Thompson Rivers

 UNIVERSITY

 UNIVERSITY}

MATH 3160
Differential Equations II

Instructor: Richard Taylor

FINAL EXAM
SOLUTIONS

20 April 2013 19:00-22:00

Instructions:

1. Read the whole exam before beginning.
2. Make sure you have all 9 pages.
3. Organization and neatness count.
4. Justify your answers.

5 . Clearly show your work.
6. You may use the backs of pages for calculations.
7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
TOTAL:		80

Problem 1: Consider the following differential equation for $y(x)$:

$$
\left(1+x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+6 y=0
$$

(a) Explain why $x=0$ is an ordinary point (i.e. not a singular point) for this equation.

We have $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ where $P(x)=6 x /\left(1+x^{2}\right)$ and $Q(x)=6 /\left(1+x^{2}\right)$ are both analytic at $x=0$, hence $x=0$ is an ordinary point.
(b) Find the general solution of this equation in terms of power series.

Assume:

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n} \Longrightarrow y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1} \Longrightarrow y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}
$$

Subbing into the DE:

$$
\sum_{2} n(n-1) c_{n} x^{n-2}+\sum_{2} n(n-1) c_{n} x^{n}+6 \sum_{1} n c_{n} x^{n}+6 \sum_{0} c_{n} x^{n}=0
$$

and re-indexing:

$$
\begin{gathered}
\sum_{0}(n+2)(n+1) c_{n+2} x^{n}+\sum_{2} n(n-1) c_{n} x^{n}+6 \sum_{1} n c_{n} x^{n}+6 \sum_{0} c_{n} x^{n}=0 \\
\Longrightarrow 2 c_{2}+6 c_{3} x+6 c_{1} x+6 c_{0}+6 c_{1} x+\sum_{2}\left[(n+2)(n+1) c_{n+2}+n(n-1) c_{n}+6 n c_{n}+6 c_{n}\right] x^{n}=0
\end{gathered}
$$

gives the recurrence relations:

$$
\left\{\begin{array}{l}
2 c_{2}+6 c_{0}=0 \\
6 c_{3}+12 c_{1}=0 \\
(n+2)(n+1) c_{n+2}+(n+2)(n+3) c_{n}=0
\end{array} \quad \Longrightarrow c_{n+2}=-\frac{n+3}{n+1} c_{n} ; n=2,3, \ldots\right.
$$

so that

$$
\begin{array}{ll}
c_{2}=-3 c_{0} & c_{3}=-2 c_{1} \\
c_{4}=-\frac{5}{3} c_{2}=5 c_{0} & c_{5}=-\frac{6}{4} c_{3}=3 c_{1} \\
c_{6}=-\frac{7}{5} c_{4}=-7 c_{0} & c_{7}=-\frac{8}{6} c_{5}=-4 c_{1} \\
c_{8}=-\frac{9}{7} c_{6}=9 c_{0} & c_{9}=-\frac{10}{8} c_{7}=5 c_{1} \\
\ldots & \ldots
\end{array}
$$

and the general solution is

$$
y(x)=c_{0} \sum_{k=0}^{\infty}(-1)^{k}(2 k+1) x^{2 k}+c_{1} \sum_{k=0}^{\infty}(-1)^{k}(k+1) x^{2 k+1}
$$

(c) Give (and justify) a lower bound on the radius of convergence for the series solution(s) in part (b).

The only singular points (i.e. values of x at which $P(x)$ or $Q(x)$ fail to be analytic) are $x= \pm i$. The radius of convergence for the series in (a) is therefore at least $|i-0|=1$.

Problem 2: Consider the following differential equation for $y(x)$:

$$
3 x^{2} y^{\prime \prime}+x(1+x) y^{\prime}-y=0
$$

(a) Explain why $x=0$ is a regular singular point (i.e. not an ordinary point or irregular singular point) for this equation.

We have $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ where $P(x)=(1+x) /(2 x)$ and $Q(x)=-1 /\left(3 x^{2}\right)$. Both P and Q are non-analytic at $x=0$, so $x=0$ is a singular point. Since $x P(x)=(1+x) / 2$ and $x^{2} Q(x)=-1 / 3$ are both analytic at $x=0, x=0$ is a regular singular point.
(b) Find the value(s) of r such that this equation has a solution of the form $y(x)=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}$. (Do not attempt to determine the coefficients c_{n}.) Are there two linearly independent solutions of this form?

Assume:

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n+r} \Longrightarrow y^{\prime}=\sum_{n=0}^{\infty}(n+r) c_{n} x^{n+r-1} \Longrightarrow y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r-2}
$$

Subbing into the DE:

$$
\sum_{0} 3(n+r)(n+r-1) c_{n} x^{n+r}+\sum_{0}(n+r) c_{n} x^{n+r}+\sum_{0}(n+r) c_{n} x^{n+r+1}-\sum_{0} c_{n} x^{n+r}=0
$$

and re-indexing:

$$
\begin{aligned}
& \sum_{0} 3(n+r)(n+r-1) c_{n} x^{n+r}+\sum_{0}(n+r) c_{n} x^{n+r}+\sum_{1}(n+r-1) c_{n-1} x^{n+r}-\sum_{0} c_{n} x^{n+r}=0 \\
& \left.\Longrightarrow[3 r(r-1)+r-1] c_{0} x^{r}+\sum_{1}\left[3(n+r)(n+r-1) c_{n}+(n+r) c_{n}+n+r-1\right) c_{n-1}-c_{n}\right] x^{n+r}=0
\end{aligned}
$$

gives the indicial equation

$$
\begin{aligned}
3 r(r-1)+r-1=0 & \Longrightarrow 3 r^{2}-2 r-1=0 \\
& \Longrightarrow r=\frac{2 \pm 4}{-6}=-1, \frac{1}{3}
\end{aligned}
$$

Since the roots of the indicial equation do not differ by an integer, there will be two linearly independent solutions of the form $y(x)=x^{r} P(x)$ where P is a power series.

Problem 3: Solve the initial value problem

$$
y^{\prime \prime}+y=\sum_{k=1}^{\infty} \delta(t-2 k \pi), \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Simplify your solution as much as possible, and sketch the graph of the solution $y(t)$ on the interval $[0,6 \pi]$.

Laplace transform:

$$
\begin{aligned}
\left(s^{2} Y(s)-1\right)+Y(s)=\sum_{k=1}^{\infty} e^{-2 k \pi s} & \Longrightarrow\left(1+s^{2}\right) Y(s)=1+\sum_{k=1}^{\infty} e^{-2 k \pi s} \\
& \Longrightarrow Y(s)=\frac{1}{1+s^{2}}+\sum_{k=1}^{\infty} e^{-2 k \pi s} \frac{1}{1+s^{2}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =\sin t+\sum_{k=1}^{\infty} u(t-2 k \pi) \sin (t-2 k \pi) \\
& =\sin t+\sum_{k=1}^{\infty} u(t-2 k \pi) \sin t \\
& =(m+1) \sin t ; \quad t \in[m 2 \pi,(m+1) 2 \pi] ; \quad m=0,1,2, \ldots
\end{aligned}
$$

Problem 4: Find the inverse Laplace transform of

$$
F(s)=\frac{s+2}{(s-3)\left(s^{2}+2 s+5\right)}
$$

Write

$$
\begin{aligned}
F(s)= & \frac{A}{s-3}+\frac{B s+C}{s^{2}+2 s+5} \\
= & \frac{A\left(s^{2}+2 s+5\right)+(B s+C)(s-3)}{(s-3)\left(s^{2}+2 s+5\right)} \\
= & \frac{(A+B) s^{2}+(2 A-3 B+C) s+(5 A-3 C)}{(s-3)\left(s^{2}+2 s+5\right)} \Longrightarrow\left\{\begin{array}{l}
A+B=0 \\
2 A-3 B+C=1 \\
5 A-3 C=2
\end{array}\right. \\
& s \rightarrow 3 \Longrightarrow 20 A=5 \Longrightarrow A=\frac{1}{4} \Longrightarrow B=-\frac{1}{4} \Longrightarrow C=-\frac{1}{4}
\end{aligned}
$$

so that

$$
\begin{aligned}
F(s) & =\frac{1}{4} \cdot \frac{1}{s-3}-\frac{1}{4} \cdot \frac{s+1}{s^{2}+2 s+5} \\
& =\frac{1}{4} \cdot \frac{1}{s-3}-\frac{1}{4} \cdot \frac{(s+1)}{(s+1)^{2}+2^{2}}
\end{aligned}
$$

which gives

$$
\begin{aligned}
f(t)=\mathcal{L}^{-1}\{F(s)\} & =\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\}-\frac{1}{4} e^{-t} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2^{2}}\right\} \\
& =\frac{1}{4} e^{3 t}-\frac{1}{4} e^{-t} \cos 2 t
\end{aligned}
$$

Problem 5: Consider the following Sturm-Liouville problem on $[0,3]$:

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(3)=0
$$

(a) Find the eigenvalues and eigenfunctions for this problem.
case $\lambda=-\alpha^{2}<0$:

$$
y(x)=c_{1} \cosh \alpha x+c_{2} \sinh \alpha x
$$

$$
\left\{\begin{array}{l}
y^{\prime}(0)=0 \\
y^{\prime}(3)=0
\end{array} \quad \Longrightarrow c_{1}=c_{2}=0 \Longrightarrow\right. \text { only the trivial solution }
$$

$\underline{\text { case } \lambda=0}$:

$$
\begin{gathered}
y(x)=c_{1}+c_{2} x \\
\left\{\begin{array}{l}
y^{\prime}(0)=0 \\
y^{\prime}(3)=0
\end{array} \Longrightarrow c_{2}=0 \Longrightarrow y(x)=c_{1}\right.
\end{gathered}
$$

case $\lambda=\alpha^{2}>0$:

$$
\begin{gathered}
y(x)=c_{1} \cos \alpha x+c_{2} \sin \alpha x \\
\left\{\begin{array}{l}
y^{\prime}(0)=0 \\
y^{\prime}(3)=0
\end{array} \Longrightarrow c_{2}=0 ; \sin 3 \alpha=0 \Longrightarrow 3 \alpha=n \pi\right.
\end{gathered}
$$

So the eigenvalues are

$$
\lambda_{n}=\left(\frac{n \pi}{3}\right)^{2} ; \quad n=0,1,2, \ldots
$$

with corresponding eigenfunctions

$$
y_{n}(x)=\cos \left(\frac{n \pi x}{3}\right)
$$

(b) Is $\lambda=0$ an eigenvalue for this problem? Justify your answer.

Yes. $\lambda=0$ gives non-trivial solutions $y(x)=c$; the corresponding eigenfunctions are the constant functions.

Problem 6: Consider the following piecewise continuous function on $[-2,2]$.

$$
f(x)=\left\{\begin{array}{rr}
-x, & -2<x<0 \\
\frac{1}{2}, & 0<x<2 .
\end{array}\right.
$$

(a) Find the Fourier series representation of this function.

We have

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right)
$$

where

$$
\frac{a_{0}}{2}=\frac{3}{4} \quad \text { (average of } f(x), \text { by inspection) }
$$

and

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x \\
& =\frac{1}{2} \int_{-2}^{0}(-x) \cos \left(\frac{n \pi x}{2}\right) d x+\frac{1}{2} \int_{0}^{2} \frac{1}{2} \cos \left(\frac{n \pi x}{2}\right) d x \\
& =-\frac{1}{2}\left[\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)+\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]_{-2}^{0}+\frac{1}{2}\left[\frac{1}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} \\
& =-\frac{1}{2}\left[\left(\frac{2}{n \pi}\right)^{2}-\left(\frac{2}{n \pi}\right)^{2} \cos (-n \pi)\right] \\
& =\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right] \\
b_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\frac{1}{2} \int_{-2}^{0}(-x) \sin \left(\frac{n \pi x}{2}\right) d x+\frac{1}{2} \int_{0}^{2} \frac{1}{2} \sin \left(\frac{n \pi x}{2}\right) d x \\
& =-\frac{1}{2}\left[\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]_{-2}^{0}+\frac{1}{2}\left[-\frac{1}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} \\
& =-\frac{1}{2}\left[-\frac{4}{n \pi} \cos (-n \pi)\right]+\frac{1}{n 2 \pi}[1-\cos (-n \pi)] \\
& =\frac{1}{n \pi}\left[3(-1)^{n}+1\right]
\end{aligned}
$$

so

$$
f(x)=\frac{3}{4}+\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}} \cos \left(\frac{n \pi x}{2}\right)+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{3(-1)^{n}+1}{n} \sin \left(\frac{n \pi x}{2}\right)
$$

(b) Sketch the graph, on the interval $[-6,6]$, of the function to which the Fourier series in part (a) converges.

Problem 7: Solve the following initial boundary value problem for $u(x, t)$, which models heat flow in a one-dimensional object with one end insulated

$$
\begin{array}{lcc}
u_{t}=16 u_{x x}, & 0<x<2, & t>0 \\
u(0, t)=0, & u_{x}(2, t)=0, & t>0 \\
u(x, 0)=x, & 0 \leq x \leq 2 &
\end{array}
$$

Separation of variables $u(x, t)=X(x) T(t)$ gives

$$
\left\{\begin{array}{l}
X^{\prime \prime}+\lambda X=0 \\
T^{\prime}=-16 \lambda T
\end{array}\right.
$$

which give nontrivial solutions only for $\lambda=\alpha^{2}>0$:

$$
X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)
$$

Boundary conditions $X(0)=0, X^{\prime}(2)=0$ give $c_{1}=0$ and $\cos (2 \alpha)=0 \Longrightarrow \alpha=\left(n+\frac{1}{2}\right) \frac{\pi}{2}$, $n=0,1,2, \ldots$

We have $T(t)=A e^{-16 \lambda t}=A e^{-4\left(n+\frac{1}{2}\right)^{2} \pi^{2} t}$ so the general solution is

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-4\left(n+\frac{1}{2}\right)^{2} \pi^{2} t} \sin \left(\left(n+\frac{1}{2}\right) \frac{\pi x}{2}\right)
$$

where

$$
u(x, 0)=x=\sum_{n=0}^{\infty} A_{n} \sin \left(\left(n+\frac{1}{2}\right) \frac{\pi x}{2}\right)
$$

together with orthogonality gives

$$
A_{n}=\frac{\int_{0}^{2} x \sin \left(\left(n+\frac{1}{2}\right) \frac{\pi x}{2}\right) d x}{\int_{0}^{2} \sin ^{2}\left(\left(n+\frac{1}{2}\right) \frac{\pi x}{2}\right) d x}
$$

Problem 8: Solve the following initial boundary value problem for $u(x, t)$, which models vibration of a taut string.

$$
\begin{aligned}
& u_{t t}=9 u_{x x}, \quad 0<x<1, \quad t>0 \\
& u(0, t)=u(1, t)=0, \quad t>0 \\
& u(x, 0)=\sin (\pi x)-5 \sin (3 \pi x), \quad u_{t}(x, 0)=0, \quad 0 \leq x \leq 1
\end{aligned}
$$

The standard solution for the wave equation gives

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos (n 3 \pi t)+B_{n} \sin (n 3 \pi t)\right] \sin (n \pi x)
$$

where

$$
u_{t}(x, 0)=0=\sum_{n=1}^{\infty}\left[B_{n} \cdot n 3 \pi\right] \sin (n \pi x)
$$

gives $B_{n}=0$ for all $n=1,2, \ldots$ and

$$
u(x, t)=\sin (\pi x)-5 \sin (3 \pi x)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x)
$$

gives $A_{1}=1, A_{3}=-5$ and $A_{n}=0$ for all other $n \neq 1,3$.
Therefore the solution is

$$
u(x, t)=\cos (3 \pi t) \sin (\pi x)-5 \cos (9 \pi t) \sin (3 \pi x)
$$

