
MATH 3160

Differential Equations II

Instructor: Richard Taylor

FINAL EXAM

SOLUTIONS

20 April 2013 19:00–22:00

Instructions:

1. Read the whole exam before beginning.

2. Make sure you have all 9 pages.

3. Organization and neatness count.

4. Justify your answers.

5. Clearly show your work.

6. You may use the backs of pages for calculations.

7. You may use an approved calculator.

problem grade out of

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

total: 80
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Problem 1: Consider the following differential equation for y(x):

(1 + x2)y′′ + 6xy′ + 6y = 0

(a) Explain why x = 0 is an ordinary point (i.e. not a singular point) for this equation.

We have y′′ + P (x)y′ +Q(x)y = 0 where P (x) = 6x/(1 + x2) and Q(x) = 6/(1 + x2) are both
analytic at x = 0, hence x = 0 is an ordinary point.

(b) Find the general solution of this equation in terms of power series.

Assume:

y =
∞
∑

n=0

cnx
n =⇒ y′ =

∞
∑

n=1

ncnx
n−1 =⇒ y′′ =

∞
∑

n=2

n(n− 1)cnx
n−2

Subbing into the DE:

∑

2

n(n− 1)cnx
n−2 +

∑

2

n(n− 1)cnx
n + 6

∑

1

ncnx
n + 6

∑

0

cnx
n = 0

and re-indexing:

∑

0

(n + 2)(n + 1)cn+2x
n +

∑

2

n(n− 1)cnx
n + 6

∑

1

ncnx
n + 6

∑

0

cnx
n = 0

=⇒ 2c2 + 6c3x+ 6c1x+ 6c0 + 6c1x+
∑

2

[

(n+ 2)(n + 1)cn+2 + n(n− 1)cn + 6ncn + 6cn

]

xn = 0

gives the recurrence relations:











2c2 + 6c0 = 0

6c3 + 12c1 = 0

(n+ 2)(n + 1)cn+2 + (n + 2)(n + 3)cn = 0

=⇒ cn+2 = −
n+ 3

n+ 1
cn; n = 2, 3, . . .

so that

c2 = −3c0 c3 = −2c1

c4 = −
5

3
c2 = 5c0 c5 = −

6

4
c3 = 3c1

c6 = −
7

5
c4 = −7c0 c7 = −

8

6
c5 = −4c1

c8 = −
9

7
c6 = 9c0 c9 = −

10

8
c7 = 5c1

· · · · · ·

c2k = (−1)n(2k + 1)c0 c2k+1 = (−1)k(k + 1)c1

and the general solution is

y(x) = c0

∞
∑

k=0

(−1)k(2k + 1)x2k + c1

∞
∑

k=0

(−1)k(k + 1)x2k+1

(c) Give (and justify) a lower bound on the radius of convergence for the series solution(s) in part (b).

The only singular points (i.e. values of x at which P (x) or Q(x) fail to be analytic) are x = ±i.
The radius of convergence for the series in (a) is therefore at least |i− 0| = 1.
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Problem 2: Consider the following differential equation for y(x):

3x2y′′ + x(1 + x)y′ − y = 0

(a) Explain why x = 0 is a regular singular point (i.e. not an ordinary point or irregular singular point)
for this equation.

We have y′′ + P (x)y′ +Q(x)y = 0 where P (x) = (1 + x)/(2x) and Q(x) = −1/(3x2). Both P
and Q are non-analytic at x = 0, so x = 0 is a singular point. Since xP (x) = (1 + x)/2 and
x2Q(x) = −1/3 are both analytic at x = 0, x = 0 is a regular singular point.

(b) Find the value(s) of r such that this equation has a solution of the form y(x) = xr
∞
∑

n=0

cnx
n. (Do not

attempt to determine the coefficients cn.) Are there two linearly independent solutions of this form?

Assume:

y =

∞
∑

n=0

cnx
n+r =⇒ y′ =

∞
∑

n=0

(n+ r)cnx
n+r−1 =⇒ y′′ =

∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r−2

Subbing into the DE:

∑

0

3(n+ r)(n+ r − 1)cnx
n+r +

∑

0

(n+ r)cnx
n+r +

∑

0

(n + r)cnx
n+r+1 −

∑

0

cnx
n+r = 0

and re-indexing:

∑

0

3(n+ r)(n+ r − 1)cnx
n+r +

∑

0

(n+ r)cnx
n+r +

∑

1

(n+ r − 1)cn−1x
n+r −

∑

0

cnx
n+r = 0

=⇒
[

3r(r − 1) + r − 1
]

c0x
r +

∑

1

[

3(n + r)(n+ r − 1)cn + (n+ r)cn + n+ r − 1)cn−1 − cn

]

xn+r = 0

gives the indicial equation

3r(r − 1) + r − 1 = 0 =⇒ 3r2 − 2r − 1 = 0

=⇒ r =
2± 4

−6
= −1,

1

3

Since the roots of the indicial equation do not differ by an integer, there will be two linearly
independent solutions of the form y(x) = xrP (x) where P is a power series.
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Problem 3: Solve the initial value problem

y′′ + y =

∞
∑

k=1

δ(t− 2kπ), y(0) = 0, y′(0) = 1.

Simplify your solution as much as possible, and sketch the graph of the solution y(t) on the interval
[0, 6π].

Laplace transform:

(s2Y (s)− 1) + Y (s) =
∞
∑

k=1

e−2kπs =⇒ (1 + s2)Y (s) = 1 +
∞
∑

k=1

e−2kπs

=⇒ Y (s) =
1

1 + s2
+

∞
∑

k=1

e−2kπs 1

1 + s2

Therefore

y(t) = L−1{Y (s)}

= sin t+

∞
∑

k=1

u(t− 2kπ) sin(t− 2kπ)

= sin t+

∞
∑

k=1

u(t− 2kπ) sin t

= (m+ 1) sin t; t ∈ [m2π, (m + 1)2π]; m = 0, 1, 2, . . .
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Problem 4: Find the inverse Laplace transform of

F (s) =
s+ 2

(s− 3)(s2 + 2s+ 5)

Write

F (s) =
A

s− 3
+

Bs+ C

s2 + 2s+ 5

=
A(s2 + 2s+ 5) + (Bs+ C)(s− 3)

(s− 3)(s2 + 2s+ 5)

=
(A+B)s2 + (2A− 3B + C)s+ (5A− 3C)

(s− 3)(s2 + 2s+ 5)
=⇒











A+B = 0

2A− 3B + C = 1

5A− 3C = 2

s → 3 =⇒ 20A = 5 =⇒ A =
1

4
=⇒ B = −

1

4
=⇒ C = −

1

4

so that

F (s) =
1

4
·

1

s− 3
−

1

4
·

s+ 1

s2 + 2s + 5

=
1

4
·

1

s− 3
−

1

4
·

(s+ 1)

(s+ 1)2 + 22

which gives

f(t) = L−1{F (s)} =
1

4
L−1

{

1

s− 3

}

−
1

4
e−tL−1

{

s

s2 + 22

}

=
1

4
e3t −

1

4
e−t cos 2t
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Problem 5: Consider the following Sturm-Liouville problem on [0, 3]:

y′′ + λy = 0, y′(0) = 0, y′(3) = 0

(a) Find the eigenvalues and eigenfunctions for this problem.

case λ = −α2 < 0:
y(x) = c1 coshαx+ c2 sinhαx

{

y′(0) = 0

y′(3) = 0
=⇒ c1 = c2 = 0 =⇒ only the trivial solution

case λ = 0:
y(x) = c1 + c2x

{

y′(0) = 0

y′(3) = 0
=⇒ c2 = 0 =⇒ y(x) = c1

case λ = α2 > 0:
y(x) = c1 cosαx+ c2 sinαx

{

y′(0) = 0

y′(3) = 0
=⇒ c2 = 0; sin 3α = 0 =⇒ 3α = nπ

So the eigenvalues are

λn =
(nπ

3

)2
; n = 0, 1, 2, . . .

with corresponding eigenfunctions

yn(x) = cos
(nπx

3

)

(b) Is λ = 0 an eigenvalue for this problem? Justify your answer.

Yes. λ = 0 gives non-trivial solutions y(x) = c; the corresponding eigenfunctions are the
constant functions.
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Problem 6: Consider the following piecewise continuous function on [−2, 2].

f(x) =

{

−x, −2 < x < 0
1
2 , 0 < x < 2.

(a) Find the Fourier series representation of this function.

We have

f(x) =
a0
2

+

∞
∑

n=1

an cos
(nπx

2

)

+

∞
∑

n=1

bn sin
(nπx

2

)

where
a0
2

=
3

4
(average of f(x), by inspection)

and

an =
1

2

∫ 2

−2
f(x) cos

(nπx

2

)

dx

=
1

2

∫ 0

−2
(−x) cos

(nπx

2

)

dx+
1

2

∫ 2

0

1

2
cos

(nπx

2

)

dx

= −
1

2

[( 2

nπ

)2
cos

(nπx

2

)

+
2x

nπ
sin

(nπx

2

)]0

−2
+

1

2

[ 1

nπ
sin

(nπx

2

)]2

0

= −
1

2

[( 2

nπ

)2
−

( 2

nπ

)2
cos(−nπ)

]

=
2

n2π2

[

(−1)n − 1
]

bn =
1

2

∫ 2

−2
f(x) sin

(nπx

2

)

dx

=
1

2

∫ 0

−2
(−x) sin

(nπx

2

)

dx+
1

2

∫ 2

0

1

2
sin

(nπx

2

)

dx

= −
1

2

[( 2

nπ

)2
sin

(nπx

2

)

−
2x

nπ
cos

(nπx

2

)]0

−2
+

1

2

[

−
1

nπ
cos

(nπx

2

)]2

0

= −
1

2

[

−
4

nπ
cos(−nπ)

]

+
1

n2π

[

1− cos(−nπ)
]

=
1

nπ

[

3(−1)n + 1
]

so

f(x) =
3

4
+

2

π2

∞
∑

n=1

(−1)n − 1

n2
cos

(nπx

2

)

+
1

π

∞
∑

n=1

3(−1)n + 1

n
sin

(nπx

2

)

(b) Sketch the graph, on the interval [−6, 6], of the function to which the Fourier series in part (a)
converges.

y

x−6 −4 −2 2 4 6

1

2
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Problem 7: Solve the following initial boundary value problem for u(x, t), which models heat flow in
a one-dimensional object with one end insulated

ut = 16uxx, 0 < x < 2, t > 0

u(0, t) = 0, ux(2, t) = 0, t > 0

u(x, 0) = x, 0 ≤ x ≤ 2

Separation of variables u(x, t) = X(x)T (t) gives

{

X ′′ + λX = 0

T ′ = −16λT

which give nontrivial solutions only for λ = α2 > 0:

X(x) = c1 cos(αx) + c2 sin(αx).

Boundary conditions X(0) = 0, X ′(2) = 0 give c1 = 0 and cos(2α) = 0 =⇒ α = (n + 1
2 )

π

2 ,
n = 0, 1, 2, . . .

We have T (t) = Ae−16λt = Ae−4(n+ 1

2
)2π2

t so the general solution is

u(x, t) =

∞
∑

n=0

Ane
−4(n+ 1

2
)2π2

t sin
(

(n + 1
2 )

πx

2

)

where

u(x, 0) = x =

∞
∑

n=0

An sin
(

(n+ 1
2)
πx

2

)

.

together with orthogonality gives

An =

∫ 2

0
x sin

(

(n+ 1
2)
πx

2

)

dx

∫ 2

0
sin2

(

(n+ 1
2)
πx

2

)

dx
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Problem 8: Solve the following initial boundary value problem for u(x, t), which models vibration of
a taut string.

utt = 9uxx, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = sin(πx)− 5 sin(3πx), ut(x, 0) = 0, 0 ≤ x ≤ 1

The standard solution for the wave equation gives

u(x, t) =

∞
∑

n=1

[

An cos(n3πt) +Bn sin(n3πt)
]

sin(nπx)

where

ut(x, 0) = 0 =

∞
∑

n=1

[

Bn · n3π
]

sin(nπx)

gives Bn = 0 for all n = 1, 2, . . . and

u(x, t) = sin(πx)− 5 sin(3πx) =

∞
∑

n=1

An sin(nπx)

gives A1 = 1, A3 = −5 and An = 0 for all other n 6= 1, 3.

Therefore the solution is

u(x, t) = cos(3πt) sin(πx)− 5 cos(9πt) sin(3πx)
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