ t2 � 2 � 1

6
� 0;

again contradicting the choice of w. &

Claim 3. m 6¼ 5.

Proof. Suppose m ¼ 5. First suppose that dðwjÞ � 7 for all j. Then’bðwwjÞ�
1
5
þ 3

7
� 2 � 1

3
¼ � 4

105
. According to the procedure for transferring charge, for
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each j a charge of at least 1
21

units is transferred from both wjw
�
j and wjw

þ
j to wwj.

This gives ’ðwwjÞ � ’bðwwjÞ þ 2 � 1
21
¼ 2

35
> 0, and thus

P
e2Ew

’ðeÞ � 0,

contradicting the choice of w.

So we have that dðw1Þ � 6. Again we know that d1ðwÞ � 4 and hence

’bðww1Þ � 1
5
þ 0 � 2 � 1

3
¼ � 7

15
. If dðwjÞ � 8 for all j � 2, then ’bðwwjÞ � 1

5
þ

1
2
� 2 � 1

3
¼ 1

30
. According to the procedure for transferring charge, for each edge

wjw‘ 2 T2, we transfer a charge of at least 1
12

units from wjw‘ to both wwj and ww‘.

Observing that t2 ¼ 3, we have

X
e2Ew

’ðeÞ � ’bðww1Þ þ
X
j�2

’bðwwjÞ þ t2 � 2 � 1

12
� � 7

15
þ 4 � 1

30
þ 1

2
¼ 1

6
> 0;

contradicting the choice of w.

This means that we know dðw1Þ � 6 and dðw2Þ � 7, hence dðwjÞ � 12 for all

j � 3. Since certainly dðw1Þ � 4 and dðw2Þ � 4, we have ’bðww1Þ � � 7
15

and

’bðww2Þ � � 7
15

. Also, ’bðwwjÞ � 1
5
þ 2

3
� 2 � 1

3
¼ 1

5
for j � 3. According to the

procedure for transferring basic charge, for each wjw‘ 2 T3, a charge of at least 1
6

units will be transferred from wjw‘ to both wwj and ww‘. Observing that t3 � 1

we have

X
e2Ew

’ðeÞ � ’bðww1Þ þ ’bðww1Þ þ
X
j�3

’bðwwjÞ þ t3 � 2 � 1

6

� �2 � 7

15
þ 3 � 1

5
þ 1

3
¼ 0;

again contradicting the choice of w. &

We now know that m � 6. Since the vertex w is chosen such that
P

e2Ew

’ðeÞ < 0, there must be an edge e 2 Ew such that ’ðeÞ < 0. Let wwa 2 Ew be

such an edge. By Lemma 3.1 (ii) this must mean that ’bðwwaÞ < 0 also. Since

dðwÞ ¼ m � 6, by Lemma 3.1 (i) we have that dðwaÞ � 5.

Claim 4. m 6¼ 6; 7.

Proof. Suppose m ¼ 6 or m ¼ 7. We certainly can assume dðwaÞ � 4,

otherwise (i) or (ii) would hold. If dðwaÞ ¼ 4, then dðw�
a Þ � 12 and dðwþ

a Þ � 12,

otherwise (iii) holds with v ¼ wa. Then we have ’bðwwaÞ � 1
3
þ 0 � 2 1

3
¼ � 1

3
.

Also, according to the procedure for transferring charge, at least 1
6

units are

transferred from both waw
�
a and waw

þ
a to wwa. This means ’ðwwaÞ � ’bðwwaÞþ

2 � 1
6
� 0, contradicting the choice of wwa.

Now suppose dðwaÞ ¼ 5, and thus ’bðwwaÞ � m� 4
m

þ 1
5
� 2

3
¼ m� 4

m
� 7

15
. Since

G does not satisfy (iv) with v ¼ wa, we have that either dðw�
a Þ � 14 � m and

dðwþ
a Þ � 14 � m, or maxfdðw�

a Þ; dðwþ
a Þg � 12. In the former case we have that a

charge of at least 1
2

10�m
14�m

� 1
3
Þ

�
is transfered from both waw

�
a and waw

þ
a to wwa.
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In the latter case, a charge of at least 1
6

is transfered from waw
�
a or waw

þ
a to wwa.

So we obtain

’ðwwaÞ � ’bðwwaÞ þ min 2 � 1

2

10 � m

14 � m
� 1

3

� �
;
1

6

� �

� m� 4

m
� 7

15

10 � m

14 � m
� 1

3

� �
;
1

6

� �
� 0;

again contradicting the choice of wwa. &

Claim 5. m 6¼ 8; 9; 10; 11.

Proof. Suppose 8 � m � 11. We can assume dðwaÞ � 4, since otherwise (ii)

would hold with v ¼ wa. It suffices to show ’ðwwaÞ � 0 when dðwaÞ ¼ 4, as

’bðwwaÞ � 1
2
þ 1

5
� 2 � 1

3
> 0 if dðwaÞ � 5. Suppose dðwaÞ ¼ 4. Then dðw�

a Þ � 8

and dðwþ
a Þ � 8, and a charge of at least 1

12
is transfered from both waw

�
a and waw

�
a

to wwa. Hence

’ðwwaÞ � ’bðwwaÞ þ 2 � 1

12
� 1

2
þ 0 � 2 � 1

3
þ 1

6
¼ 0;

contradicting the choice of wwa. &

To complete the proof of Lemma 2.1, we need to show that m � 12 also leads

to a contradiction. Suppose m � 12. Then dðwaÞ � 3, otherwise (i) would hold

with v ¼ wa. It suffices to show ’ðwwaÞ � 0 when dðwaÞ ¼ 3, for otherwise

’ðwwaÞ ¼ ’bðwwaÞ � 2
3
þ 0 � 2 � 1

3
¼ 0. If dðwaÞ ¼ 3, then dðw�

a Þ � 12 and

dðwþ
a Þ � 12, and a charge of at least 1

6
is transfered from both waw

�
a and waw

�
a

to wwa. Thus we find

’ðwwaÞ � ’bðwwaÞ þ 2 � 1

6
� 2

3
� 1

3
� 2 � 1

3
þ 1

3
¼ 0;

the final contradiction in this proof. &

Proof of Lemma 2.2. We use the notation and definitions from the part

common with the proof of Lemma 2.1. In fact, the proof follows a line similar to

the proof of the previous lemma, although the arguments are different.

Claim 1. m 6¼ 3.

Proof. Suppose m ¼ 3. Since (ii) and (iii) do not hold for G, we

have dðwjÞ � 6 for all j, and tðwÞ ¼ 0. Thus ’ðwwjÞ � ’bðwwjÞ � � 1
3
þ 1

3
¼ 0

for all wwj 2 Ew. It follows that
P

e2Ew
’ðeÞ � 0, contradicting the choice

of w. &
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Claim 2. m 6¼ 4.

Proof. Suppose m ¼ 4. Since (iv) does not hold for G, we have dðwjÞ � 5

for all j. If tðwÞ � 1, then we find
P

e2Ew
’ðeÞ � 4 � 0 þ 4 � 1

5
� 2 � 1

3
> 0. Thus

tðwÞ � 2. If tðwÞ � 3, then tðwwiÞ ¼ 2 for some i, in which case (v) holds.

Consequently, tðwÞ ¼ 2 and in fact tðwwjÞ ¼ 1 for all j.

If dðwjÞ ¼ 5 for some j, then setting v ¼ wj and vi ¼ w we find that (vi) holds,

contradicting the choice of G. Thus dðwjÞ � 6 for all j, and hence
P

e2Ew
’ðeÞ �

4 � 0 þ 4 � 1
3
� 4 � 1

3
¼ 0, contradicting the choice of w. &

Claim 3. m 6¼ 5.

Proof. Suppose m ¼ 5. We first note that dðwjÞ � 4 for all j, otherwise (i)

or (ii) would hold. Also, dðw1Þ � 7, for otherwise ’ðwwjÞ � ’bðwwjÞ � 1
5
þ

1
2
� 2 � 1

3
> 0 for all j. If tðwÞ � 1, then we find

P
e2Ew

’ðeÞ � 5 � 1
5
þ 5 � 0�

2 � 1
3
> 0. Thus tðwÞ � 2. Furthermore, since (vi) and (vii) do not hold, if

tðwwjÞ ¼ 1 for some j, then dðwjÞ � 5; and if tðww‘Þ ¼ 2 for some ‘, then

dðw‘Þ � 6.

If tðwÞ ¼ 2, then there are at least three neighbors wj of w with tðwwjÞ � 1,

and hence dðwjÞ � 5. This means
P

e2Ew
’ðeÞ � 5 � 1

5
þ 3 � 1

5
þ 2 � 0 � 4 � 1

3
> 0.

If tðwÞ ¼ 3, then, since (viii) does not hold, there must be at least one neigh-

bor wj with tðwwjÞ ¼ 0. This means that in fact there are two neighbors wj with

tðwwjÞ ¼ 1, and hence dðwjÞ � 5; and two neighbors w‘ with tðww‘Þ ¼ 2, and

hence dðw‘Þ � 6. This gives
P

e2Ew
’ðeÞ � 5 � 1

5
þ 0 þ 2 � 1

5
þ 2 � 1

3
� 6 � 1

3
> 0.

If tðwÞ � 4, then for all j we find tðwwjÞ � 1, which means that (viii) holds.

So in all cases we contradict the choice of G or the choice of w. &

We now know that m � 6. Since the vertex w is chosen such that
P

e2Ew
’ðeÞ < 0,

there must be an edge e 2 Ew such that ’ðeÞ < 0. Let wwa 2 Ew be such an edge.

By Lemma 3.1 (i) this must mean that ’bðwwaÞ < 0 also, and hence

0 > ’bðwwaÞ �
m� 4

m
þ dðwaÞ � 4

dðwaÞ
� tðwwaÞ �

1

3
ð5Þ

Claim 4. m 6¼ 6; 7.

Proof. Suppose m ¼ 6 or m ¼ 7. From Equation (5), it follows that the only

possibilities for dðwaÞ and tðwwaÞ are:

dðwaÞ � 2;
dðwaÞ ¼ 3 and tðwwaÞ �1;

dðwaÞ ¼ 4 and tðwwaÞ ¼ 2;
dðwaÞ ¼ 5 and tðwwaÞ ¼ 2:

In the first three options, we see that (i), (iii), and (v), respectively, hold, where we

take v ¼ wa.
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So the only possibility left is dðwaÞ ¼ 5 and tðwwaÞ ¼ 2. Let the neigh-

bors of wa be fw�
a ;w;w

þ
a ; u1; u2g. Then certainly tðwawÞ � 1, tðwaw

�
a Þ � 1 and

tðwaw
þ
a Þ � 1. Hence if tðwau1Þ � 1 and tðwau2Þ � 1, then (viii) holds with

v ¼ wa.

So for at least one p 2 f1; 2g, tðwaupÞ ¼ 0. Moreover, since (ix) does not hold,

for at least one p 2 f1; 2g we have that tðwaupÞ ¼ 0 and dðupÞ � 6. Without loss

of generality, we can assume that u1 has these properties. Combining everything,

we find that dðwaÞ ¼ 5, dðwÞ � 6, dðu1Þ � 6, tðwawÞ ¼ 2, and tðwau1Þ ¼ 0. This

means that in the final step of the discharging process a charge of 1
6

is transferred

from wau1 to waw. We find that the final charge for the edge wwa satisfies

’ðwwaÞ �
1

3
þ 1

5
� 2 � 1

3
þ 1

6
> 0;

contradicting the choice of wwa. &

To complete the proof of Lemma 2.2, we only need to show that m � 8 also leads

to a contradiction. Suppose m � 8. From Equation (5), it follows that the only

possibilities for dðwaÞ and tðwwaÞ are:

dðwaÞ � 2;
dðwaÞ ¼ 3 and tðwwaÞ� 1;

dðwaÞ ¼ 4 and tðwwaÞ ¼ 2:

If the first possibility holds, then (i) follows; if the second holds, then (iii) holds;

and the third possibility gives that (v) holds, every time taking v ¼ wa. This gives

the final contradiction against the existence of a counterexample G. &

Remark. By a more elaborate case analysis, it is possible to slightly improve

Lemmas 2.1 and 2.2 in such a way that we get a slightly better bound in

Theorem 1.4. But this would only improve the additive term, and not the factor

4 q� 2 in front of �. For this reason, we haven’t tried to push our method to the

limit.
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