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Let G be a k-connected graph G having circumference c≥ 2k. It is shown that for k≥ 2,
then there is a bond B which intersects every cycle of length c−k+2 or greater.

1. Introduction

It was shown by [7] that for a loopless 2-connected graph G with circumfer-
ence c and cocircumference c∗, it holds that |E(G)|≤ 1

2cc∗. Recently, Lemos
and Oxley [2] showed that this bound holds not only for graphs but for con-
nected matroids in general. They showed that if M is a connected matroid
with at least 2 elements, and M has circumference c, and cocircumference
c∗, then |e(M)|≤ 1

2cc∗.
Oxley [5] posed the following conjecture:

Conjecture 1.1. For any connected matroid M with at least 2 elements,
one can find a collection of at most c∗(M) cycles which cover each element
of M at least twice.

In [4], Neumann-Lara et al showed that the above conjecture holds for
cographic matroids. They used the following lemma which appears in Wu [7].

Lemma 1.1. Let G be a 2-connected graph. Then there is a bond which
intersects every cycle of length c or c−1.

In [3], a corresponding result for cycles was proven, namely:
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Theorem 1.1. Let G be a k-connected graph with cocircumference c∗.
Then for k≥2, there is a cycle which intersects every bond of size c∗−k+2
or greater.

The object of this paper is to dualize this result. We first prove the
following theorem which constitutes the bulk of this paper.

Theorem 1.2. For a k-connected graph where k ≥ 2 and c = c(G) ≥ 2k, if
C1 and C2 are a pair of cycles which intersect in at most one vertex, then it
holds that |V (C1)|+ |V (C2)|≤2(c−k+1).

Using this result, we shall prove:

Theorem 1.3. For any k-connected graph G where k ≥ 2 and having cir-
cumference c≥2k, there is a bond B which intersects every cycle of length
c−k+2 or greater.

2. Disjoint path lemmas

A useful tool for k-connected graphs is the so-called ‘Fan Lemma’ (see [1]).
We shall use the following variant of this lemma:

Lemma 2.1. Let G be a k-connected graph where k ≥ 1, let X and Y be
disjoint subsets of vertices of a graph G where |X| ≥ k, and |Y | ≥ k. There
exist k vertex-disjoint paths P1, . . . ,Pk each originating at a vertex in X and
terminating at a vertex in Y , and each path intersecting X and Y only at
its terminal vertices.

We shall need a modified version of the above lemma, namely:

Lemma 2.2. Let G be a k-connected graph where k ≥ 1, let X and Y
be disjoint sets of vertices where 0 < |X| ≤ k and |Y | ≥ k. Assume X =
{u1,u2, . . . ,us} and let w1, . . . ,ws be positive integers such that

∑s
i=1 wi =k.

Then there exist k internally vertex-disjoint paths from X to Y such that
for each i, exactly wi of these paths originate at ui. Moreover, no two paths
terminate at the same vertex in Y , and each path intersects X and Y only
at its terminal vertices.

3. Finding large independent sets

In this section, we shall show that if the circumference of a k-connected
graph is ‘small’, then it must contain a ‘large’ independent set of vertices.
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Lemma 3.1. Let G be a k-connected graph (k ≥ 2) with circumference
c=2k+β, where 0<β < 2

3k. Assuming |V (G)|≥2k+2β +1, then G has an
independent set with at least |V (G)|−k−β vertices.

Proof. Let G be as in the statement of the lemma where |V (G)| ≥ 2k +
2β+1. Let C be a cycle of length c. We shall assume that C has an circular
orientation, and for any vertices u,v∈V (C) we let C[u,v] denote the path
along C directed from u to v. For any vertex v∈V (C), let v− and v+ denote
the vertices directly preceeding and succeeding v on C, respectively. Let
v ∈ V (G)\V (C). Since G is k-connected, there are k paths P1, . . . ,Pk from
v to C, which meet only at v. For i= 1, . . . ,k, let vi be the terminal vertex
of Pi on C. We can assume that v1, . . . ,vk occur in order as move along C
in the direction of its orientation. For j ≥ 1, let αj be the number of paths
C[vi−1,vi], i = 1, . . . ,k (taking v0 = vk) having length j. Clearly α1 = 0, for
otherwise C could be augmented to a longer cycle via v. We have

α2 + α3 +
∑
j≥4

αj = k

2α2 + 3α3 + 4
∑
j≥4

αj ≤ |C| = 2k + β

From the above, we obtain 2α2+α3≥2k−β. If |C[vi−1,vi]|=2, then |Pi−1|=
|Pi| = 1, for otherwise, C ′ = C[vi,vi−1]∪Pi−1 ∪Pi would be a longer cycle
than C. Thus if |C[vi−1,vi]|= 2, then v is adjacent to vi−1 and vi. We call
paths C[vi−1,vi] having length j, v j-segments.

We have |V (G)|≥2k+2β+1= |C|+β+1> |C|+1. Thus there is a vertex
u ∈ V (G)\(V (C)∪{v}). There are k paths Q1, . . . ,Qk from u to C which
meet only at u. For i = 1, . . . ,k let ui be the terminal vertex of Qi on C,
where we can assume that u1, . . . ,uk occur in order as we move around C.
For j ≥ 1, let γj denote the number of u j-segments. As with v, we have
2γ2 +γ3≥2k−β.

Suppose that no v 2-segment is a u 2-segment. If any u 2-segment shares
an edge with a v 2-segment, then it is seen that C could be modified into
a longer cycle via u and v. Thus no u 2-segment and v 2-segment have
a common edge. Similarly, no u 2-segment can have exactly one edge in
common with a v 3-segment and no v 2-segment can have exactly one edge in
common with a u 3-segment. Suppose a u 2-segment C[ui,ui+1]=uiu

+
i ui+1

is contained in a v 3-segment C[vj,vj+1]. We can assume that ui = vj, and
C[vj,vj+1]=uiu

+
i ui+1u

+
i+1. Clearly there is no path in G\V (C) from u to v;

for otherwise, C could be modified into a longer cycle. This means that the
paths P1, . . . ,Pk can only intersect the paths Q1, . . . ,Qk at vertices of C.
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Suppose for some s 
= i, i+1 and t 
=j,j +1 we have us =v+
t . Then

C ′ = C[us, ui] ∪ C[ui+1, vt] ∪ {usuui+1, uivvt}

is a cycle with length |C|+1. On the other hand, if vt =u+
s , then

C ′ = C[vt, ui+1] ∪ C[u+
i+1, us] ∪ {usuui+1, u

+
i+1vvt}

is a cycle of length |C|+2. From this we conclude that no such vertices us and
vt can exist. This in turn implies that at most one u 2-segment is contained
in a v 3-segment, and likewise, at most one v 2-segment is contained in a u
3-segment.

For a u 3-segment and v 3-segment which share edges, we have that
either both segments are equal or they have exactly one edge in common. In
consideration of this observation and the ones preceeding it, we obtain the
bound

2k + β = |C| ≥ 2α2 + 2γ2 + α3 + γ3 − 1

2k + β ≥ 2(2k − β) − 1

β ≥ 2k − 1
3

Since β is an integer, we have β ≥ �2k−1
3 �. Here we reach a contradiction,

since β< 2
3k.

We conclude that there is at least one v 2-segment which is also a u
2-segment. Since u and v where arbitrary vertices of V (G)\V (C), we have
that the above holds for any 2 vertices in V (G)\V (C). As a consequence,
no two vertices of V (G)\V (C) can be adjacent, for if there were two such
vertices, then C could be modified into a longer cycle via these two vertices.
Thus we have that V (G)\V (C) is an independent set of vertices.

Suppose for some i and j we have that v−i is adjacent to v−j . Then

C ′ = (C\{v−i vi, v
−
j vj}) ∪ Pi ∪ Pj ∪ {v−i v−j }

is a cycle with |C ′|= |C|+1. We conclude that for i 
=j, it holds that v−i and
v−j are non-adjacent. Letting S = {v−i : i = 1, . . . ,k}, we have that S is an
independent set. Suppose some vertex u∈V (G)\(V (C)∪{v}) is adjacent to
a vertex v−i ∈S. From before we know that there is a v 2-segment C[vj−1,vj ]
which is also a u 2-segment (obviously i 
=j). Let

C ′ = C\(C[vi−1, vi] ∪ {v−i vi}) ∪ {vj−1uvi, vivvj}.
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It is seen that |C ′|= |C|+1. We conclude that no vertex of V (G)\V (C) is ad-
jacent to vertices in S, and consequently S∪(V (G)\V (C)) is an independent
set.

We have

|S ∪ (V (G)\V (C))| = k + |V (G)| − c

= |V (G)| − k − β.

4. Bounding the circumference

In this section, we show that the circumference of a k-connected must be
‘small’, if one has two vertex-disjoint cycles the sum of whose lengths is
‘large’.

Lemma 4.1. Let G be a k-connected graph where k ≥ 4. Let C1 and C2

be two vertex-disjoint cycles having lengths c1 and c2, respectively. Given G
has circumference c≥2k and c1 +c2≥2(c−k+1), then c< 7

3k+ 5
2 .

Proof. We shall assume that c1≥c2 and c=2k+β, where β≥0. Let C1 and
C2 be given circular orientations. For i = 1, or 2, and vertices u,v ∈V (Ci),
we let Ci[u,v] denote the path along Ci directed from u to v. We first note
that

c1 ≥ c1 + c2

2
≥ c − k + 1 ≥ k.

We shall consider two cases:

Case 1. Suppose c2≥k.
By Lemma 2.1, there are k vertex-disjoint paths P1, . . . ,Pk between V (C1)

and V (C2) where each Pi intersects C1 and C2 at exactly one vertex (ie. at
its terminal vertices). For i=1, . . . ,k, let ui, and vi be the terminal vertices
of Pi lying on C1 and C2 respectively. We may assume that u1, . . . ,uk occur
in order as we travel along C1 in the direction of its orientation.

For some 1 ≤ i≤ k, we have |C1[ui,ui+1]| ≤ c1
k . Here we take uk+1 = u1.

For the same i, we have that either |C2[vi,vi+1]| ≥ c2
2 or |C2[vi+1,vi]| ≥ c2

2 .
Without loss of generality, we assume the former holds. Let

C = C1[ui+1, ui] ∪ C2[vi, vi+1] ∪ Pi ∪ Pi+1.

Then C is a cycle where |C|≥c1(1− 1
k )+ c2

2 +2. Consider the LP:

min
(

1 − 1
k

)
x1 +

x2

2
+ 2.
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x1 ≥ x2

x2 ≥ k

x1 + x2 ≥ 2(c − k + 1)

The minimum occurs at
1) x1 =x2 =c−k+1,

or
2) x1 =2c−3k+2, x2 =k.

Suppose the minimum occurs at 1). Then

x1

(
1 − 1

k

)
+

x2

2
+ 2 = (c − k + 1)

(
3
2
− 1

k

)
+ 2.

We have
(c − k + 1)

(
3
2
− 1

k

)
+ 2 ≤ |C| ≤ c.

Rearranging the inequality, we obtain

c ≤
(k − 1)

(
3
2 − 1

k

)
− 2

1
2 − 1

k

.

Using the above inequality, we deduce that c< 7
3k+ 5

2 if k≤9.
Suppose the minimum occurs at 2). Then

x1

(
1 − 1

k

)
+

x2

2
+ 2 = (2c − 3k + 2)

(
1 − 1

k

)
+

k

2
+ 2.

We have that

(2c − 3k + 2)
(

1 − 1
k

)
+

k

2
+ 2 ≤ |C| ≤ c.

Rearranging, we get

c ≤
5
2k + 2

k − 7
1 − 2

k

.

From the above inequality, we conclude that c < 7
3k + 5

2 if k ≤ 27, and
combining both cases, we obtain c< 7

3k+ 5
2 , if k≤9.

We therefore suppose that k≥10. By considering averages, one can show
that for some 1≤ i≤k it holds |C1[ui,ui+3]|≤ 3

kc1. Now for some i≤j≤ i+3
and i≤ j′ ≤ i+ 3 where vj′ occurs after vj while moving along C2 with its
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orientation, we have |C2[vj,vj′ ]| ≤ c2
4 . Assuming without loss of generality

that j <j′, let
C = C1[uj′ , uj ] ∪ C2[vj′ , vj ] ∪ P1 ∪ P2.

Then |C|≥c1(1− 3
k )+ 3

4c2 +2. Consider the LP:

min
(

1 − 3
k

)
x1 +

3x2

4
+ 2.

x1 ≥ x2

x2 ≥ k

x1 + x2 ≥ 2(c − k + 1)

The minimum occurs at
1) x1 =x2 =c−k+1,

or
2) x1 =2c−3k+2, x2 =k.

Suppose the minimum occurs at 1). Then

x1

(
1 − 3

k

)
+

3x2

4
+ 2 = (c − k + 1)

(
1 − 3

k
+

3
4

)
+ 2.

Thus
(c − k + 1)

(
1 − 3

k
+

3
4

)
+ 2 ≤ |C| ≤ c.

Rearranging we obtain

c ≤
(k − 1)

(
7
4 − 3

k

)
− 2

3
4 − 3

k

.

From we see that c< 7
3k+ 5

2 if k≥10.
Suppose the minimum occurs at 2). Then

x1

(
1 − 3

k

)
+

3x2

4
+ 2 = (2c − 3k + 2)

(
1 − 3

k

)
+

3k

4
+ 2.

Thus
(2c − 3k + 2)

(
1 − 3

k

)
+

3k

4
+ 2 ≤ |C| ≤ c.

Rearranging we obtain

c ≤
3

(
k − 2

3

) (
1 − 3

k

)
− 3k

4 − 2

1 − 6
k

.



446 SEAN MCGUINNESS

From this inequality, we have that c< 7
3k+ 5

2 if k≥10.

Combining both cases, we obtain that c< 7
3k+ 5

2 if k≥10. This completes
the proof for Case 1.

Case 2. Suppose c2 <k.
Let c2 =k−γ, and let c1+c2 =2(c−k+1)+α where γ>0 and α≥0. If c2≤4,

then c≥c1≥2(c−k+1)−4. From this we obtain that c≤2k+2<2k+5
2 . Thus we

may assume that c2≥5. We pick a vertex v∈V (C2). By Lemma 2.2, we can
find k internally vertex-disjoint paths P1, . . . ,Pk from C1 to C2 where exactly
γ + 1 of these paths, say P1, . . . ,Pγ+1, terminate at v, and the remaining
k− γ − 1 terminate at each of the vertices of V (C2)\{v}. Let u1, . . . ,uγ+1

be the respective terminal vertices on C1 of the paths P1, . . . ,Pγ+1. Let v−

and v−− be the first and second vertices, respectively, on C2 preceeding
v, and let v+ and v++ be the first and second vertices succeeding v. We
let P−−,P−,P+, and P++ denote the paths terminating at the vertices
v−−,v−,v+, and v++, respectively, and we denote their respective terminal
vertices on C1 by u−−,u−,u+, and u++.

Suppose that |C1[u−−,u++]|≤β +α−1. Let

C = C1[u++, u−−] ∪ C2[v++, v−−] ∪ P++ ∪ P−−.

|C| ≥ c1 + c2 − (β + α − 1) − 4 + 2

≥ 2(c − k + 1) + α − β − α − 1

= 2k + β + 1 > c.

This yields a contradiction. We conclude that |C1[u−−,u++]| ≥ β + α.
The above argument also shows that for any different vertices u,u′ ∈
{u−−,u−,u+,u++} it holds that |C1[u,u′]| ≥ β + α. Moreover, for any
ui∈{u1, . . . ,uγ+1} and u∈{u−−,u−,u+,u++}, it holds that |C1[u,ui]|≥β+α.
From this, we obtain the bound c1 ≥ 5(α+β)+γ. Let c1 = 5(α+β)+γ + δ,
where δ≥0. Then

c1 + c2 = 2(c − k + 1) + α

5(α + β) + γ + δ + k − γ = 2k + 2β + 2 + α

3β = k + 2 − 4α − δ

β ≤ k

3
+

2
3

Thus c=2k+β≤ 7
3k+ 2

3 < 7
3k+ 5

2 . This completes the proof for Case 2.
The proof of the lemma follows from the consideration of Cases 1 and 2

above.
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Lemma 4.2. Let G be a k-connected graph where k≥3. Let C1 and C2 be
two cycles having exactly one vertex in common, and having lengths c1 and
c2, respectively. Given G has circumference c≥2k, if c1+c2≥2(c−k+1)+1,
then c< 7

3k+ 5
2 .

Proof. As in the previous lemma, we shall assume that c = 2k +β, where
β≥0. We shall also assume that both C1 and C2 have circular orientations.
Let v be the vertex common to C1 and C2. We shall use induction on k. If
k=3, then it is straightforward to show that c1+c2≤2(c−2), and the lemma
is vacuously true in this case.

We therefore suppose that the lemma is true for all graphs of connectivity
k−1 or less, where k≥4. Let G be a k-connected graph. If c1+c2≥2(c−k+1)+3,
then pick an edge e∈E(G)\E(C1)∪E(C2) and let G′ =G\{e} and c′=c(G′).
We may choose e such that c′ =c. Then G′ is (k−1)-connected, and c1+c2≥
2(c−k+1)+3≥2(c′−(k−1)+1)+1. By the inductive assumption, we have
that c=c′< 7

3(k−1)+ 5
2 < 7

3k+ 5
2 .

We may therefore assume that c1+c2≤2(c−k+1)+2. Let v− and v+ be
the vertices preceeding and succeeding v on C2, respectively. Suppose there
is a path P from v− to v+ in G\(V (C1∪C2)\{v−,v+}). Then

C ′
1 = C1, C ′

2 = C2[v+, v−] ∪ P

would be vertex-disjoint cycles where

|C ′
1| + |C ′

2| ≥ c1 + c2 − 1 ≥ 2(c − k + 1).

By Lemma 4.1, it would follow that c < 7
3k + 5

2 . Thus we may assume that
no such path P exists, and v−, and v+ are separated by the vertices in
S =V (C1∪C2)\{v−,v+} in G.

Since G is k-connected, there are k internally vertex-disjoint paths,
say P−

1 , . . . ,P−
k from v− to S, and k internally vertex-disjoint paths, say

P+
1 , . . . ,P+

k from v+ to S. We may assume that P−
1 is the edge v−v, and P+

1
is the edge v+v. For all i,j the paths P−

i and P+
j can only meet at their ter-

minal vertices in S. Suppose δ1 of the paths P−
1 , . . . ,P−

k terminate at vertices
in C2, and k− δ1 paths terminate at vertices of C1\{v}. Similarly, suppose
that δ2 of the paths P+

1 , . . . ,P+
k terminate at vertices in C2, and k−δ2 paths

terminate at C1\{v}. If δ1 + δ2 ≥ c2, then there is a vertex u∈ V (C2) such
that for some i and j, a path P−

i terminates at u, and a path P+
j terminates

at u+. Let

C ′
2 = C2[v+, u] ∪ C2[u+, v−] ∪ P−

i ∪ P+
j

C ′
1 = C1.
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Then C ′
1 and C ′

2 are disjoint cycles where |C ′
1|+|C ′

2|=c1+c2−1≥2(c−k+1).
Thus by Lemma 4.1 we have c < 7

3k + 5
2 . We may therefore assume that

δ1 +δ2≤c2−1.
Let P−

i and P+
j be paths which terminate at different vertices u1 and u2,

respectively, on C1. If |C1[u1,u2]|≤β +2, then

C = C2[v+, v−] ∪ C1[u2, u1] ∪ P−
i ∪ P+

j

is a cycle where

|C| ≥ c1 + c2 − (β + 2)

≥ 2(c − k + 1) + 1 − (β + 2)

= 2k + β + 1 > c.

This yields a contradiction. Thus we have |C1[u1,u2]|≥β +3, and similarly
|C1[u2,u1]|≥β +3. Consequently,

(k − δ1 − 1) + (k − δ2 − 1) + 2(β + 3) ≤ c1

2k − δ1 − δ2 ≤ c1 − 2β − 4

In addition, we have δ1+δ2≤c2−1. Using this, the above inequality becomes

2k ≤ c1 + c2 − 2β − 5

2k + 2β + 5 ≤ c1 + c2.

However, we are assuming that c1 +c2 ≤2(c−k+1)+2= 2k+2β +4. With
this, we reach a contradiction. We conclude that no two such cycles C1 and
C2 can exist, and thus the lemma holds for k-connected graphs as well. The
proof now follows by induction.

5. Proofs of the main theorems

Proof of Theorem 1.2. Let G be a k-connected graph where c≥2k. For
k = 2,3,4, the proof of the theorem is straightforward, and is left to the
reader. We shall henceforth assume that k≥ 5, G has circumference c, and
C1 and C2 are two cycles intersecting in at most one vertex, where c1 = |C1|,
and c2 = |C2|. Let c=2k+β where β≥0.

Suppose C1 and C2 are disjoint. Assuming c1 + c2 ≥ 2(c − k + 1) + 1,
Lemma 4.1 implies that c< 7

3k+ 5
2 . Since k≥5, it holds that 7

3k+ 5
2 ≤2k+ 2

3k.
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Now Lemma 3.1 implies that G has an independent set S with at least
|V (G)|−k−β vertices. Thus

|S ∩ (V (C1) ∪ V (C2))| ≥ c1 + c2 − k − β

>
c1 + c2

2
.

The second inequality comes from the fact that c1 + c2 ≥ 2(c−k + 1) + 1 =
2k+2β+3. On the other hand, for i=1,2, Ci has no independent set of size
greater than ci

2 . This means that the subgraph induced by V (C1∪C2) has no
independent set of size greater than c1+c2

2 . Thus we reach a contradiction.
Suppose on the other hand that C1 and C2 intersect in exactly one vertex.

Assuming again that c1 + c2 ≥ 2(c− k + 1) + 1, one can show, as was done
in the proof of Lemma 4.2, that C1 and C2 can be modified to produce two
vertex-disjoint cycles C ′

1, C ′
2, where |C ′

1|+ |C ′
2|≥2(c−k+1). As before, we

have c<2k+ 2
3k, and we arrive at a contradiction in the same way as before.

From consideration of the above, we conclude that c1+c2≤2(c−k+1).

Proof of Theorem 1.3. Let G be a graph with k ≥ 2. Among all bonds
of G, choose a bond B1 which intersects the maximum number of cycles of
length c−k+2 or greater. Let B1 =[X1,Y1]. Suppose there is a cycle C1 of
length at least c−k+2 which B1 fails to intersect. We can assume V (C1)⊆Y1.
One can choose a subset X ′⊂V (G) containing exactly one vertex of C1 such
that B2 =[X1∪X ′,Y1\X ′] is a bond. Now B2 intersects C1. By the maximality
of B1 there must be a cycle C2 having at least c−k + 2 vertices which B1

intersects, but which B2 does not. We therefore have that V (C2)⊆X1∪X ′.
By our choice of X ′, it holds that |V (C1)∩V (C2)|≤1. However, Theorem 1.2
implies that |V (C1)|+ |V (C2)| ≤ 2(c− k + 1), yielding a contradiction. We
conclude that B1 intersects all cycles of length at least c−k+2.
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