THOMPSON RIVERS UNIVERSITY

MATH 3160
Differential Equations II

Instructor: Richard Taylor

MIDTERM EXAM \#2 SOLUTIONS

16 November 2011 10:30-12:20

Instructions:

1. Read all instructions carefully.
2. Read the whole exam before beginning.
3. Make sure you have all 6 pages.
4. Organization and neatness count.
5. You must clearly show your work to receive full credit.
6. You may use the backs of pages for calculations.
7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		10
2		10
3		10
4		10
5		10
TOTAL:		50

Problem 1: Find the general solution $u(x, t)$ of the "telegraph equation": ($\alpha \in \mathbb{R}$ is an arbitrary parameter)

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial u}{\partial t}+u=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0
\end{array}\right.
$$

$$
\begin{aligned}
& u(x, t)=X(x) T(t) \Longrightarrow X T^{\prime \prime}+X T^{\prime}+X T=\alpha^{2} X^{\prime \prime} T \Longrightarrow \frac{T^{\prime \prime}+T^{\prime}+T}{\alpha^{2} T}=\frac{X^{\prime \prime}}{X}=k \\
& \Longrightarrow\left\{\begin{array}{l}
T^{\prime \prime}+T^{\prime}+\left(1-\alpha^{2} k\right) T=0 \\
X^{\prime \prime}-k X=0
\end{array}\right.
\end{aligned}
$$

As many times before, only $k=-\lambda^{2}<0$ yields nontrivial solutions with $X(0)=X(\pi)=0$:

$$
\begin{aligned}
& X(x)=A \cos (\lambda x)+B \sin (\lambda x) \\
& 0=X(0)=A \Longrightarrow A=0 \\
& 0=X(\pi)=B \sin (\lambda \pi) \Longrightarrow \lambda=n(n=1,2, \ldots) \\
& \quad \Longrightarrow X(x)=B \sin (n x)
\end{aligned}
$$

The ODE for T has characteristic polynomial $r^{2}+r+\left(1+\alpha^{n} n^{2}\right)$ with roots

$$
\begin{aligned}
r & =\frac{-1 \pm \sqrt{1-4\left(1+\alpha^{2} n^{2}\right)}}{2}=-\frac{1}{2} \pm i \underbrace{\sqrt{\alpha^{2} n^{2}+\frac{3}{4}}}_{\omega_{n}} \\
& \Longrightarrow T(t)=C e^{-t / 2} \cos \left(\omega_{n} t\right)+D e^{-t / 2} \sin \left(\omega_{n} t\right)
\end{aligned}
$$

Then superposition gives the general solution:

$$
\begin{gathered}
u(x, t)=\sum_{n=1}^{\infty} \sin (n x) e^{-t / 2}\left[A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right] \\
\text { where } \omega_{n}=\sqrt{\alpha^{2} n^{2}+\frac{3}{4}}
\end{gathered}
$$

Problem 2: Solve the following heat conduction problem for $u(x, t)$.

$$
\begin{gathered}
\begin{cases}u_{t}=9 u_{x x}, & 0<x<4, \quad t>0 \\
u_{x}(0, t)=u_{x}(4, t)=0, & t>0 \\
u(x, 0)=x^{2}, & 0 \leq x \leq 4\end{cases} \\
u(x, t)=X(x) T(T) \Longrightarrow X T^{\prime}=9 X^{\prime \prime} T \Longrightarrow \frac{T^{\prime}}{9 T}=\frac{X^{\prime \prime}}{X}=k \\
\Longrightarrow\left\{\begin{array}{l}
T^{\prime}=9 k T \\
X^{\prime \prime}-k X=0
\end{array}\right.
\end{gathered}
$$

To get nontrivial solutions with $X^{\prime}(0)=X^{\prime}(4)=0$ requires $k=-\lambda^{2} \leq 0$:

$$
\begin{aligned}
& X(x)=A \cos \lambda x+B \sin \lambda x \\
& 0=X^{\prime}(0)=\lambda B \Longrightarrow B=0 \\
& 0=X^{\prime}(4)=\lambda A \sin 4 \lambda \Longrightarrow 4 \lambda=n \pi \Longrightarrow \lambda=\frac{n \pi}{4}(n=0,1,2, \ldots) \\
& \qquad \Longrightarrow X(x)=A \cos \left(\frac{n \pi x}{4}\right)
\end{aligned}
$$

The ODE for T then yields

$$
\Longrightarrow T(t)=B e^{9 k t}=B e^{-9 n^{2} \pi^{2} t / 16}
$$

and superposition gives the general solution:

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{n \pi x}{4}\right) e^{-9 n^{2} \pi^{2} t / 16}
$$

Imposing initial conditions ...

$$
\begin{aligned}
& u(x, 0)=x^{2}=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{n \pi x}{4}\right) \quad\left(\text { a cosine series for } x^{2}\right) \\
& \Longrightarrow A_{n}=\frac{2}{4} \int_{0}^{4} x^{2} \cos \left(\frac{n \pi x}{4}\right) d x \\
&=\frac{1}{2}[\underbrace{\left.\left.x^{2} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{4}\right)\right|_{0} ^{4}-\int_{0}^{4} 2 x \cdot \frac{4}{n \pi} \sin \left(\frac{n \pi x}{4}\right) d x\right]}_{0} \\
&=-\frac{4}{n \pi} \int_{0}^{4} x \sin \left(\frac{n \pi x}{4}\right) d x \\
&=-\frac{4}{n \pi}[-\left.x \frac{4}{n \pi} \cos \left(\frac{n \pi x}{4}\right)\right|_{0} ^{4}+\underbrace{\int_{0}^{4} \frac{4}{n \pi} \cos \left(\frac{n \pi x}{4}\right) d x}_{0}]=\frac{64(-1)^{n}}{n^{2} \pi^{2}} \\
& \text { except } A_{0}=\frac{1}{4} \int_{0}^{4} x^{2} d x=\left.\frac{1}{4} \cdot \frac{1}{3} x^{3}\right|_{0} ^{4}=\frac{16}{3} \\
& \Longrightarrow \\
& u(x, t)=\frac{16}{3}+\sum_{n=1}^{\infty} \frac{64(-1)^{n}}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{4}\right) e^{-9 n^{2} \pi^{2} t / 16}
\end{aligned}
$$

Problem 3: Solve the following wave equation for $u(x, t)$.

$$
\begin{cases}u_{t t}=9 u_{x x}, & 0<x<\pi, \quad t>0 \\ u(0, t)=u(\pi, t)=0, & t>0 \\ u(x, 0)=\sin 4 x+7 \sin 5 x, & 0<x<\pi \\ u_{t}(x, 0)=3 \sin 8 x, & 0<x<\pi\end{cases}
$$

With these boundary conditions the general solution of the wave equation is

$$
u(x, t)=\sum_{n=1}^{\infty} \sin (n x)\left[A_{n} \cos (3 n t)+B_{n} \sin (3 n t)\right]
$$

Imposing initial conditions. . .

$$
\begin{gathered}
u(x, 0)=\sin 4 x+7 \sin 5 x=\sum_{n=1}^{\infty} A_{n} \sin (n x) \\
\Longrightarrow A_{4}=1, A_{5}=7, \text { all other } A_{n}=0 \\
\Longrightarrow u(x, t)=\sin 4 x \cos 12 t+7 \sin 5 x \cos 15 t+\sum_{n=1}^{\infty} B_{n} \sin (n x) \sin (3 n t) \\
u_{t}(x, 0)=3 \sin 8 x=\sum_{n=1}^{\infty} 3 n B_{n} \sin (n x) \\
B_{8}=\frac{1}{8}, \text { all other } B_{n}=0 \\
\Longrightarrow u(x, t)=\sin 4 x \cos 12 t+7 \sin 5 x \cos 15 t+\frac{1}{8} \sin 8 x \sin 24 t
\end{gathered}
$$

Problem 4: Consider the function $f(x)=\left\{\begin{array}{ll}1, & 0<x \leq \pi / 2 \\ 0, & \pi / 2<x<\pi\end{array}\right.$ defined for $x \in[0, \pi]$.
(a) Find the Fourier series for $f(x)$. Sketch the graph of the function to which this series converges on $[-2 \pi, 2 \pi]$.

$$
\begin{aligned}
& f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos 2 n x+B_{n} \sin 2 n x \quad(\pi \text {-periodic) } \\
& A_{n}=\frac{1}{\pi / 2} \int_{0}^{\pi} f(x) \cos (2 n x) d x=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (2 n x) d x=\left.\frac{2}{\pi} \cdot \frac{1}{2 n} \sin (2 n x)\right|_{0} ^{\pi / 2}=0, \text { except } A_{0}=1 \\
& B_{n}=\frac{1}{\pi / 2} \int_{0}^{\pi} f(x) \sin (2 n x) d x=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin (2 n x) d x=-\left.\frac{2}{\pi} \cdot \frac{1}{2 n} \cos (2 n x)\right|_{0} ^{\pi / 2}=-\frac{\cos (n \pi)-1}{n \pi}=\frac{1-(-1)^{n}}{n \pi} \\
& \Longrightarrow f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n \pi} \sin 2 n x
\end{aligned}
$$

(b) Find the sine series for $f(x)$. Sketch the graph of the function to which this series converges on $[-2 \pi, 2 \pi]$.

$$
\begin{gathered}
f(x)=\sum_{n=1}^{\infty} B_{n} \sin n x \quad(2 \pi \text {-periodic) } \\
B_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin (n x) d x=-\left.\frac{2}{\pi} \cdot \frac{1}{n} \cos (n x)\right|_{0} ^{\pi / 2}=\frac{2(1-\cos (n \pi / 2))}{n \pi} \\
\Longrightarrow f(x)=\sum_{n=1}^{\infty} \frac{2(1-\cos (n \pi / 2))}{n \pi} \sin n x
\end{gathered}
$$

(c) Find the cosine series for $f(x)$. Sketch the graph of the function to which this series converges on $[-2 \pi, 2 \pi]$.

$$
\begin{gathered}
f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos n x \quad(2 \pi \text {-periodic }) \\
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (n x) d x=\left.\frac{2}{\pi} \cdot \frac{1}{n} \sin (n x)\right|_{0} ^{\pi / 2}=\frac{2 \sin (n \pi / 2)}{n \pi} \\
\Longrightarrow A_{2 m}=0, \quad A_{2 m+1}=\frac{2(-1)^{m}}{(2 m+1) \pi}, \text { except } A_{0}=1 \\
\Longrightarrow f(x)=\frac{1}{2}+\sum_{m=0}^{\infty} \frac{2(-1)^{m}}{(2 m+1) \pi} \cos (2 m+1) x
\end{gathered}
$$

Problem 5: Solve the following boundary value problem (Laplace's equation) for $u(x, y)$:

$$
\begin{gathered}
\begin{cases}\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, & 0<x<\pi, \quad 0<y<1 \\
\frac{\partial u}{\partial x}(0, y)=\frac{\partial u}{\partial x}(\pi, y)=0, & 0 \leq y \leq 1 \\
u(x, 0)=\cos x-\cos 3 x, & 0 \leq x \leq \pi \\
u(x, 1)=0 & 0 \leq x \leq \pi\end{cases} \\
u(x, y)=X(x) Y(y) \Longrightarrow X^{\prime \prime} Y+X Y^{\prime \prime}=0 \Longrightarrow \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=k \\
\Longrightarrow\left\{\begin{array}{l}
X^{\prime \prime}-k X=0 \\
Y^{\prime \prime}+k Y=0
\end{array}\right.
\end{gathered}
$$

To get nontrivial solutions with $X^{\prime}(0)=X^{\prime}(\pi)=0$ requires $k=-\lambda^{2}<0$:

$$
\begin{aligned}
& X(x)=A \cos \lambda x+B \sin \lambda x \\
& 0=X^{\prime}(0)=\lambda B \Longrightarrow B=0 \\
& 0=X^{\prime}(\pi)=\lambda A \sin \lambda \pi \Longrightarrow \lambda \pi=n \pi \Longrightarrow \lambda=n(n=0,1,2, \ldots) \\
& \qquad \Longrightarrow X(x)=A \cos (n x)
\end{aligned}
$$

The ODE for Y then yields

$$
\Longrightarrow Y(y)=B e^{n y}+C e^{-n y}
$$

Enforcing the boundary condition on $Y \ldots$

$$
0=Y(1)=B e^{n}+C e^{-n} \Longrightarrow C=-B e^{2 n} \Longrightarrow Y(y)=B\left[e^{n y}-e^{n(2-y)}\right]
$$

Then superposition gives:

$$
u(x, y)=\sum_{n=0}^{\infty} A_{n} \cos (n x)\left[e^{n y}-e^{n(2-y)}\right]
$$

Enforcing the final boundary condition ...

$$
\begin{aligned}
& u(x, 0)=\cos x-\cos 3 x=\sum_{n=0}^{\infty} A_{n} \cos (n x)\left[1-e^{2 n}\right] \\
\Longrightarrow & A_{1}\left(1-e^{2}\right)=1, \quad A_{3}\left(1-e^{6}\right)=-1, \quad \text { all other } A_{n}=0 \\
\Longrightarrow & u(x, y)=\cos x \frac{e^{y}-e^{2-y}}{1-e^{2}}-\cos 3 x \frac{e^{3 y}-e^{3(2-y)}}{1-e^{6}}
\end{aligned}
$$

