MATH 3160
Differential Equations 2

Instructor: Richard Taylor

MIDTERM EXAM \#1
 SOLUTIONS

23 Oct 2019 9:30-11:20

Instructions:

1. Read the whole exam before beginning.
2. Make sure you have all 5 pages.
3. Organization and neatness count.
4. Justify your answers.
5. Clearly show your work.
6. You may use the backs of pages for calculations.
7. You may use an approved formula sheet.
8. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		9
2		8
3		10
4		5
5		5
TOTAL:		37

Problem 1: Consider the differential equation $y^{\prime \prime}+x^{2} y=0$.
(a) Show that $x=0$ is an ordinary point of this equation.
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$; coefficients $P(x)=0$ and $Q(x)=x^{2}$ are both analytic functions (polynomials) so every point is an ordinary point. So, in particular, $x=0$ is an ordinary point.
(b) Derive a set of recurrence relations for the coefficients of the power series $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ such that y is a solution of the given equation.
/4

$$
\begin{aligned}
y=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} . \\
(\text { sub into DE }) & \Longrightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n+2}=0 \\
(\text { re-index }) & \Longrightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=4}^{\infty} a_{n-4} x^{n-2}=0 \\
\text { (pull out leading terms) } & \Longrightarrow 2 a_{2}+6 a_{3} x+\sum_{n=4}^{\infty}\left[n(n-1) a_{n}+a_{n-4}\right] x^{n-2}=0
\end{aligned}
$$

$$
\text { (equate all coeffs. to } 0) \Longrightarrow\left\{\begin{array}{l}
a_{2}=0 \\
a_{3}=0 \\
a_{n}=-\frac{a_{n-4}}{n(n-1)} \quad(n=4,5, \ldots)
\end{array}\right.
$$

(c) Solve your recurrence relation to find two linearly independent solutions of this differential equation. $/ 4$

$$
\begin{gathered}
a_{2}=a_{3}=a_{6}=a_{7}=\cdots=c_{2 m+2}=c_{2 m+3}=0 \quad(m=0,1,2, \ldots) \\
a_{4}=-\frac{a_{0}}{4 \cdot 3}, \quad a_{8}=-\frac{a_{4}}{8 \cdot 7}=\frac{a_{0}}{8 \cdot 7 \cdot 4 \cdot 3}, \quad a_{12}=-\frac{a_{8}}{12 \cdot 11}=-\frac{a_{0}}{12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3} \\
a_{5}=-\frac{a_{1}}{5 \cdot 4}, \quad a_{9}=-\frac{a_{5}}{9 \cdot 8}=\frac{a_{1}}{9 \cdot 8 \cdot 5 \cdot 4}, \quad a_{13}=-\frac{a_{9}}{13 \cdot 12}=-\frac{a_{1} \cdot 1}{13 \cdot 12 \cdot 9 \cdot 8 \cdot 5 \cdot 4} \\
y(x)=a_{0} \underbrace{\left[1-\frac{x^{4}}{4 \cdot 3}+\frac{x^{8}}{8 \cdot 7 \cdot 4 \cdot 3}-\frac{x^{12}}{12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3}+\cdots\right]}_{y_{0}(x)} \\
+a_{1} \underbrace{\left[x-\frac{x^{5}}{5 \cdot 4}+\frac{x^{9}}{9 \cdot 8 \cdot 5 \cdot 4}-\frac{x^{13}}{13 \cdot 12 \cdot 9 \cdot 8 \cdot 5 \cdot 4}+\cdots\right]}_{y_{1}(x)}
\end{gathered}
$$

Two linearly independent solutions are the functions y_{0}, y_{1} above.

Problem 2: Consider the differential equation $2 x y^{\prime \prime}+y^{\prime}-4 y=0$.
(a) Show that $x=0$ is a regular singular point of this equation.
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ with coefficients $P(x)=1 /(2 x)$ and $Q(x)=-2 / x$.
Both P and Q are singular (not analytic) at $x=0$, so $x=0$ is a singular point.
But we have that $x P(x)=1 / 2$ and $x^{2} Q(x)=-2 x$ are both analytic functions (polynomials) so $x=0$ is a regular singular point.
(b) Find the values of r such that a solution of this equation can we written as the series $y=\sum_{n=0}^{\infty} a_{n} x^{n+r}$.

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
$$

$\begin{aligned}(\text { sub into DE) } & \Longrightarrow \sum_{n=0}^{\infty} 2(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}-\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}=0 \\ (\text { re-index }) & \Longrightarrow \sum_{n=0}^{\infty} 2(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}-\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r-1}=0\end{aligned}$
Pull out leading $(n=0)$ terms:

$$
\Longrightarrow[2 r(r-1)+r] a_{0} x^{r-1}+\sum_{n=1}^{\infty}\left[2(n+r)(n+r-1) a_{n}+(n+r) a_{n}-4 a_{n-1}\right] x^{n+r-1}=0
$$

Leading term gives the "indicial equation":

$$
0=2 r(r-1)+r=2 r^{2}-r=r(2 r-1) \Longrightarrow r=0 \text { or } r=\frac{1}{2}
$$

(c) For each value of r, give a (simplified) recurrence relation for the coefficients a_{n} in the series above. You do not need to solve this recurrence relation or find a formula for $y(x)$.

$$
0=2(n+r)(n+r-1) a_{n}+(n+r) a_{n}-4 a_{n-1}=(2 n+2 r-1)(n+r) a_{n}-4 a_{n-1}
$$

case $r=0$:

$$
0=(2 n-1) n a_{n}-4 a_{n-1} \Longrightarrow a_{n}=\frac{4 a_{n-1}}{(2 n-1) n}=\frac{2 a_{n-1}}{n\left(n-\frac{1}{2}\right)} \text { or } a_{n+1}=\frac{4 a_{n}}{(2 n+1)(n+1)}
$$

case $r=\frac{1}{2}:$

$$
0=2 n\left(n+\frac{1}{2}\right) a_{n}-4 a_{n-1} \Longrightarrow a_{n}=\frac{a_{n-1}}{n\left(n+\frac{1}{2}\right)}=\frac{4 a_{n-1}}{n(2 n+1)} \text { or } a_{n+1}=\frac{4 a_{n}}{(n+1)(2 n+3)}
$$

Problem 3: Use the Laplace transform to solve the following initial value problems for $y(t)$:
(a) $\quad y^{\prime \prime}=e^{-2 t}, \quad y(0)=0, \quad y^{\prime}(0)=1$

$$
s^{2} Y-0 \cdot s-1=\frac{1}{s+2} \Longrightarrow s^{2} Y=1+\frac{1}{s+2} \Longrightarrow Y(s)=\frac{1}{s^{2}}+\frac{1}{s^{2}(s+2)}
$$

Partial fractions:

$$
\begin{aligned}
& \frac{1}{s^{2}(s+2)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+2}=\frac{A s(s+2)+B(s+2)+C s^{2}}{s^{2}(s+2)} \\
& s=-2: \quad 4 C=1 \Longrightarrow C=1 / 4 \\
& s=0: \quad 2 B=1 \Longrightarrow B=1 / 2 \\
&\left.\frac{d}{d s}\right|_{s=0}: \quad 2 A+B=0 \Longrightarrow A=-B / 2=-1 / 4 \\
& \Longrightarrow y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}-\frac{1 / 4}{s}+\frac{1 / 2}{s^{2}}+\frac{1 / 4}{s+2}\right\} \\
&=t-\frac{1}{4}+\frac{1}{2} t+\frac{1}{4} e^{-2 t} \\
&=\frac{3}{2} t-\frac{1}{4}+\frac{1}{4} e^{-2 t}
\end{aligned}
$$

(b) $\quad y^{\prime \prime}+2 y^{\prime}+y=\delta(t-1), \quad y(0)=y^{\prime}(0)=0$

$$
\begin{gathered}
s^{2} Y+2 s Y+Y=e^{-s} \Longrightarrow Y(s)=\frac{e^{-s}}{(s+1)^{2}} \\
\Longrightarrow y(t)=\mathcal{L}^{-1}\left\{\frac{e^{-s}}{(s+1)^{2}}\right\}=u(t-1) f(t-1) \\
\text { where } f(t)=\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}=e^{-t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t e^{-t} \\
\Longrightarrow y(t)=u(t-1)(t-1) e^{-(t-1)}
\end{gathered}
$$

/5 Problem 4: Find $\mathcal{L}^{-1}\left\{\frac{5-2 s}{s^{2}-2 s+5}\right\}$ where \mathcal{L} denotes the Laplace transform.
Complete the square:

$$
\begin{aligned}
& F(s)=\frac{5-2 s}{s^{2}-2 s+5}=\frac{5-2 s}{(s-1)^{2}+4}=\frac{3-2(s-1)}{(s-1)^{2}+4}=\frac{3}{2} \cdot \frac{2}{(s-1)^{2}+4}-2 \cdot \frac{(s-1)}{(s-1)^{2}+4} \\
& \Longrightarrow f(t)=\mathcal{L}^{-1}\{F(s)\}=\frac{3}{2} \mathcal{L}^{-1}\left\{\frac{2}{(s-1)^{2}+4}\right\}-2 \mathcal{L}^{-1}\left\{\frac{(s-1)}{(s-1)^{2}+4}\right\} \\
&=\frac{3}{2} e^{t} \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+2^{2}}\right\}-2 e^{t} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2^{2}}\right\} \\
&=\frac{3}{2} e^{t} \sin (2 t)-2 e^{t} \cos (2 t)
\end{aligned}
$$

Problem 5: Use the definition of the Laplace transform \mathcal{L} to find $\mathcal{L}\{f(t)\}$ where

$$
f(t)= \begin{cases}t, & 0 \leq t<2 \\ 2, & t \geq 2\end{cases}
$$

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{2} t e^{-s t} d t+\int_{2}^{\infty} 2 e^{-s t} d t \quad \begin{cases}u=t & d v=e^{-s t} d t \\
d u=d t & v=-\frac{1}{s} e^{-s t}\end{cases} \\
& =\left[-\frac{t}{s} e^{-s t}\right]_{t=0}^{2}+\int_{0}^{2} \frac{1}{s} e^{-s t}+\int_{2}^{\infty} 2 e^{-s t} d t \\
& =-\frac{2}{s} e^{-2 s}-\left[\frac{1}{s^{2}} e^{-s t}\right]_{t=0}^{2}-\left[\frac{2}{s} e^{-s t}\right]_{t=2}^{\infty} \\
& =-\frac{2}{s} e^{-2 s}-\frac{1}{s^{2}} e^{-2 s}+\frac{1}{s^{2}}+\frac{2}{s} e^{-2 s} \\
& =\frac{1}{s^{2}}\left(1-e^{-2 s}\right)
\end{aligned}
$$

