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1 Introduction

Reading mathematics and physics is a fairly advanced skill. Most students find that an interactive
lecture format is an easier way to get acquainted with new ideas. But reading technical material is
a skill worth learning, and this seems as good a time as any to start working on it.

The dates indicated here are the days I would have covered the material in class, and I’ve put
them here to help you pace your work. In the right-hand margin I have indicated the relevant
sections of the textbook. In some places I have suggested specific sections you should definitely
read, and exercises you should attempt as you progress. I will add to this document as we go, so
check back here often.

I’ve purposefully made these notes brief and to the point. You should use the textbook for
supplemental information, and especially be sure to do the assigned readings. I aim to get you
solving relevant problems on your own as quickly as possible. If you read these notes, do the
assigned readings, and still find it difficult to get started on the problems, send me an email ASAP.
I will help however I can, and your feedback will help me to make these notes better.
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2 Rotation of a Rigid Object

2.1 Wobbling Motion

We showed in class that for a rigid body spinning with angular velocity ω about an axis through
a given point O, the angular momentum vector L is

L = Iω (1)

where I is the moment of inertia tensor, a 3× 3 matrix. All of the quantities here are expressed in
the body frame, i.e. a rotating coordinate system anchored to the body.

One consequence of eq. (1) is that, in general, L and ω are not parallel: multiplying ω by I
effects a linear transformation (scaling and rotation) that results in L being oriented differently
from ω.

This has consequences for the motion of the object. In the absence of an external torque, L is
constant. But the geometric relationship between L and ω is fixed by eq. (1), so as the object spins
about ω the vector L must be changing (carried around by the body’s rotation) unless ω itself
is changing. Thus, in the absence of an external torque, the axis of rotation must be constantly
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changing. This causes a wobbling/tumbling motion. We will describe this wobble more precisely
when we come to Euler’s equations.

Reading Assignment: In the textbook, read from the bottom third of p. 374 to the end of p. 375.

2.2 Principal Axes
10.4, 10.5

So the question naturally arises: “is there an axis ω about which an object can spin without
wobbling in the absence of an external torque?” From the discussion above, this requires that L
and ω be parallel (Why? In the absence of an external torque, L constant. But then so is ω, if ω
if parallel to L.) Mathematically this means

L = λω (2)

for some (non-zero) scalar λ. Substituting eq. (1) into this gives

Iω = λω. (3)

This mean that ω is an eigenvector of the matrix I, with corresponding eigenvalue λ.

Example: Find the principal axes for a uniform solid cube of side length a, rotating about an axis
through one corner.

Solution: We already showed that for rotation about an axis through the origin,

I =
Ma2

12

 8 −3 −3
−3 8 −3
−3 −3 8

 . (4)

Finding the principal axes (eigenvectors of I) is an exercise in linear algebra. As usual, we need to
find the eigenvalues first. We have

Iω = λω ⇐⇒ Iω − λω = 0⇐⇒ (I − λ1)ω = 0. (5)
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Here we’ve used 1 to represent the 3 × 3 identity matrix (annoyingly, I is already used for the
moment of inertia tensor). We seek non-trivial (i.e. non-zero) vectors ω that satisfy eq. (5). This
requires that the matrix I−λ1 be singular (why?). That is (with k = Ma2/12 to simplify things):

0 = det(I − λ1) = det

k
 8 −3 −3
−3 8 −3
−3 −3 8

− λ
1 0 0

0 1 0
0 0 1

 =

∣∣∣∣∣∣
8k − λ −3k −3k
−3k 8k − λ −3k
−3k −3k 8k − λ

∣∣∣∣∣∣ . (6)

Expanding the 3× 3 determinant and factoring (check this!) gives the equation

(2k − λ)(11k − λ)2 = 0 (7)

so we get three roots (counting multiplicity):

λ1 = 2k =
Ma2

6
, λ2 = λ3 = 11k = 11

12Ma2. (8)

To find the eigenvectors (the principal axes) we substitute each root in turn into eq. (5) and
row reduce to solve for ω.

case λ = 2k:

I − λ1 = k

 6 −3 −3
−3 6 −3
−3 −3 6

 RREF−−−−→

1 0 −1
0 1 −1
0 0 0

 . (9)

Interpreting this as the coefficient matrix in eq. (5) and writing ω = (ωx, ωy, ωz), we see that ωz
is a free variable and that ωx = ωy = ωz. As always, the eignvector is only determined up to a
multiplicative constant, so we might as well say that ω = (1, 1, 1). However, it will be convenient
later if we convert this to a unit vector

e1 = 1√
3
(1, 1, 1) (10)

that gives the direction of the angular velocity vector.

case λ = 11k:

I − λ1 = k

−3 −3 −3
−3 −3 −3
−3 −3 −3

 RREF−−−−→

1 1 1
0 0 0
0 0 0

 . (11)

Now we have two free variables; the solution set is a plane through the origin. Any two linearly
independent vectors in this plane will serve as eigenvectors; the choice is arbitrary. One approach
is to write the general solution as

ω =

ωxωy
ωz

 =

−ωy − ωzωy
ωz

 = ωy

−1
1
0

+ ωz

−1
0
1

 (12)

This shows that any eigenvector must be a linear combination of (−1, 1, 0) and (−1, 0, 1). Normal-
izing these gives the directions

e2 = 1√
2
(−1, 1, 0) and e3 = 1√

2
(−1, 0, 1). (13)
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Reading Assignment: Read Sec. 10.4.

Exercises: 10.35, 10.36, 10.37

2.3 Some Observations

Notice in the example above that there are three principal axes, and that these are mutually
perpendicular. In fact this is the case for any rigid object: from linear algebra you might already
know that any real-valued symmetric matrix (like the moment of inertia tensor) has a set of three
mutually orthogonal eigenvectors.

An object’s principal axes are generally aligned with its axes of symmetry, if there are any. In
the example above the principal axis e1 is oriented from O to opposite corner. In the absence of
an external torque, the cube can spin about this axis without wobbling.

The eigenvalues have a physical interpretation as well. For an object spinning about a principal
axis, eq. (2) gives the angular momentum L = Iω = λω. That is, λ is just the moment of inertia
for rotation about this axis.

In calculating the moment of inertia tensor for some object, we are free to choose the coordinate
system (we only require that the origin lie on the axis of rotation). In each coordinate system, the
moment of inertia tensor will be different. Among all coordinate systems, the most convenient is
one where the axes coincide with the principal axes (e1, e2, e3) for the object. In this case, the
moment of inertia tensor becomes simply

I =

λ1 0 0
0 λ2 0
0 0 λ3

 . (14)

This is a diagonal matrix, and we say that I is diagonalized in this coordinate system.

If we identify the x-axis with e1, the y-axis with e2 and the z-axis with e3, then the angular
momentum vector is simply:

L = Iω =

λ1 0 0
0 λ2 0
0 0 λ3

ωxωy
ωz

 =

λ1ωxλ2ωy
λ3ωz

 . (15)

This is a big simplification. For this reason, in dealing with rigid-body motion it is usually preferable
to work in a coordinate system aligned with the principal axes.
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2.4 Precession of a Spinning Top
10.6

A spinning top that is not perfectly vertical with exhibit precession: the orientation of the top will
gradually rotate about the vertical axis. If you have access to such a thing, play around with this.
There is a nice demonstration here (skip to the middle after watching the intro):

https://www.youtube.com/watch?v=SWyuvAdxtKs

The cause of precession is the torque τ (acting about the point of contact with the table or
ground) due to gravity. This torque causes a change in the angular momentum of the top since
L̇ = τ . But because τ = L̇ is perpendicular to L, the torque causes L to change in direction but
not magnitude (recall Problem 1.45). A good hand-waving demonstration of this can be seen here:

https://www.youtube.com/watch?v=ty9QSiVC2g0

As promised, the equations of motion for the top are easiest to describe if we choose a coordinate
system that coincides with the principal axes of the top. Have a look at Fig. 10.7. Here the unit
vector e3 is one of the top’s principal axes (the main axis of symmetry, assuming the top has
cylindrical symmetry as most tops do). If the top has angular velocity ω = ωe3 then the angular
momentum is L = Iω = λ3ω = λ3ωe3 (this formula is so simple because the rotation is about a
principal axis).

In the absence of gravity (and friction), the top would remain spinning with constant orientation:
L̇ = 0 =⇒ ω̇ = 0. This is what we observe if the top is aligned vertically.

If the top is not vertical, the force of gravity Mg causes a torque

τ = R× (Mg) (16)

where R is the vector from the contact point with the floor/table to the top’s center of gravity
(through which the effective force of gravity acts). With careful attention to Fig. 10.7, the right-
hand rule will help you discover that τ is horizontal and perpendicular to ω (into the page). Since
τ = L̇ this tells you what direction L will move.

A little more algebra shows that
ė3 = Ω× e3 (17)

where

Ω =
MgR

λ3ω
ẑ. (18)

This describes a rotation of e3 about the vertical ẑ axis (see eq. (9.30)) with angular frequency
MgR
λ3ω

.

Note that the rate of precession is independent of the off-vertical angle θ, a fact that you can
observe in the videos above. Real-world spinning tops behave slightly differently, mainly due to the
action of friction which adds an additional torque. If you think carefully about this you should be
able to figure out the direction of this torque and thus the effect on the motion of the top.
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Earth itself acts as a spinning top. The small gravitational torque due to the gravity of the sun
and moon acting on Earth’s “equatorial bulge” (slight deviation from sphericity) causes Earth’s
axis to precess. The period of this precession is about 26, 000 years. Here is an excellent video
about that:

https://www.youtube.com/watch?v=adzx547ptck

Reading Assignment: Sec. 10.6

Exercise: 10.39
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2.5 Euler’s Equations
10.7

We are now in a position to describe quantitatively the tumbling motion of a rigid body about an
axis that is not a principal axis.

Recall that the rotational analog of Newton’s 2nd Law is

L̇ = τ (19)

where L is the total angular momentum of a rigid body and τ is the applied torque. However,
eq. (19) applies in an inertial frame S0, whereas our description of the angular momentum using
the moment of inertia tensor was done in the body frame S (i.e. the coordinate system embedded
in and rotating with the rigid body). To apply eq. (19) we need to translate from the inertial frame
S0 to the rotating frame S.

Recall that for a coordinate system rotating with angular velocity vector ω we have, for any
quantity q measured simultaneously in both frames, that(

dq

dt

)
S0

=

(
dq

dt

)
S

+ ω × q. (20)

Applying this to the angular momentum vector gives

τ =

(
dL

dt

)
S0

=

(
dL

dt

)
S

+ ω × L. (21)

Thus, in the body frame the equation of motion becomes

τ = L̇ + ω × L. (22)

This equation is called Euler’s equation.

Euler’s equation is much easier to deal with if we choose a body frame whose axes align with
the principal axes of the body. In this case the moment of inertia tensor is diagonalized, and the
angular momentum is

L = Iω =

λ1 0 0
0 λ2 0
0 0 λ3

ω =

λ1ω1

λ2ω2

λ3ω3

 . (23)

Differentiating this and plugging it into eq. (22) givesτ1τ2
τ3

 =

λ1ω̇1

λ2ω̇2

λ3ω̇3

+

ω1

ω2

ω3

×
λ1ω1

λ2ω2

λ3ω3

 . (24)

Expanding out the cross-product, we get a (nonlinear) system of differential equations
λ1ω̇1 − (λ2 − λ3)ω2ω3 = τ1
λ2ω̇2 − (λ3 − λ1)ω3ω1 = τ2
λ3ω̇3 − (λ1 − λ2)ω1ω2 = τ3

(25)
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that describe the time evolution of the components of the angular velocity vector ω.

It is difficult to solve these differential equation in general, but some special cases lead to
important insights about rotational motion.

2.5.1 Rotation About a Principal Axis

Suppose a rigid body is initially rotating a about a principal axis. We might as well identify this
as axis 1, in which case we have ω = (ω1, 0, 0) and eq. (25) becomes (at least initially)

λ1ω̇1 = τ1
λ2ω̇2 = τ2
λ3ω̇3 = τ3.

(26)

In the absence of any external torque we have τ1 = τ2 = τ3 = 0 and this system implies ω̇1 = ω̇2 =
ω̇3 = 0. Thus the angular velocity vector will be constant, and motion of the object is a simple,
constant rotation about a fixed axis.

2.5.2 Rotation with Zero Torque
10.8

For free rotation in the absence of an external torque, we have τ1 = τ2 = τ3 = 0 and eq. (25)
becomes 

ω̇1 = λ2−λ3
λ1

ω2ω3

ω̇2 = λ3−λ1
λ2

ω3ω1

ω̇3 = λ1−λ2
λ3

ω1ω2.

(27)

It isn’t hard to show, using these equations, that λ1ω
2
1 + λ2ω

2
2 + λ3ω

2
3 = T (the total rotational

kinetic energy) is constant. This equation describes the surface of an ellipsoid in (ω1, ω2, ω3)-space.
As the body rotates, the vector ω moves around on this ellipsoid.

It is possible to infer the nature of the motion directly from equations (27). I will only describe
the key results; Sec. 10.8 gives some of the details. The key ideas are demonstrated nicely in the
videos with links below.

In general a rigid body will have three principal axes and corresponding moments of inertia
that we can order as λ1 < λ2 < λ3. With ω aligned close to either axis 1 or axis 3, the rotation is
stable: the motion of the body will be a rotation in which the axis of rotation ω precesses slowly
about the principal axis. This free precession is described mathematically on pp. 398–400, and
accounts (among other things) for the Chandler wobble of Earth’s axis of rotation.

The interesting case is for rotation about axis 2, the so-called intermediate axis. This rotation
is unstable: the axis of rotation will spontaneously flip, repeatedly and sometimes rapidly, leading
to a wild tumbling motion—a result known as the intermediate axis theorem. An excellent
demonstration can be seen in this video (recorded in zero gravity):

https://www.youtube.com/watch?v=GgVpOorcKqc

This one gives a good explanation:

8



https://www.youtube.com/watch?v=-Si6iRL5Fj8

and this one is super cool (especially the demo around 5:15) and more detailed:

https://www.youtube.com/watch?v=1VPfZ_XzisU&t=774s
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3 Hamiltonian Mechanics
Ch. 13

3.1 The Hamiltonian Function

Hamiltonian mechanics is an alternative formulation of the Lagrangian mechanics approach we
studied earlier. It has many theoretical advantages, and is especially important in drawing the
connection to quantum mechanics. We won’t go that far into the subject, and indeed there is
much more than can be said about e.g. Poisson brackets, generators of group actions, symplectic
manifolds, symmetries and Lie algebras, at a more advanced level.

In the Lagrangian description, a mechanical system is described by a set of coordinates q1, . . . , qn.
At any given instant in time the state of the system is described by the vector (q1, . . . , qn, q̇1, . . . , q̇n)
of coordinates and their velocities. The resulting equations of motion (which we get via the
Euler-Lagrange equations) are a system of 2nd-order differential equations in terms of the q̇i and
q̈i (i = 1, . . . , n).

In the Hamiltonian description, the momenta play a more prominent role; in fact we eliminate
the velocities from the description and use the momenta instead. At any given instant in time the
state of the system is described by the vector (q1, . . . , qn, p1, . . . , pn) of coordinates and their
momenta.

Recall that the momentum conjugate to coordinate qi is

pi =
∂L

∂q̇i
. (28)

The equations of motion are then derived from the Hamiltonian function, which is defined as

H(q1, . . . , qn, p1, . . . , pn) =
n∑
i=1

piq̇i − L (29)

where L = T − V is the usual Lagrangian. Although eq. (29) defines H in terms of the q̇i, in
practice it is important to use (28) to eliminate the q̇i in favor of pi.

Example: Find the Hamiltonian function for the 1-D motion of a mass m attached to a fixed
spring of stiffness k.

Solution: We’ll take coordinate x to be the displacement of the mass from it’s equilibrium position
(i.e. from the rest length of the spring). Then the Lagrangian function is

L = T − V (30)

= 1
2mẋ

2 − 1
2kx

2. (31)

The momentum conjugate to x is

p =
∂L

∂ẋ
= mẋ (32)
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(which in this case is the usual linear momentum). Using eq. (29) we get the Hamiltonian function

H = pẋ− L (33)

= pẋ− 1
2mẋ

2 + 1
2kx

2. (34)

However, it is critical that we eliminate ẋ from this function so that H is a function of x and p
only. To do this, use eq. (32) to write

ẋ =
p

m
(35)

which can be used to eliminate ẋ in eq. (34) to get

H = p
( p
m

)
− 1

2m
( p
m

)2
+ 1

2kx
2 (36)

=
p2

2m
+ 1

2kx
2. (37)

Note that in this case H = T + V is just the total energy of the system. In fact this is usually the
case (and makes it much easier to find H) for reasons we’ll discuss later.

Reading Assignment: Sec. 13.1

3.2 Hamiltonian Equations of Motion
Sec. 13.2

In the Hamiltonian framework, the equations of motion are especially simple:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (38)

Why? We will derive these for a system with one coordinate only; the generalization to more
coordinates is fairly obvious. In the example above we eliminated ẋ from the Hamiltonian by
solving p = ∂L

∂ẋ for ẋ to get ẋ = p/m. In general we would solve p = ∂L
∂q̇ to write q̇ as some function

q̇(q, p). In this notation, eq. (29) gives the Hamiltonian as

H = pq̇ − L(q, q̇) (39)

= pq̇(q, p)− L(q, q̇(q, p)). (40)

The notation is a bit cumbersome, but gives H as a function of q, p only. Now consider the partial
derivative ∂H

∂q . Because p is independent of q we get (using the chain rule):

∂H

∂q
= p

∂q̇

∂q
− ∂L

∂q
− ∂L

∂q̇︸︷︷︸
p

∂q̇

∂q
(41)

= −∂L
∂q

(42)

= − d

dt

∂L

∂q̇︸︷︷︸
p

(by Euler-Lagrange) (43)
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so that

ṗ = −∂H
∂q

. (44)

On the other hand, eq. (40) gives the partial derivative ∂H
∂p as

∂H

∂p
= q̇ + p

∂q̇

∂p
− ∂L

∂q̇︸︷︷︸
p

∂q̇

∂p
(45)

= q̇. (46)

A key difference between the Lagrangian and Hamiltonian formulations is that the equations of
motion are now first-order differential equations, but there are twice as many equations. In vector
form the equations of motion are

(q̇, ṗ) =

(
∂H

∂p
,−∂H

∂q

)
. (47)

The right-hand side defines a vector field on the phase space with coordinates (q, p).

Reading Assignment: Sec. 13.2

Example: Derive the Hamiltonian equations of motion for the mass-spring system of the previous
example.

Solution: We already have the Hamiltonian function

H(x, p) =
p2

2m
+ 1

2kx
2. (48)

The equations of motion are then {
ẋ = ∂H

∂p = p
m

ṗ = −∂H
∂x = −kx.

(49)

We can write these in vector form as[
ẋ
ṗ

]
=

[
p/m
−kx

]
=

[
0 1/m
−k 0

] [
x
p

]
. (50)

As expected, the equations of motion are a system of first-order autonomous differential equations
for the unknown functions x(t), p(t). The solution of the equations (hence the motion of the
system) corresponds to a curve (called a phase space orbit) in the 2-dimensional phase space
with coordinates (x, p). In this particular case the differential equations are linear, so could be
solved using methods from MATH 2240.

Reading Assignment: Sec. 11.2, 11.3

Exercises: Ch. 13; #2, 3, 4, 5, 6, 9, 12, 25, 26
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3.3 Conservation of Energy

In general, depending on the coordinate system used to describe a mechanical system, the Hamil-
tonian might depend explicitly on time:

H = H(q1, . . . , qn, p1, . . . , pn, t). (51)

Consider the time derivative dH
dt (via the chain rule):

dH

dt
=
∂H

∂q1︸︷︷︸
−ṗ1

dq1
dt

+
∂H

∂q2︸︷︷︸
−ṗ2

dq2
dt

+ · · ·+ ∂H

∂p1︸︷︷︸
q̇1

dp1
dt

+
∂H

∂p2︸︷︷︸
q̇2

dp2
dt

+ · · ·+ ∂H

∂t

= (−ṗ1q̇1 + q̇1ṗ1) + (−ṗ2q̇2 + q̇2ṗ2) + · · ·+ ∂H

∂t

=
∂H

∂t
.

Consequently, if H does not depend explicitly on time (∂H∂t = 0) then the time rate of change of H
is zero. In other words, the quantity H is constant throughout the motion.

3.4 Natural Coordinates

It is always possible to write the coordinates q1, . . . , qn in terms of the usual Cartesian coordinates
x, y, z. If this relationship to the underlying Cartesian coordinates is independent of time, then
the coordinates are said to be natural. It turns out that, provided the coordinates q1, . . . , qn are
natural, then the Hamiltonian is equal to the total energy:

H = T + V. (52)

(The derivation is a bit lengthy; see Sec. 7.8 for details).

Combining this with the result of the previous section: if the Hamiltonian expressed in terms
of natural coordinates is not explicitly time-dependent, then the total energy in the system (H =
T + V ) is conserved, i.e. it is a constant of motion.

The End.
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