
MATH 316

Differential Equations II

Instructor: Richard Taylor

MIDTERM EXAM #2

SOLUTIONS

27 March 2008 16:30–18:20

Instructions:

1. Read all instructions carefully.

2. Read the whole exam before beginning.

3. Make sure you have all 5 pages.

4. Organization and neatness count.

5. You must clearly show your work to receive full credit.

6. You may use the backs of pages for calculations.

7. You may use an approved calculator.

problem grade out of

1 10

2 10

3 10

4 10

total: 40
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Problem 1: Consider the following Sturm-Liouville problem.

y′′ + λy = 0

y(0) = 0

y′(1) = 0

(a) Find the eigenvalues λn and the corresponding eigenfunctions yn for this problem.
/7

3 cases: i) λ = −α2 < 0 =⇒ y = Aeαx + Be−αx

{

y(0) = 0 =⇒ A + B = 0

y′(1) = 0 =⇒ αAeα − αBe−α = 0
=⇒ A = B = 0 =⇒ y(x) = 0

ii) λ = 0 =⇒ y = Ax + B
{

y(0) = 0 =⇒ B = 0

y′(1) = 0 =⇒ A = 0
=⇒ y(x) = 0

iii) λ = α2 > 0 =⇒ y = A cos αx + B sin αx
{

y(0) = 0 =⇒ A = 0

y′(1) = 0 =⇒ αB cos α = 0
=⇒ α =

π

2
+ nπ; n = 0, 1, 2, . . .

Therefore the eigenvalues are

λn = α2 = (n + 1

2
)2π2; n = 0, 1, 2, . . .

and the corresponding eigenfunctions

yn(x) = sin
(

(n + 1

2
)πx

)

(b) Is λ = 0 an eigenvalue for this problem? If so, find the corresponding eigenfunction; if not, explain why.
/3

No. For λ = 0 to be an eigenvalue, there would have to be non-trivial solutions of the boundary-value
problem

{

y′′ + (0)y = 0

y(0) = y′(1) = 0.

As already shown above, this problem has only the trivial solution, hence λ = 0 is not an eigenvalue.
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Problem 2: Consider the Legendre polynomials Pn(x). Rodrigues’ formula provides the following explicit
representation:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

(a) Find P0(x), P1(x) and P2(x).
/2

P0(x) = 1

P1(x) =
1

2

d

dx
(x2 − 1) =

1

2
(2x) = x

P2(x) =
1

8

d2

dx2
(x2 − 1)2 =

1

8

d

dx
(4x3 − 4x) =

1

8
(12x2 − 4) =

1

2
(3x2 − 1)

(b) Show that the set of functions {P0, P1, P2} is orthogonal with respect to 〈f, g〉 =

∫

1

−1

f(x)g(x) dx.
/4

We have:

〈P0, P1〉 =

∫

1

−1

(1) · (x) dx = 1

2
x2

∣

∣

∣

1

−1

= 1

2
− 1

2
= 0

〈P0, P2〉 =

∫

1

−1

(1) · 1

2
(3x2 − 1) dx = 1

2
(x3 − x)

∣

∣

∣

1

−1

= 0 − 0 = 0

〈P1, P2〉 =

∫

1

−1

(x) · 1

2
(3x2 − 1) dx = 1

2

∫

1

−1

3x3 − x dx = 1

2
( 3

4
x4 − 1

2
x2)

∣

∣

∣

1

−1

= 1

8
− 1

8
= 0

Thus {P0, P1, P2} is an orthogonal set, since 〈Pi, Pj〉 = 0 ∀i, j = 0, 1, 2, i 6= j.

(c) The infinite set {P0, P1, P2, . . .} is an orthogonal basis for the vector space of continuous functions on [−1, 1].
That is, for any given continuous f(x) on [−1, 1], we can expand f(x) in a series

f(x) =

∞
∑

n=0

cnPn(x).

Find the first three terms in this expansion for the function f(x) = x3.
/4

As for any orthogonal basis, for any m = 0, 1, 2, . . . we have

x3 =
∑

cnPn(x) =⇒ 〈x3, Pm〉 =
〈

∑

cnPn, Pm

〉

=
∑

cn〈Pn, Pm〉 = cm〈Pm, Pm〉

=⇒ cm =
〈x3, Pm〉

〈Pm, Pm〉

so

c0 =
〈x3, P0〉

〈P0, P0〉
=

∫

1

−1
(x3) · (1) dx

∫

1

−1
(1)2 dx

= 0 (by oddness)

c1 =
〈x3, P1〉

〈P1, P1〉
=

∫

1

−1
(x3) · (x) dx

∫

1

−1
(x)2 dx

=

1

5
x5

∣

∣

∣

1

−1

1

3
x3

∣

∣

∣

1

−1

=
2/5

2/3
=

3

5

c2 =
〈x3, P2〉

〈P2, P2〉
=

∫

1

−1
(x3) · 1

2
(3x2 − 1) dx

∫

1

−1

(

1

2
(3x2 − 1)

)2
dx

=
1

2

∫

1

−1
(3x5 − x3) dx

∫

1

−1

1

4
(3x2 − 1)2 dx

= 0 (by oddness)

(You can easily check that in fact x3 = 3

5
P1(x) + 2

5
P3(x).)
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Problem 3: Find the Fourier series for the function

f(x) =

{

0 if − 1 ≤ x < 0

x2 if 0 ≤ x < 1

and sketch the graph, on the interval [−3, 3], of the function to which this Fourier series converges.

We have

f(x) =
a0

2
+

∞
∑

n=1

an cos nπx +

∞
∑

n=1

bn sin nπx

where

a0 =

∫

1

−1

f(x) dx =

∫

1

0

x2 dx = 1

3
x3

∣

∣

∣

1

0

=
1

3

an =

∫

1

−1

f(x) cos nπx dx =

∫

1

0

x2 cos nπx dx

=
x2

nπ
sinnπx

∣

∣

∣

∣

1

0

−
2

nπ

∫

1

0

x sin nπx dx

= 0 − 0 +
x

n2π2
cos nπx

∣

∣

∣

∣

1

0

−
2

n2π2

∫

1

0

cos nπx dx

=
(−1)n

n2π2
− 0 −

2

n3π3
sin nπx

∣

∣

∣

∣

1

0

=
(−1)n

n2π2

bn =

∫

1

−1

f(x) sinnπx dx =

∫

1

0

x2 sin nπx dx

= −
x2

nπ
cos nπx

∣

∣

∣

∣

1

0

+
2

nπ

∫

1

0

x cos nπx dx

= −
(−1)n

nπ
+

2x

n2π2
sin nπx

∣

∣

∣

∣

1

0

−
2

n2π2

∫

1

0

sinnπx dx

= −
(−1)n

nπ
+ 0 − 0 +

2

n3π3
cos nπx

∣

∣

∣

∣

1

0

= −
(−1)n

nπ
+

2

n3π3

[

(−1)n − 1
]

so the Fourier series for f(x) is

f(x) =
1

6
+

∞
∑

n=1

(−1)n

n2π2
cos nπx +

∞
∑

n=1

( 2

n3π3

[

(−1)n − 1
]

−
(−1)n

nπ

)

sin nπx

The graph of this Fourier series is shown below.

x

y

−3 −2 −1 1 2 3
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Problem 4: Use separation of variables to find the general solution u(x, t) of the boundary value problem

∂2u

∂x2
=

∂u

∂t
u(0, t) = u(1, t) = 0.

u(x, t) = X(x)T (t) =⇒ X ′′T = XT ′

=⇒
X ′′

X
=

T ′

T
= λ

As we have seen many times before, the Sturm-Liouville problem for X(x) gives:

{

X ′′ − λX = 0

X(0) = X(1) = 0
=⇒

{

λn = −n2π2; n = 1, 2, . . .

X(x) = An sinnπx

The DE for T (t) gives:

T ′ = λnT =⇒ T (t) = Ceλnt = Ce−n2π2t

Putting these together we have a family of linearly independent solutions:

u(x, t) = X(x)T (t) = Bne−n2π2t sin nπx

so the most general solution is a superposition:

u(x, t) =

∞
∑

n=1

Bne−n2π2t sin nπx

where B1, B2, . . . ∈ R are arbitrary constants.
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