MATH 316: Quiz #1 — SOLUTIONS
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Problem 1: Find the radius of convergence of the power series f(z) = Z (T;l’)'
n)!
n=0
Ratio test:
Dt/ (2 2)! 1) (2n)! n+1 1
L= lim |[EDR/CrE D, (e DU @0 e nt —0<1

So the radius of convergence is R = oo (i.e. the series converges for all x).

Problem 2: Find two power series solutions (about z¢ = 0) of the differential equation y” + 2%y = 0.

Since zg = 0 is an ordinary point for this DE we can assume a solution of the form

o0 o0 o0
y= E "t = Y = E nepz" "l = = g n(n —1)epx n=2
n=0 n=1 n=2

Substitute this into the DE:
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and re-index the sums:
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Z(n +2)(n+ 1)cppox™ + Z Cn—ox" =0
n=0 n=2

0
= 2¢9 + 6c3x + Z[(n +2)(n+ 1)cpt2 + cp_2]z™ =0
n=2

Every power series coefficient must be zero, which gives ¢o = ¢3 = 0 and the recursion relation

c - &2 i equivalently ¢, = o
T+ 2)(n+1) " an—1)
The recursion relation gives co = c3 =cg =cy =ci9o =c11 =+~ =0 and
Cp = ——— Cr — ———
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So the general solution is
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y1(z) y2 ()

Clearly, each of y;(x) and ya(x) is a power series solution of the given DE.
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