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We show that for any k-connected graph having cocircumference c∗, there is a cycle which
intersects every cocycle of size c∗ − k+2 or greater. We use this to show that in a 2-
connected graph, there is a family of at most c∗ cycles for which each edge of the graph
belongs to at least two cycles in the family. This settles a question raised by Oxley.
A certain result known for cycles and cocycles in graphs is extended to matroids. It

is shown that for a k-connected regular matroid having circumference c≥2k if C1 and C2

are disjoint circuits satisfying r(C1)+r(C2)=r(C1∪C2), then |C1|+ |C2|≤2(c−k+1).

1. Introduction

The circumference of a graph (resp. matroid) is defined to be the size of its
largest cycle (resp. circuit) and the cocircumference is the size of its largest
cocycle (resp. cocircuit). We denote the circumference of a graph G (resp.
matroid M) by c(G) (resp. c(M)) and we denote the cocircumference by
c∗(G) (resp. c∗(M)). A matroid is connected if for any two of its elements
there is a circuit which contains them. In 1991, Thomas posed the prob-
lem: does every sufficiently large connected matroid have a large circuit or
cocircuit? Lovász, Schrijver, and Seymour answered this question in the af-
firmative by showing that if M is a connected matroid with circumference c
and cocircumference c∗, then |e(M)|≤2c+c∗−1. The bound was subsequently
greatly improved in [8] for graphs, where is was shown that if G is a loop-
less 2-connected graph with circumference c and cocircumference c∗, then
|E(G)|≤ 1

2cc
∗. Recently, Lemos and Oxley [1] showed that this bound holds
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not only for graphs but for connected matroids in general. They showed that
if M is a connected matroid with at least 2 elements and M has circumfer-
ence c and cocircumference c∗, then |E(M)|≤ 1

2cc
∗.

Assuming that one could cover the elements of a matroid M with at most
c∗(M) circuits so that each element was covered at least twice, we would
have the bound 2|e(M)| ≤ cc∗, or |e(M)| ≤ 1

2cc
∗. In light of this, Oxley [4]

posed the following conjecture:

Conjecture 1.1. For any connected matroid M with at least 2 elements,
one can find a collection of at most c∗(M) circuits which cover each element
of M at least twice.

In [3], Neumann-Lara et al showed that the above conjecture holds for
cographic matroids. They use the following lemma which appears in Wu [8].
Following standard graph theory terminology, we shall use the term bond
here to mean a cocycle.

Lemma 1.1. Let G be a 2-connected graph. Then there is a bond which
intersects every cycle of length c or c−1.

We shall prove a corresponding result for cographic matroids, namely:

Theorem 1.1. Let G be a k-connected graph where k≥2. Then there is a
cycle which intersects every bond of size c∗−k+2 or greater.

We shall make use of an old theorem of Tutte [7]:

Theorem 1.2. Let M be a connected matroid and let e∈e(M). Then either
M\e or M/e is connected.

With the aid of Theorems 1.1 and 1.2, we shall give an affirmative answer
to Oxley’s conjecture for graphic matroids. We shall prove the following:

Theorem 1.3. For a 2-connected graph G, there is a collection of at most
c∗(G) cycles which cover each edge of G at least twice.

In the last section, we focus on matroids and prove the result described
in the abstract.

2. Maximum Cycles and Bonds in a Graph

In this section, we shall prove a result about disjoint bonds in a graph. The
following is a known result for graphs (see Wu [8]):
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Lemma 2.1. Let G be a 2-connected graph with circumference c. Let C1

be a cycle of length c. If C2 is any other cycle of length at least c−1, then
|V (C1)∩V (C2)|≥2.

The next result is an analogue of the above lemma for bonds, which
applies to k-connected graphs. For subsets X and Y of vertices, we denote
the set of edges with one end in X and the other end in Y by [X,Y ]. We
shall denote the complement of X by X.

Lemma 2.2. Let G be a k-connected graph and let B1 =[X,X ] and B2 =
[Z,Z] be two disjoint bonds of G where G[X∩Z] is connected and X∩Z=∅.
Then |B1|+ |B2|≤2(c∗−k+1).

Proof. Let Y =X∩Z. Since G is k-connected, there are k internally vertex-
disjoint paths P1, . . . ,Pk between X and Z (which we assume only meet X
and Z at their endpoints). Because B1 and B2 are disjoint, G has no edges
with one end in X and the other in Z. For i=1, . . . ,k, let Qi be the path
which is the portion of Pi restricted to G[Y ]. Since G[Y ] is connected, it has
a spanning tree T which contains the paths Qi, i=1, . . . ,k. We can partition
V (T ) into k subsets Y1, . . . ,Yk where G[Yi] is connected and Qi ⊆ G[Yi].
Since T is a tree, there are exactly k−1 edges of T which connect the sets
Y1, . . . ,Yk. Let E′ be the set of these edges. Since T is bipartite, we can find
a subset S ⊂ {1, . . . ,k} such that each edge of E′ joins a vertex of Yi to a
vertex of Yj for some i in S, and some j in S. Let

B′
1 = [X ∪ (∪i∈SYi), Z ∪ (∪i∈SYi)]

B′
2 = [X ∪ (∪i∈SYi), Z ∪ (∪i∈SYi)].

By the choice of Y1, . . . ,Yk and the fact that G[X] andG[Y ] are connected,
one sees that B′

1 and B′
2 are both bonds of G. Furthermore, B′

1 ∪B′
2 =

B1∪B2∪E′.
It follows that

2c∗ ≥ |B′
1|+ |B′

2| = |B1|+ |B2|+ 2|E′|
= |B1|+ |B2|+ 2(k − 1).

So |B1|+ |B2|≤2(c∗−k+1).

It would seem plausible that a dual result for Lemma 2.2 holds for circuits.
In [2] we prove that:

Theorem 2.1. For a k-connected graph G (k ≥ 2) having circumference
c ≥ 2k, for any pair of cycles C1 and C2 which intersect in at most one
vertex, it holds that |V (C1)|+ |V (C2)|≤2(c−k+1).
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In the last section, we shall show that Lemma 2.2 and 2.1 can be unified
into one result for regular matroids (Theorem 5.3). Theorem 2.1 implies
(see [2]):

Theorem 2.2. For any k-connected graph G (k≥2) having circumference
c≥2k, there is a bond B which intersects every cycle of length c−k+2 or
greater.

3. A Cycle Intersecting Bonds

In this section, we shall show that, for any k-connected graph G (k≥2) with
cocircumference c∗, there is a cycle intersecting every bond of size c∗−k+2
or greater.

Proof of Theorem 1.1. Let C1 be a cycle which intersects the greatest
number of bonds of size at least c∗−k+2. Suppose C1 does not intersect a
bond B1 of size at least c∗−k+2. Let B1 =[X1,Y1] where X1∪Y1 =V (G).
We can assume that V (C1)⊆Y1. Then X1 is contained in a component K of
G\V (C1). Let v1,v2, . . . ,vq be the neighbours of K lying on C1, enumerated
in order as they occur along C1.

Claim 3.1. For some t, 1≤ t≤ q, there are vertices vt and vt+1 (vq+1 = v1)
having neighbours v′t and v′t+1 in K such that there is a path P from vt to
vt+1 in G[K∪{vt,vt+1,vtv

′
t,vt+1v

′
t+1}] intersecting B1.

Proof of claim. If t is as in the claim, then we shall say that it is good.
Suppose first that among the vertices v1, . . . ,vq there are vertices which are
neighbours of X1. If K=G[X1], then the claim is easily seen to hold. So we
may assume that K �=G[X1]. Since B1 is a bond, G[X1] is connected and
consequently there is at least one vertex among v1, . . . ,vq which is a neigh-
bour of K\X1. Thus there is a t, 1 ≤ t ≤ q, where either vt ∈ NG(K\X1)
and vt+1 ∈ NG(X1), or vt+1 ∈ NG(K\X1) and vt ∈ NG(X1). Let v′t and
v′t+1 be neighbours of vt and vt+1 in K, respectively, where v′t and v′t+1

are separated by the edges [X1,V (K)\X1] in K. Since K is connected,
there is a path P ′ from v′t to v′t+1 in K and such a path must intersect
[X1,V (K)\X1]. Then vtv

′
tPv

′
t+1vt+1 is a path which intersects B1. In this

case, t is good.
We may assume that none of the vertices v1, . . . ,vq are neighbours of X1.

Let Z = V (K)\X1. Since G is 2-connected, there are 2 internally vertex-
disjoint paths P1 and P2 from X1 to C1. Let vt1 and vt2 be the terminal
vertices of P1 and P2, respectively on C1. We may assume that t1<t2. We
shall show by induction on t2− t1 that there is a good t where t1 ≤ t≤ t2.
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If t2 − t1 = 1, that is, t2 = t1 + 1, then t1 is good, since we can find a
path P3 ⊆ G[X1] between terminal vertices of P1 and P2 in X1, and it
follows that P1 ∪ P2 ∪P3 is a path from vt1 to vt2 intersecting B1. Thus
the hypothesis holds for t2 − t1 = 1. Assume the hypothesis holds for
t2− t1≤T .

Suppose t2−t1=T+1, T ≥1. Consider vt1+1. Let v′t1+1 be a neighbour of
vt1+1 in K. Suppose there is a path in G[K∪{vt1+1,vt1+1v

′
t1+1}] from vt1+1

to P2, which avoids V (P1)∩Z. In this case, it is easily seen that t1 is good.
If this is not the case, then there is a path in G[K∪{vt1+1,vt1+1v

′
t1+1}] from

vt1+1 to P1 which avoids V (P2)∩Z. In this case, we can find two internally
vertex-disjoint paths from X1 to C which terminate at vt1+1 and vt2 . Now
t2 − (t1 + 1) = T . By the inductive assumption, there is a good t where
t1+1≤ t≤ t2. Thus the hypothesis holds for t2− t1 =T +1. The claim now
follows by induction.

By the above claim, there are vertices vt and vt+1 having neighbours v′t,
and vt+1, respectively, in K, and a path P in G[K∪{vt,vt+1,vtv

′
t,vt+1v

′
t+1}]

which intersects B1. Let C2 = C1[vt+1,vt] ∪ P , where C1[vt+1,vt] denotes
the path along C1 between vt+1 and vt. The cycle C2 intersects B1. By the
maximality of C1, there is a bond B2=[X2,Y2] of size at least c∗−k+2 which
C1 intersects but C2 does not. We can assume that V (C2)⊆ Y2. Since C1

intersects B2, we have that X2 contains some vertices of C1[vt,vt+1]. Since
G[X2] is connected and no vertices of C1[vt,vt+1], apart from vt and vt+1,
have neighbours in K, we conclude that X2∩V (K)=∅, (hence X1∩X2=∅)
and moreover, B1∩B2=∅.

We claim that G[Y1 ∩Y2] is connected. Let P ′ be the path C1[vt+1,vt].
We have that P ′ ⊆ G[Y1 ∩ Y2]. Suppose G[Y1 ∩ Y2] has at least two com-
ponents: let K1 and K2 be two of these components where P ′ ⊆ K1. If
K �=G[X1], then each component of G[K\X1] has vertices which are neigh-
bours of vertices in P ′ (since G[Y1] is connected). Thus K\X1 ⊂K1. This
means in particular that no vertex of K\X1 is adjacent to vertices in K2.
The vertices of NG(X1) can only belong K\X1 or P ′. Thus X1 can only
be adjacent to vertices of K1. We note that since B2 is a bond, G[Y2] is
connected, and hence every component of G[Y1 ∩Y2] must be adjacent to
vertices in Y2\Y1 ⊆ X1. However, no vertex of K2 is adjacent to vertices
of X1. This yields a contradiction. We conclude that G[Y1 ∩ Y2] is con-
nected.

We have that |B1|+|B2|≤2(c∗−k+1) by Lemma 2.2. However, |B1|+|B2|≥
2(c∗−k+2), yielding a contradiction. We conclude that C1 must intersect
every bond of size at least c∗−k+2.
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4. Covering Edges With At Most c∗ Cycles

In this section, we shall use Theorem 1.1 to verify Conjecture 1.1 for co-
graphic matroids (see also [4], Question 3.13).

Proof of Theorem 1.3. By induction on |V (G)|. If |V (G)|=2, then G is
a 2-cycle, and the theorem clearly holds. We suppose that |V (G)|> 2 and
the theorem holds for all 2-connected graphs with fewer vertices than G. We
can assume that G is not a cycle and moreover, we may assume the theorem
holds for any 2-connected graph with the same number of vertices as G but
fewer edges. If G has vertex of degree 2, then we can delete it, and add an
edge between its neighbours. Such a graph has cocircumference c∗ and has a
collection of at most c∗ cycles covering each of its edges at least twice. Such
a collection can easily be extended to the desired collection of cycles for G.
So we may assume that G has no vertices of degree 2.

Suppose first that G is 3-connected. Then by Theorem 1.1, there is a
cycle C for which C intersects every bond with c∗ or c∗−1 edges. By Tutte’s
theorem (Theorem 1.2) we can partition the edges of C as E(C) =A∪B,
such that G′ =(G\A)/B is 2-connected. Now it is seen that c∗(G′)≤ c∗−2
since C intersects every bond of G with c∗ or c∗−1 elements. Furthermore,
|E(G′)| < |E(G)|. Thus by the inductive assumption, there is a family F ′

of at most c∗(G′) cycles of G′ which cover each edge of G′ at least twice.
For each cycle K ′∈F ′ let K be a cycle of G such that (K\A)/B=K ′. Let
F={K|K ′∈F ′}. Then F∪{C,C} is a family of cycles which covers the edges
of G at least twice, and such a family has at most c∗(G′)+2≤c∗−2+2=c∗

cycles. This shows that the theorem holds for G.
We suppose that G is not 3-connected. Suppose G has a 2-vertex cut,

say {x,y} which separates 2 graphs G1 and G2 where G1∪G2=G, V (G1)∩
V (G2) = {x,y}, and |V (Gi)| ≥ 4, i= 1,2. Let βi, i= 1,2 be the size of the
largest bond in Gi which separates x and y. It can be shown that for any
bond B of G where B⊆E(Gi) it holds that |B|≤2βi. Let β=min{β1,β2}.
We have that β1+β2≤c∗, and consequently, 2β≤c∗. For i=1,2 we create a
graph G′

i by adding a vertex vi to Gi together with β edges from vi to each
of x and y. We may assume that β=β1. Then c∗(G′

1)=2β, and c∗(G′
2)≤c∗.

We have that G′
i is 2-connected and |V (G′

i)|< |V (G)|. Thus by assumption,
there are q1 ≤ c∗(G′

1) = 2β cycles of G′
1, say C11,C12, . . . ,C1q1 which cover

each edge of G′
1 at least twice. In fact, q1=2β, since v1 has degree 2β in G′

1,
and each of the cycles C11,C12, . . . ,C1q1 contain v1. Furthermore, there are
q2 ≤ c∗(G′

2)≤ c∗ cycles of G′
2 which cover its edges at least twice. We have

that q1 =2β≤ q2. We may assume that the cycles C2j , j=1, . . . ,q1 contain
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v2, and for i=1,2 exactly pi, i=1,2 of the cycles Ci1, . . . ,Ciq1 are 2-cycles. In
addition, given pi≥1, we may assume these cycles are Ci(q1−pi+1), . . . ,Ciq1 .

Suppose p2≤p1. For j=1, . . . ,q1−p1, let Cj =(C1j\{v1})∪(C2j\{v2}). If
p2<p1, then for j= q1−p1+1, . . . ,q1−p2, let Cj =(C2j\{v2})∪P where P
is an arbitrarily chosen path from x to y in G1. If q2>q1, then let Cj =C2j ,
for j=q1+1, . . . ,q2. If q1=q2, then {C1, . . . ,Cq1−p2} is a set of at most c∗−p2

cycles covering the edges of G at least twice. Otherwise, if q1 < q2, then
{C1, . . . ,Cq1−p2,Cq1+1, . . . ,Cq2} is a set of at most c∗−p2 cycles covering the
edges of G at least twice.

Suppose p1<p2. For j=1, . . . ,q1−p2 let Cj =(C1j\{v1})∪(C2j\{v2}). For
j= q1−p2+1, . . . ,q1−p1, let Cj =(C1j\{v1})∪P where P is an arbitrarily
chosen path inG2 from x to y. If q2>q1, let Cj =C2j for j=q1+1, . . . ,q2. Then
{C1, . . . ,Cq1−p1,Cq1+1, . . . ,Cq2} is a collection of at most c∗−p1 cycles which
cover the edges ofG at least twice. Otherwise, if q2=q1, then {C1, . . . ,Cq1−p1}
is a collection of at most c∗−p1 cycles which cover the edges of G at least
twice.

We may henceforth assume that there are no such 2-cuts separating 2
vertices on each side. Create a graph G′ from G in the following way: if v
is a vertex in G with exactly 2 neighbours, say x and y, where there are β1

edges between v and x and β2 edges between v and y, then delete v and
add β=max{β1,β2} edges between x and y. We have that c∗(G′)≤ c∗(G).
If G′ has just 2 or 3 vertices, then there is a cycle containing all vertices,
and consequently this cycle would intersect all bonds of length c∗(G′) or
c∗(G′)− 1. On the other hand, if G′ has more than 3 vertices, then it is
3-connected, and hence by Theorem 1.3, there is a cycle C ′ of G′ which
intersects every bond of size c∗(G′) or c∗(G′)−1. In either case, we see that
there is such a cycle C ′.

Let C be a cycle of G corresponding to C ′. If C intersects every bond
of G with c∗ or c∗− 1 edges, then we can proceed as in the case when G
was 3-connected. Thus we can assume that there is a bond B1 in G of size
at least c∗−1 which C does not intersect. Such a bond must consist of the
edges incident with a vertex, say v, where v ∈ V (G)\V (G′). This means
that v has exactly 2 neighbours, say v1 and v2. Let D be a cycle of G
containing v1, v2, and v. We may assume that D is a largest such cycle and
D does not intersect all bonds of size at least c∗−1. Thus there is a bond
B2=[X,X ] where |B2|≥c∗−1, which D does not intersect. We may assume
V (D)⊆X . Now G(X\{v}) is connected since it contains the path D\{x,y}
between x and y. Thus by Lemma 2.2, |B1|+|B2|≤2c∗−2. This means that
|B1| = |B2| = c∗ − 1. Thus |B1|+ |B2| = 2c∗ − 2 and, upon examination of
the proof of Lemma 2.2, we have that G(X\{v}) does not contain two edge-
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disjoint paths between v1 and v2. Thus there is a cut-edge e=v′1v
′
2∈E(D) in

G(X\{v}). The graphG(X\{v})\{e} contains 2 components, sayK1 andK2

where {v1,v
′
1}⊂ V (K1) and {v2,v

′
2}⊂ V (K2). Suppose that any path from

v to X must contain v′1 or v′2. Then {v′1,v′2} is a 2-vertex cut separating v
and X. In this case, we could find a cycle D′ = (D\{e})∪Q where Q is a
path between v′1 and v′2 intersecting X. Such a cycle contains v, v1, and v2

and is longer than D. This would contradict the choice of D. Thus {v′1,v′2}
can not be a 2-vertex cut, and there is a path P from v to X which does
not contain v′1 or v′2. We can assume that v1 ∈ V (P ). Let P1 be the path
representing the portion of P in K1. We can divide the vertices of K1 into
2 connected subgraphs K11 and K12 where P1 ⊆K11 and v′1 ∈ V (K12). By
elementary counting arguments one deduces that |[V (Ki),V (Ki)]|= c∗, for
i=1,2. Now for the bond B′ = [V (K2)∪V (K12),V (K2)∪V (K12)] we have
that

|B′| = c∗ − 1 + |[V (K12), V (K12)]| − 1
= c∗ + |[V (K12), V (K12)]| − 2.

Then |[V (K12),V (K12)]|=2. By assumption, this means that V (K12)={v′1},
and dG(v′1) = 2. However, G is assumed to contain no vertices of degree 2.
This concludes the proof of the theorem.

5. Extensions To Matroids

The results given in the previous sections lead one to suspect that they have
their counterparts in matroids. We present here some results representing
extensions of previous results to matroids. To begin with, we briefly define
some terminology to be used in this section, and refer the reader to [6] for
further reference.

A matroid is binary if it is representable over GF (2), and it is regular if
it is representable over every field. Let M be matroid and let k be a positive
integer. A partition (X,Y ) of E(M) is a k-separation if

(i) min{|X|, |Y |}≥k
(ii) r(X)+r(Y )−r(M)≤k−1.

The connectivity λ(M) of M is defined to be the smallest k such that M
has a k-separation, if such separations exist, and is defined to be ∞ other-
wise. For k≥2, M is said to be k-connected if λ(M)≥k. One consequence of
this definition is that if a matroid M is k-connected and |E(M)|≥2(k−1),
then all circuits and cocircuits have size at least k. Given the conclusions of
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Lemma 2.2 and Theorem 2.1, we venture the following conjecture for binary
matroids:

Conjecture 5.1. Let M be a k-connected binary matroid (k ≥ 2) having
circumference c ≥ 2k. Let C1 and C2 be two disjoint circuits of M where
r(C1∪C2)=r(C1)+r(C2). Then |C1|+ |C2|≤2(c−k+1).

By Lemma 2.2 and Theorem 2.1, the above conjecture is seen to hold for
graphic and cographic matroids. Our aim is to show that the conjecture holds
for regular matroids, and to this end we exploit a well-known theorem of
Seymour pertaining to the decomposition of regular matroids (see Oxley [6]):

Theorem 5.1. Every regular matroid M can be constructed by means of
direct sums, 2-sums, and 3-sums starting with matroids each of which is
isomorphic to a minor of M and each of which is either graphic, cographic,
or isomorphic to R10.

The above theorem implies that any 4-connected regular matroid is either
graphic, cographic, or isomorphic to R10. For R10, each circuit has length
at least 4. So if C1 and C2 are disjoint circuits satisfying r(C1)+ r(C2) =
r(C1∪C2), then r(C1∪C2)≥3+3=6. However, r(R10)=5. This means that
the above conjecture is vacuously true for R10. Thus if we can show that the
conjecture holds for 2- and 3-connected binary matroids, then it is true for
regular matroids.

Lemma 5.1. Let X1 and X2 be disjoint subsets of a matroid M where
r(X1)+ r(X2) = r(X1 ∪X2). Then for any circuit C where C ⊂X1 ∪X2, it
holds that C⊆X1, or C⊆X2.

Proof. Since r(X1) + r(X2) = r(X1 ∪X2), the restriction M |(X1 ∪X2) is
the direct sum of M |X1 and M |X2. As such, no circuit of M contained in
X1∪X2 meets both M1 and M2.

The following corollary is an immediate consequence of the above lemma:

Corollary 5.1. Let C1 and C2 be disjoint circuits in a matroid M satisfying
r(C1)+r(C2)=r(C1∪C2). If C is a circuit where C⊂C1∪C2, then C=C1

or C=C2.

We shall first establish the truth of Conjecture 5.1 for 2-connected binary
matroids. For sets X and Y , we let X�Y denote the symmetric difference
of these sets.
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Lemma 5.2. Let M be a connected binary matroid and let C1 and C2 be
two disjoint circuits where r(C1)+ r(C2) = r(C1 ∪C2). Let C be a circuit
intersecting both C1 and C2 for which |C\(C1 ∪C2)| is minimum. Then
C�C1, C�C2, and C�C1�C2 are circuits.

Proof. Suppose that C�C1 is not a circuit. Let e∈C∩C1 and f ∈C∩C2.
There is a circuit C3⊆C∪C1−e containing f . It is seen that C∩C1 �=∅, and as
such C3 intersects both C1 and C2. By choice of C, we have |C\(C1∪C2)|=
|C3\(C1∪C2)| and C\(C1∪C2)=C3\(C1∪C2). Since C�C3 �=∅, there is a
circuit C4⊆C�C3⊆C1∪C2. By Corollary 5.1, we have that either C4=C1,
or C4=C2. Since clearly neither of these two options is possible, we conclude
that C�C1 must be a circuit. Using similar arguments, one can show that
C�C2 and C�C1�C2 are also circuits.

For subsets X1 and X2 of a matroid M we call a circuit C which inter-
sects both X1 and X2 an (X1,X2)-circuit. We say that C is minimum if
|C\(X1 ∪X2)| is minimum amongst all (X1,X2)-circuits. The next lemma
demonstrates that Conjecture 5.1 is true for 2-connected binary matroids.

Lemma 5.3. Let M be a connected binary matroid with circumference c,
and let C1 and C2 be disjoint circuits where r(C1)+r(C2)=r(C1∪C2). Then
|C1|+ |C2|≤2(c−1).

Proof. Let C be a minimum (C1,C2)-circuit. Then by Corollary 5.1, |C\C1∪
C2|≥1. By Lemma 5.2 both C�C1 and C�C2 are circuits. Thus we obtain

2c ≥ |C�C1|+ |C�C2| = |C1|+ |C2|+ 2|C\(C1 ∪C2)|.

Hence

|C1|+ |C2| ≤ 2c− 2|C\(C1 ∪ C2)| ≤ 2c− 2 = 2(c− 1).

This proves the lemma.

We shall now prove Conjecture 5.1 for 3-connected binary matroids.

Theorem 5.2. Let M be a 3-connected binary matroid with circumference
c. Let C1 and C2 be disjoint circuits where r(C1)+r(C2)=r(C1∪C2). Then
|C1|+ |C2|≤2(c−2).

Proof. Let C be a minimum (C1,C2)-circuit. As in the proof of Lemma 5.3,
we obtain that |C1|+ |C2| ≤ 2c−2|C\(C1 ∪C2)|. If |C\(C1 ∪C2)| ≥ 2, then
|C1|+|C2|≤2c−4, and we are done. Thus for any minimum (C1,C2)-circuit
C we may assume that |C\(C1∪C2)|=1.
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Suppose for x∈E(M)\C1∪C2 there is a minimum (C1,C2)-circuit, say C,
containing it. We have that C\C1∪C2={x}, and furthermore it is not too
difficult to show that any minimum (C1,C2)-circuit containing x must be
one of the circuits C,C�C1,C�C2, or C�C1�C2. We shall refer to these
circuits as x-circuits.

Suppose for e,f ∈ E(M)\(C1 ∪C2) there are e- and f -circuits, Ce and
Cf respectively. Suppose C1 ∩ (Ce�Cf ) �= ∅,C1 and C2 ∩ (Ce�Cf ) �= ∅,C2.
Then C1,C2 �⊆ C1�Ce�Cf and C1�Ce�Cf contains no e- or f -circuits.
Now C1�Ce�Cf contains a (C1,C2)-circuit, say C. Since C is not an e-
or f -circuit, it follows that {e,f} ⊂ C. Thus C�(C1�Ce�Cf ) ⊆ C1 ∪C2.
Now if C�(C1�Ce�Cf ) �=∅, then it contains a (C1,C2)-circuit C ′, thus by
Corollary 5.1 it holds that either C ′ = C1, or C ′ = C2. This is impossible
since C1,C2 �⊆C1�Ce�Cf . We conclude that C =C1�Ce�Cf is a circuit.
Similarly, it can also be shown that C2�Ce�Cf is a circuit. In this case we
obtain

|C1|+ |C2|+ 4 = |C1�Ce�Cf |+ |C2�Ce�Cf | ≤ 2c.

Hence |C1|+ |C2|≤2(c−2).
Suppose C1∩(Ce�Cf ) is either empty or equal to C1, and C2∩(Ce�Cf )

is either empty or equal to C2. Then C1�C2�Ce�Cf equals {e,f},C1 ∪
{e,f},C2 ∪{e,f}, or C1 ∪C2 ∪{e,f}. In either of the cases, one can show
that {e,f} is a circuit, contradicting the 3-connectedness of M .

In light of the above, we may assume that C1 ∩ (Ce�Cf ) �= ∅,C1 and
C2∩(Ce�Cf ) is empty or equals C2. If C2∩(Ce�Cf )=∅, let Cef =Ce�Cf .
Otherwise, if C2∩(Ce�Cf )=C2, then let Cef =Ce�Cf�C2. In either case,
Cef ⊂C1∪{e,f} and Cef is a circuit containing e and f . Moreover, C1�Cef

is also a circuit (containing e and f). Thus for any x∈C1, (C−x)∪{e,f}
contains a circuit containing e and f .

Suppose for some g∈E(M)\(C1∪C2∪{e,f}) there is a g-circuit, say Cg.
Suppose that C1 ∩ (Ce�Cg) is either empty or equals C1. Then, as with
Ce and Cf , we may assume that C2 ∩ (Ce�Cg) �= ∅,C2. In this case, we
deduce that C1∩(Cf�Cg) �=∅,C1 and C2∩(Cf�Cg) �=∅,C2. As before, one
can show that C1�Cf�Cg and C2�Cf�Cg are circuits, and consequently
|C1|+ |C2| ≤ 2c− 4. Thus we may assume that C1 ∩ (Ce�Cg) �= ∅,C1 and
similarly, C1∩(Cf�Cg) �=∅,C1.

In general, suppose e1, . . . ,ek ⊆ E(M)\(C1 ∪ C2) are the elements of
E(M)\C1 ∪C2 belonging to minimum (C1,C2)-circuits. For i= 1, . . . ,k let
Cei be an ei-circuit. Following the discussion above, we may assume that for
all i �= j it holds that C1 ∩ (Cei�Cej) �= ∅,C1 and C2 ∩ (Cei�Cej ) is either
empty or equals C2.
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Let M ′ = M\{e1, . . . ,ek}. If there is a (C1,C2)-circuit in M ′, then M ′

contains a (C1,C2)-circuit C ′ for which |C ′\(C1 ∪C2)| is minimum among
all (C1,C2)-circuits of M ′. As before, it holds that C ′�C1 and C ′�C2 are
circuits and using this we obtain that

|C1|+ |C2|+ 2|C ′\(C1 ∪ C2)| = |C ′�C1|+ |C ′�C2| ≤ 2c.

Thus if |C ′\(C1∪C2)|≥2, then |C1|+ |C2|≤2(c−2). On the other hand, if
|C ′\(C1∪C2)|=1, then C ′ is a minimum (C1,C2)-circuit. However, M ′ has
no such circuit, and consequently it has no (C1,C2)-circuit and is therefore
disconnected. For i=1,2, let Ki be the component of M ′ containing Ci. We
claim that E(M ′) =K1 ∪K2. Let e ∈M ′\K1. Since M is connected, there
is a circuit C containing e and intersecting C2. If C ∩{e1, . . . ,ek}= ∅, then
e∈K2, a contradiction. So C intersects {e1, . . . ,ek} in, say, e1, . . . ,el. Now

C�Ce1�· · ·�Cel
⊆ C1 ∪ C2 ∪ (C\{e1, . . . , ek}).

There is a circuit C ′ ⊆ C�Ce1�·· ·�Cek
containing e. One sees that C ′

cannot be a (C1,C2)-circuit since M ′ contains no such circuits. Thus C ′

intersects exactly one of C1 or C2 but not both. If C ′ intersects C1, then
e ∈ K1, contradicting our assumption. Thus C ′ intersects C2 and e ∈ K2.
Since e was arbitrarily chosen, we have that E(M)=K1∪K2.

Let S = K1 ∪ {e1, . . . ,ek} and T =K2. We shall show that (S,T ) is a
2-separation. Let x ∈ C1. Choose a base B of M ′ containing C1 − x. Let
B1 = B ∩K1 and B2 = B ∩K2. Similar to the previous discussion with e
and f , we can deduce that for all i �=j there is a circuit in (C1−x)∪{ei,ej}
containing ei and ej . Thus r(B1∪{e1, . . . ,ek})≤|B1|+1, and consequently,
r(S) = r(K1 ∪{e1, . . . ,ek}) ≤ |B1|+1. We also have that B2 is a maximal
independent set inK2 since r(M ′)=r(K1)+r(K2). Thus r(T )=r(K1)= |B2|.
We have that

r(S) + r(T ) ≤ |B1|+ |B2|+ 1
= r(M ′) + 1
≤ r(M) + 1 .

Thus (S,T ) is a 2-separation, contradicting the 3-connectedness of M . This
concludes the proof.

To summarize the above, using Seymour’s theorem, Theorems 2.1, 5.2,
and Lemmas 2.2 and 5.3, we have proven Conjecture 5.1 for regular matroids.

Theorem 5.3. Let M be a k-connected regular matroid having circumfer-
ence c where c≥2k. If C1 and C2 are disjoint circuits where r(C1)+r(C2)=
r(C1∪C2), then |C1|+ |C2|≤2(c−k+1).
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In light of the previous results, one might be tempted to conjecture that
for any k-connected binary matroid (k≥ 2) having cocircumference c∗≥ 2k
there is a circuit C which intersects every cocircuit of size c∗−k+2 or greater.
It was pointed out to me by J. Oxley that this assertion is false for AG(3,2).

References

[1] M. Lemos and J. Oxley: A sharp bound on the size of a connected matroid, Trans.
Amer. Math. Soc. 353 (2001), 4039–4056.

[2] S. McGuinness: Bonds intersecting cycles in a graph, Combinatorica 25(4) (2005),
439-450.

[3] V. Neumann-Lara, E. Rivera-Campo and J. Urrutia: A note on covering the
edges of a graph with bonds, Discrete Math 197/198 (1999), 633–636.

[4] J. Oxley: On the interplay between graphs and matroids, Surveys of the 17’th BCC,
London Mathematical Society, 2001.

[5] J. Oxley: A matroid generalization of a result of Dirac, Combinatorica 17 (1997),
267–273.

[6] J. Oxley: Matroid Theory, Oxford University Press, New York, 1992.
[7] W. T. Tutte: Lectures on Matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965),
1–49.

[8] P.-L. Wu: An upper bound on the number of edges of a 2-connected graph, Com-
bin. Probab. Comput. 6 (1997), 107–113.

Sean McGuinness

17 London Road

Syosset, NY 11791

USA

tokigcanuck@aol.com

mailto:tokigcanuck@aol.com

	Heading
	1. Introduction
	2. Maximum Cycles and Bonds in a Graph
	3. A Cycle Intersecting Bonds
	4. Covering Edges With At Most $c^*$ Cycles
	5. Extensions To Matroids
	References

