MATH 3160
 Differential Equations 2

Instructor: Richard Taylor

FINAL EXAM
SOLUTIONS

5 Dec. 2019 14:00-17:00

Instructions:

1. Read the whole exam before beginning.
2. Make sure you have all 10 pages.
3. Organization and neatness count
4. Justify your answers.
5. Clearly show your work.
6. You may use the backs of pages for calculations.
7. You may use an approved formula sheet.
8. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		10
2		10
3		10
4		10
5		8
6		10
7		10
8		8
9		84
TOTAL:		

Problem 1: Consider the differential equation $y^{\prime \prime}+k^{2} x^{2} y=0$ in which k is a constant.
(a) Is $x=0$ an ordinary point or a singular point for this equation? Explain.
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$; coefficients $P(x)=0$ and $Q(x)=k^{2} x^{2}$ are both analytic functions (polynomials) so every point is an ordinary point. So, in particular, $x=0$ is an ordinary point.
(b) Derive a set of recurrence relations for the coefficients a_{n} in the power series $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ such that y is a solution of the given equation.

$$
\left.\left.\begin{array}{rl}
y=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} . \\
(\text { sub into DE }) & \Longrightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} k^{2} x^{n+2}=0 \\
(\text { re-index }) & \Longrightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=4}^{\infty} a_{n-4} k^{2} x^{n-2}=0
\end{array}\right\} \begin{array}{l}
\text { (pull out leading terms) } \Longrightarrow 2 a_{2}+6 a_{3} x+\sum_{n=4}^{\infty}\left[n(n-1) a_{n}+a_{n-4} k^{2}\right] x^{n-2}=0
\end{array}\right\} \begin{aligned}
& a_{2}=0 \\
& a_{3}=0 \\
& a_{n}=-\frac{k^{2} a_{n-4}}{n(n-1)}(n=4,5, \ldots)
\end{aligned}
$$

(c) The general solution of this equation can be expressed as a linear combination $y=c_{1} y_{1}+c_{2} y_{2}$. Solve your recurrence relation find the solutions y_{1} and y_{2}, expressed as power series about $x=0$.

$$
\begin{gathered}
a_{2}=a_{3}=a_{6}=a_{7}=\cdots=c_{2 m+2}=c_{2 m+3}=0 \quad(m=0,1,2, \ldots) \\
a_{4}=-\frac{k^{2} a_{0}}{4 \cdot 3}, \quad a_{8}=-\frac{k^{2} a_{4}}{8 \cdot 7}=\frac{k^{4} a_{0}}{8 \cdot 7 \cdot 4 \cdot 3}, \quad a_{12}=-\frac{k^{2} a_{8}}{12 \cdot 11}=-\frac{k^{6} a_{0}}{12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3} \\
a_{5}=-\frac{k^{2} a_{1}}{5 \cdot 4}, \quad a_{9}=-\frac{k^{2} a_{5}}{9 \cdot 8}=\frac{k^{4} a_{1}}{9 \cdot 8 \cdot 5 \cdot 4}, \quad a_{13}=-\frac{k^{2} a_{9}}{13 \cdot 12}=-\frac{k^{6} a_{1}}{13 \cdot 12 \cdot 9 \cdot 8 \cdot 5 \cdot 4} \\
y(x)=a_{0} \underbrace{\left[1-\frac{k^{2} x^{4}}{4 \cdot 3}+\frac{k^{4} x^{8}}{8 \cdot 7 \cdot 4 \cdot 3}-\frac{k^{6} x^{12}}{12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3}+\cdots\right]}_{y_{0}(x)} \\
+a_{1} \underbrace{\left[x-\frac{k^{2} x^{5}}{5 \cdot 4}+\frac{k^{4} x^{9}}{9 \cdot 8 \cdot 5 \cdot 4}-\frac{k^{6} x^{13}}{13 \cdot 12 \cdot 9 \cdot 8 \cdot 5 \cdot 4}+\cdots\right]}_{y_{1}(x)}
\end{gathered}
$$

Two linearly independent solutions are the functions y_{0}, y_{1} above.

Problem 2: Consider the differential equation $3 x^{2} y^{\prime \prime}+2 x y^{\prime}+x^{2} y=0$.
(a) Is $x=0$ an ordinary point or a singular point for this equation? Explain.

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \text { with coefficients } P(x)=\frac{2}{3 x} \text { and } Q(x)=\frac{1}{3} .
$$

We see that $x=0$ is a singular point since P is singular (not analytic) at $x=0$.
We have that $x P(x)=\frac{2}{3}$ and $x^{2} Q(x)=\frac{1}{3} x^{2}$ are both analytic functions (polynomials) so $x=0$ is a regular singular point.
(b) Find values of r such that a solution of this equation can we written as $y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$.

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2} .
$$

$$
\begin{aligned}
(\text { sub into } \mathrm{DE}) & \Longrightarrow \sum_{n=0}^{\infty} 3(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r+2}=0 \\
(\text { re-index }) & \Longrightarrow \sum_{n=0}^{\infty} 3(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r}+\sum_{n=2}^{\infty} a_{n-2} x^{n+r}=0
\end{aligned}
$$

Pull out leading ($n=0, n=1$) terms:

$$
\begin{aligned}
\Longrightarrow[3 r(r-1)+2 r] a_{0} x^{r}+ & {[3(r+1) r+2(1+r)] a_{1} x^{1+r} } \\
& +\sum_{n=2}^{\infty}\left[3(n+r)(n+r-1) a_{n}+2(n+r) a_{n}+a_{n-2}\right] x^{n+r}=0 .
\end{aligned}
$$

Leading term gives the "indicial equation":

$$
0=3 r(r-1)+2 r=r(3 r-1) \Longrightarrow r=0 \text { or } r=\frac{1}{3}
$$

(c) For the largest of your values of r, find the first three non-zero terms in the corresponding series solution of the differential equation.

$$
3(n+r)(n+r-1) a_{n}+2(n+r) a_{n}+a_{n-2}=0 \Longrightarrow a_{n}=\frac{-a_{n-2}}{(n+r)[3(n+r-1)+2]}
$$

case $r=\frac{1}{3}$:

$$
a_{n}=\frac{-a_{n-2}}{\left(n+\frac{1}{3}\right)\left[3\left(n+\frac{1}{3}-1\right)+2\right]}=\frac{-a_{n-2}}{\left(n+\frac{1}{3}\right)(3 n)}=\frac{-a_{n-2}}{n(3 n+1)}
$$

The coefficient of x^{1+r} becomes $4 a_{1}$ so $a_{1}=0$, hence $0=a_{1}=a_{3}=a_{5}=\cdots$ and

$$
\begin{aligned}
& a_{2}=-\frac{a_{0}}{2 \cdot 7}, \quad a_{4}=-\frac{a_{2}}{4 \cdot 13}=\frac{a_{0}}{2 \cdot 4 \cdot 7 \cdot 13} \\
& \Longrightarrow y(x)=x^{1 / 3}\left[a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots\right] \\
&=a_{0} x^{1 / 3}\left[1-\frac{x^{2}}{2 \cdot 7}+\frac{x^{4}}{2 \cdot 4 \cdot 7 \cdot 13}+\cdots\right]
\end{aligned}
$$

Problem 3: Let \mathcal{L} denote the Laplace transform. Evaluate (and simplify) the following:
(a) $\quad F(s)=\mathcal{L}\left\{t^{-1 / 2}\right\} \quad(s>0)$
(Hint: It might help to substitute $u=\sqrt{s t}$. Also $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.)

$$
\begin{aligned}
F(s)=\mathcal{L}\left\{t^{-1 / 2}\right\} & =\int_{0}^{\infty} e^{-s t} d t \quad\left(u=\sqrt{s t}=s^{1 / 2} t^{1 / 2}, d u=\frac{1}{2} t^{-1 / 2} s^{1 / 2} d t\right) \\
& =\int_{0}^{\infty} e^{-u^{2}} \frac{2 d u}{\sqrt{s}} \\
& =\frac{2}{\sqrt{s}} \int_{0}^{\infty} e^{-u^{2}} d u \\
& =\frac{2}{\sqrt{s}} \frac{\sqrt{\pi}}{2}=\sqrt{\frac{\pi}{s}}
\end{aligned}
$$

(b) $\quad f(t)=\mathcal{L}^{-1}\left\{\frac{7 s^{2}+3 s+16}{(s+1)\left(s^{2}+4\right)}\right\}$

Partial fractions expansion:

$$
\frac{7 s^{2}+3 s+16}{(s+1)\left(s^{2}+4\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4}=\frac{A\left(s^{2}+4\right)+(B s+C)(s+1)}{(s+1)\left(s^{2}+4\right)}
$$

At $s=-1$ in the numerator this gives

$$
20=5 A \Longrightarrow A=4
$$

Matching coefficients of s^{2} gives

$$
7=A+B \Longrightarrow B=3
$$

Matching coefficients of s^{0} gives

$$
16=4 A+C \Longrightarrow C=0
$$

Thus:

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left\{\frac{4}{s^{2}+1}+\frac{3 s}{s^{2}+4}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2^{2}}\right\} \\
& =4 e^{-t}+3 \cos (2 t)
\end{aligned}
$$

Problem 4: Let $\delta(t)$ denote the Dirac delta function. Find the solution $y(t)$ of the following initial value problem:

$$
y^{(4)}-y=\delta(t-1), \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=0
$$

Laplace transform both sides:

$$
\begin{gathered}
\left(s^{4} Y-0\right)-Y=e^{-s} \Longrightarrow Y(s)=\frac{e^{-s}}{s^{4}-1} \\
\Longrightarrow y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{4}-1} e^{-s}\right\}=f(t-1) u(t-1)
\end{gathered}
$$

where

$$
f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{4}-1}\right\}
$$

Partial fractions expansion:

$$
\begin{aligned}
\frac{1}{s^{4}-1} & =\frac{1}{\left(s^{2}+1\right)\left(s^{2}-1\right)}=\frac{1}{\left(s^{2}+1\right)(s+1)(s-1)} \\
& =\frac{A s+B}{s^{2}+1}+\frac{C}{s+1}+\frac{D}{s-1}=\frac{(A s+B)\left(s^{2}-1\right)+C\left(s^{2}+1\right)(s-1)+D\left(s^{2}+1\right)(s+1)}{s^{4}-1}
\end{aligned}
$$

Some convenient values of s in the numerator give:

$$
\begin{array}{ll}
s=1: & 1=4 D \Longrightarrow D=\frac{1}{4} \\
s=-1: & 1=-4 C \Longrightarrow C=-\frac{1}{4}
\end{array}
$$

Matching coefficients of s^{3} gives

$$
0=A+C+D \Longrightarrow A=0
$$

Matching coefficients of s^{2} gives

$$
0=B-C+D \Longrightarrow B=-\frac{1}{2}
$$

Thus

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left\{\frac{-\frac{1}{2}}{s^{2}+1}+\frac{-\frac{1}{4}}{s+1}+\frac{\frac{1}{4}}{s-1}\right\} \\
& =-\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}-\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}+\frac{1}{4} \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} \\
& =-\frac{1}{2} \sin t-\frac{1}{4} e^{-t}+\frac{1}{4} e^{t}
\end{aligned}
$$

and so

$$
\begin{aligned}
y(t) & =f(t-1) u(t-1) \\
& =\left[-\frac{1}{2} \sin (t-1)-\frac{1}{4} e^{-(t-1)}+\frac{1}{4} e^{t-1}\right] u(t-1) \\
& =\frac{1}{2}[\sinh (t-1)-\sin (t-1)] u(t-1)
\end{aligned}
$$

$/ 8$ Problem 5: Consider the function $f(x)= \begin{cases}0, & -\pi \leq x<0 \\ x, & 0 \leq x \leq \pi .\end{cases}$
(a) Find the Fourier series for $f(x)$.
f if has period $2 p$ with $p=\pi$. Thus

$$
f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos (n x)+B_{n} \sin (n x)
$$

where

$$
\begin{aligned}
A_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x \quad \text { int. by parts: } \begin{cases}u=x & d v=\cos n x d x \\
d u=d x & v=\frac{1}{n} \sin n x\end{cases} \\
& =\frac{1}{\pi}\left[\left.\frac{x}{n} \sin n x\right|_{0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x\right] \\
& =\frac{1}{\pi}\left[0+\left.\frac{1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}\right]=\frac{(-1)^{n}-1}{n^{2} \pi}
\end{aligned}
$$

except

$$
A_{0}=\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{1}{\pi} \frac{\pi^{2}}{2}=\frac{\pi}{2}
$$

and

$$
\begin{aligned}
B_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x \quad \text { int. by parts: } \begin{cases}u=x & d v=\sin n x d x \\
d u=d x & v=-\frac{1}{n} \cos n x\end{cases} \\
& =\frac{1}{\pi}\left[-\left.\frac{x}{n} \cos n x\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos (n x) d x\right] \\
& =\frac{1}{\pi}\left[-\frac{\pi}{n} \cos n \pi+\left.\frac{1}{n^{2}} \sin (n x)\right|_{0} ^{\pi}\right]=\frac{-(-1)^{n}}{n}
\end{aligned}
$$

Thus

$$
f(x)=\frac{\pi}{4}+\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2} \pi} \cos n x-\frac{(-1)^{n}}{n} \sin n x
$$

(b) Sketch the graph of the function the series converges to over the interval $[-3 \pi, 3 \pi]$.

Problem 6: Consider the following initial boundary value problem for a function $u(x, t)$:

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}, \quad 0<x<\pi \\
u_{x}(0, t)=u(\pi, t)=0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

(a) Find the solution $u(x, t)$.

$$
\begin{gathered}
u(x, t)=X(x) T(t) \Longrightarrow X T^{\prime}=X^{\prime \prime} T \Longrightarrow \frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=\lambda \quad \text { (const.) } \\
\Longrightarrow\left\{\begin{array}{l}
X^{\prime \prime}-\lambda X=0, \quad X^{\prime}(0)=X(\pi)=0 \\
T^{\prime}=\lambda T
\end{array}\right.
\end{gathered}
$$

With these boundary conditions, the cases $\lambda \geq 0$ give $X(x)=0$ (trivial solution).
The case $\lambda=-\alpha^{2}<0$ gives

$$
X(x)=A \cos (\alpha x)+B \sin (\alpha x)
$$

$$
\begin{gathered}
X^{\prime}(0)=0=A \cos (0) \Longrightarrow A=0 \\
X(\pi)=0=B \cos (\alpha \pi) \Longrightarrow \alpha \pi=\frac{\pi}{2}+n \pi \Longrightarrow \alpha=n+\frac{1}{2} \quad(n=0,1,2, \ldots) \\
\Longrightarrow X_{n}(x)=\cos \left(\left(n+\frac{1}{2}\right) x\right) \quad(n=0,1,2, \ldots) \\
T^{\prime}=-\alpha^{2} T=-\left(n+\frac{1}{2}\right)^{2} T \Longrightarrow T_{n}(t)=C e^{-\left(n+\frac{1}{2}\right)^{2} t} .
\end{gathered}
$$

By linearity, the general solution is an arbitrary linear combination

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-\left(n+\frac{1}{2}\right)^{2} t} \cos \left(\left(n+\frac{1}{2}\right) x\right) .
$$

Imposing the initial conditions gives

$$
u(x, 0)=f(x)=\sum_{n=0}^{\infty} A_{n} \cos \left(\left(n+\frac{1}{2}\right) x\right) .
$$

The functions $X_{n}(x)$ are solutions of a regular Sturm-Liouville problem and so are orthogonal (with respect to the usual L^{2} inner product). Thus

$$
A_{n}=\frac{\left\langle f, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}=\frac{\int_{0}^{\pi} f(x) \cos \left(\left(n+\frac{1}{2}\right) x\right) d x}{\int_{0}^{\pi} \cos ^{2}\left(\left(n+\frac{1}{2}\right) x\right) d x}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos \left(\left(n+\frac{1}{2}\right) x\right) d x
$$

(b) Consider the particular case where $f(x)=\left\{\begin{array}{ll}1, & 0<x<\frac{\pi}{2} \\ 0, & \frac{\pi}{2}<x<\pi .\end{array}\right.$ For several values of $t>0$, sketch the graph of the solution (as a function of x only)

For $t \gg \frac{4}{9}$ the first term in the series dominates and so $u(x, t) \sim A_{0} e^{-t / 4} \cos (x / 2)$.

Problem 7: Find the solution $u(x, y)$ of the following boundary value problem:

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0, \quad 0<x<1, \quad 0<y<2 \\
u(x, 0)=\sin (2 \pi x) \\
u(x, 2)=0=u(0, y)=u(1, y)
\end{array}\right.
$$

$$
\begin{gathered}
u(x, y)=X(x) Y(y) \Longrightarrow X^{\prime \prime} Y+X Y^{\prime \prime}=0 \Longrightarrow \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=\lambda \quad \text { (const.) } \\
\Longrightarrow \begin{cases}X^{\prime \prime}-\lambda X=0, & X(0)=X(1)=0 \\
Y^{\prime \prime}+\lambda^{2} Y=0, & Y(2)=0\end{cases}
\end{gathered}
$$

The cases $\lambda \geq 0$ gives $X(x)$ (trivial solution).
The cases $\lambda=-\alpha^{2}<0$ gives

$$
\begin{gathered}
X(x)=A \cos (\alpha x)+B \sin (\alpha x) \\
X(0)=0=A \cos 0 \Longrightarrow A=0 \\
X(1)=0=B \sin \alpha \Longrightarrow \alpha=n \pi \quad(n=1,2, \ldots) \\
\Longrightarrow X_{n}(x)=\sin (n \pi x) \quad(n=1,2, \ldots) \\
Y^{\prime \prime}-\lambda Y=0 \Longrightarrow Y^{\prime \prime}-(n \pi)^{2} Y=0 \Longrightarrow Y(y)=C e^{n \pi y}+D e^{-n \pi y} \\
Y(2)=0=C e^{n 2 \pi}+D e^{-n 2 \pi} \Longrightarrow D=-C e^{n 4 \pi} \\
\Longrightarrow Y_{n}(y)=e^{n \pi y}+e^{n 4 \pi} e^{-n \pi y}=e^{n \pi y}+e^{n \pi(4-y)}
\end{gathered}
$$

By linearity, the general solution is an arbitrary linear combination

$$
u(x, y)=\sum_{n=0}^{\infty} A_{n}\left[e^{n \pi y}-e^{n \pi(4-y)}\right] \sin (n \pi x)
$$

Imposing the final boundary condition gives

$$
\begin{gathered}
u(x, 0)=\sin (2 \pi x)=\sum_{n=0}^{\infty} A_{n}\left[1-e^{n 4 \pi}\right] \sin n x \\
\Longrightarrow 1=A_{2}\left[1-e^{2 \cdot 4 \pi}\right] \Longrightarrow A_{2}=\left[1-e^{2 \cdot 4 \pi}\right]^{-1}, \quad \text { all other } A_{n}=0 \\
\Longrightarrow u(x, y)=\frac{e^{2 \pi y}-e^{2 \pi(4-y)}}{1-e^{8 \pi}} \sin (2 \pi x)
\end{gathered}
$$

Problem 8: Consider the following Sturm-Liouville problem for a function $\phi(x)$:

$$
\left\{\begin{array}{l}
-\phi^{\prime \prime}=\lambda \phi, \quad 0<x<1 \\
\phi(0)=\phi^{\prime}(1)=0
\end{array}\right.
$$

(a) Find the eigenvalues λ_{n} and corresponding eigenfunctions $\phi_{n}(x)(n=1,2, \ldots)$.

$$
\phi^{\prime \prime}+\lambda \phi=0
$$

Case $\lambda=-\alpha^{2}<0$:

$$
\begin{aligned}
& \phi^{\prime \prime}-\alpha^{2} \phi=0 \Longrightarrow \phi(x)=A e^{\alpha x}+B e^{-\alpha x} \\
&\left\{\begin{array}{l}
\phi(0)=0=A+B \\
\phi^{\prime}(1)=0=\alpha A e^{\alpha}-\alpha B e^{-\alpha}
\end{array} \Longrightarrow A=B=0 \Longrightarrow \phi(x)=0 \quad\right. \text { (trivial solution). }
\end{aligned}
$$

Case $\lambda=0$:

$$
\left\{\begin{array}{l}
\phi(0)=0=B \\
\phi^{\prime}(1)=0=A
\end{array} \Longrightarrow A=B=0 \Longrightarrow \phi(x)=0 \quad\right. \text { (trivial solution). }
$$

$\underline{\text { Case } \lambda=\alpha^{2}>0}:$

$$
\begin{gathered}
\phi^{\prime \prime}+\alpha^{2} \phi=0 \Longrightarrow \phi(x)=A \cos \alpha x+B \sin \alpha x \\
\phi(0)=0=A \cos 0 \Longrightarrow A=0 \\
\phi^{\prime}(1)=0=\alpha B \cos \alpha \Longrightarrow \alpha=\left(n+\frac{1}{2}\right) \pi \quad(n=0,1,2, \ldots)
\end{gathered}
$$

Therefore,

$$
\begin{array}{|ll}
\hline \text { eigenfunctions: } & \phi_{n}(x)=\sin \left(\left(n+\frac{1}{2}\right) \pi x\right) \\
\text { eigenvalues: } & \lambda_{n}=\left(n+\frac{1}{2}\right)^{2} \pi^{2} \\
\hline
\end{array}
$$

(b) Give an orthogonality relation for the eigenfunctions.

In self-adjoint form the DE is

$$
\frac{d}{d x}\left[\phi^{\prime}(x)\right]+\lambda \phi=0
$$

which is a regular Sturm-Liouville problem (with $p(x)=r(x)=1$ in our standard notation). Therefore the eigenfunctions are orthogonal, i.e.

$$
\left\langle\phi_{m}, \phi_{n}\right\rangle=0 \text { if } m \neq n
$$

with

$$
\left\langle\phi_{m}, \phi_{n}\right\rangle=\int_{0}^{1} \phi_{m}(x) \phi_{n}(x) d x
$$

(c) For a given function $f(x)$ on $[0,1]$, suppose we wish to express f as a series

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

(a "generalized Fourier series") where the $\phi_{n}(x)$ are the eigenfunctions of this Sturm-Liouville problem. Give a formula for the coefficients c_{n} in this series.

By orthogonal project of f onto ϕ_{n} :

$$
c_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}=\frac{\int_{0}^{1} f(x) \sin \left(\left(n+\frac{1}{2}\right) \pi x\right) d x}{\int_{0}^{1} \sin ^{2}\left(\left(n+\frac{1}{2}\right) \pi x\right) d x}=2 \int_{0}^{1} f(x) \sin \left(\left(n+\frac{1}{2}\right) \pi x\right) d x
$$

Problem 9: The following initial boundary value problem models the time evolution of the temperature $u(r, \theta, t)$ in a circular plate with insulated boundary:

$$
\left\{\begin{array}{l}
u_{t}=\nabla^{2} u, \quad 0 \leq r<1 \\
\left.\frac{\partial u}{\partial r}\right|_{r=1}=0 \\
u(r, \theta, 0)=f(r)
\end{array}\right.
$$

It is safe to assume that $u(r, \theta, t)=u(r, t)$ is independent of θ.
(a) Formulate the eigenvalue problem that arises in the solution of this problem by separation of variables. (You do not need to find the solution $u(r, t)$.)

$$
\begin{aligned}
u(r, t)=R(r) T(t) \Longrightarrow R T^{\prime}= & \left(R^{\prime \prime}+\frac{1}{r} R^{\prime}\right) T \Longrightarrow \frac{T^{\prime}}{T}=\frac{R^{\prime \prime}+\frac{1}{r} R^{\prime}}{R}=-\lambda \quad \text { (const.) } \\
& \Longrightarrow r R^{\prime \prime}+R^{\prime}+\lambda r R=0
\end{aligned}
$$

In self-adjoint form:

$$
\Longrightarrow\left\{\begin{array}{l}
\frac{d}{d r}\left(r R^{\prime}\right)+\lambda r R=0 \\
R^{\prime}(1)=0 \\
R(0) \text { is finite. (Or better: } R^{\prime}(0)=0 \text { by symmetry) }
\end{array}\right.
$$

(b) What are the eigenvalues?
/3

With $\lambda=\alpha^{2}$ the DE is a Bessel equation of order 0 , with general solution

$$
R(r)=c_{1} J_{0}(\alpha r)+c_{2} Y_{0}(\alpha r)
$$

The boundary condition at $r=0$ requires $c_{2}=0$. The boundary condition at $r=1$ gives

$$
R^{\prime}(1)=0=\alpha c_{1} J_{0}^{\prime}(\alpha) \Longrightarrow \alpha \text { is a root of } J_{0}^{\prime}
$$

Thus the eigenvalues are $\lambda_{n}=\alpha_{n}^{2}$ where α_{n} is the nth zero of J_{0}^{\prime} (of which there are infinitely many).

