

MATH 316 Differential Equations II

Instructor: Richard Taylor

FINAL EXAM SOLUTIONS

18 April 2008 14:00-17:00

Instructions:

- 1. Read all instructions carefully.
- 2. Read the whole exam before beginning.
- 3. Make sure you have all 9 pages.
- 4. Organization and neatness count.
- 5. You must clearly show your work to receive full credit.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved formula sheet.
- 8. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
TOTAL:		80

Problem 1: Consider the following differential equation for y(x):

$$(1+x^2)y'' + 6xy' + 6y = 0$$

(a) Explain why x = 0 is an ordinary point (i.e. not a singular point) for this equation.

We have y'' + P(x)y' + Q(x)y = 0 where $P(x) = 6x/(1+x^2)$ and $Q(x) = 6/(1+x^2)$ are both analytic at x = 0, hence x = 0 is an ordinary point.

(b) Find the general solution of this equation in terms of power series.

Assume:

$$y = \sum_{n=0}^{\infty} c_n x^n \implies y' = \sum_{n=1}^{\infty} n c_n x^{n-1} \implies y'' = \sum_{n=2}^{\infty} n(n-1) c_n x^{n-2}$$

Subbing into the DE:

$$\sum_{n} n(n-1)c_n x^{n-2} + \sum_{n} n(n-1)c_n x^n + 6\sum_{n} nc_n x^n + 6\sum_{n} c_n x^n = 0$$

and re-indexing:

$$\sum_{0} (n+2)(n+1)c_{n+2}x^{n} + \sum_{2} n(n-1)c_{n}x^{n} + 6\sum_{1} nc_{n}x^{n} + 6\sum_{0} c_{n}x^{n} = 0$$

$$\implies 2c_{2} + 6c_{3}x + 6c_{1}x + 6c_{0} + 6c_{1}x + \sum_{2} \left[(n+2)(n+1)c_{n+2} + n(n-1)c_{n} + 6nc_{n} + 6c_{n} \right]x^{n} = 0$$

gives the recurrence relations:

$$\begin{cases} 2c_2 + 6c_0 = 0 \\ 6c_3 + 12c_1 = 0 \\ (n+2)(n+1)c_{n+2} + (n+2)(n+3)c_n = 0 \end{cases} \implies c_{n+2} = -\frac{n+3}{n+1}c_n; \quad n = 2, 3, \dots$$

so that

$$c_{2} = -3c_{0} c_{3} = -2c_{1}$$

$$c_{4} = -\frac{5}{3}c_{2} = 5c_{0} c_{5} = -\frac{6}{4}c_{3} = 3c_{1}$$

$$c_{6} = -\frac{7}{5}c_{4} = -7c_{0} c_{7} = -\frac{8}{6}c_{5} = -4c_{1}$$

$$c_{8} = -\frac{9}{7}c_{6} = 9c_{0} c_{9} = -\frac{10}{8}c_{7} = 5c_{1}$$

$$...$$

$$c_{2k} = (-1)^{n}(2k+1)c_{0} c_{2k+1} = (-1)^{k}(k+1)c_{1}$$

and the general solution is

$$y(x) = c_0 \sum_{k=0}^{\infty} (-1)^k (2k+1)x^{2k} + c_1 \sum_{k=0}^{\infty} (-1)^k (k+1)x^{2k+1}$$

(c) Give (and justify) a lower bound on the radius of convergence for the series solution(s) in part (b).

The only singular points (i.e. values of x at which P(x) or Q(x) fail to be analytic) are $x = \pm i$. The radius of convergence for the series in (a) is therefore at least |i - 0| = 1.

Problem 2: Consider the following differential equation for y(x):

$$3x^2y'' + x(1+x)y' - y = 0$$

(a) Explain why x = 0 is a regular singular point (i.e. not an ordinary point or irregular singular point) for this equation.

We have y'' + P(x)y' + Q(x)y = 0 where P(x) = (1+x)/(2x) and $Q(x) = -1/(3x^2)$. Both P and Q are non-analytic at x = 0, so x = 0 is a singular point. Since xP(x) = (1+x)/2 and $x^2Q(x) = -1/3$ are both analytic at x = 0, x = 0 is a regular singular point.

(b) Find the value(s) of r such that this equation has a solution of the form $y(x) = x^r \sum_{n=0}^{\infty} c_n x^n$. (Do not attempt to determine the coefficients c_n .) Are there two linearly independent solutions of this form?

Assume:

$$y = \sum_{n=0}^{\infty} c_n x^{n+r} \implies y' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-1} \implies y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-2}$$

Subbing into the DE:

$$\sum_{n=0}^{\infty} 3(n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r+1} - \sum_{n=0}^{\infty} c_n x^{n+r} = 0$$

and re-indexing:

$$\sum_{0} 3(n+r)(n+r-1)c_{n}x^{n+r} + \sum_{0} (n+r)c_{n}x^{n+r} + \sum_{1} (n+r-1)c_{n-1}x^{n+r} - \sum_{0} c_{n}x^{n+r} = 0$$

$$\implies \left[3r(r-1) + r - 1 \right] c_{0}x^{r} + \sum_{1} \left[3(n+r)(n+r-1)c_{n} + (n+r)c_{n} + n + r - 1 \right) c_{n-1} - c_{n} \right] x^{n+r} = 0$$

gives the indicial equation

$$3r(r-1) + r - 1 = 0 \implies 3r^2 - 2r - 1 = 0$$

$$\implies r = \frac{2 \pm 4}{-6} = -1, \frac{1}{3}$$

Since the roots of the indicial equation do not differ by an integer, there will be two linearly independent solutions of the form $y(x) = x^{r}P(x)$ where P is a power series.

Problem 3: Solve the initial value problem

$$y'' + y = \sum_{k=1}^{\infty} \delta(t - 2k\pi), \quad y(0) = 0, \quad y'(0) = 1.$$

Simplify your solution as much as possible, and sketch the graph of the solution y(t) on the interval $[0, 6\pi]$.

Laplace transform:

$$(s^{2}Y(s) - 1) + Y(s) = \sum_{k=1}^{\infty} e^{-2k\pi s} \implies (1 + s^{2})Y(s) = 1 + \sum_{k=1}^{\infty} e^{-2k\pi s}$$
$$\implies Y(s) = \frac{1}{1 + s^{2}} + \sum_{k=1}^{\infty} e^{-2k\pi s} \frac{1}{1 + s^{2}}$$

Therefore

$$y(t) = \mathcal{L}^{-1} \{ Y(s) \}$$

$$= \sin t + \sum_{k=1}^{\infty} u(t - 2k\pi) \sin(t - 2k\pi)$$

$$= \sin t + \sum_{k=1}^{\infty} u(t - 2k\pi) \sin t$$

$$= (m+1) \sin t; \quad t \in [m2\pi, (m+1)2\pi]; \quad m = 0, 1, 2, \dots$$

Problem 4: Find the inverse Laplace transform of

$$F(s) = \frac{s+2}{(s-3)(s^2+2s+5)}$$

Write

$$F(s) = \frac{A}{s-3} + \frac{Bs+C}{s^2+2s+5}$$

$$= \frac{A(s^2+2s+5) + (Bs+C)(s-3)}{(s-3)(s^2+2s+5)}$$

$$= \frac{(A+B)s^2 + (2A-3B+C)s + (5A-3C)}{(s-3)(s^2+2s+5)} \implies \begin{cases} A+B=0\\ 2A-3B+C=1\\ 5A-3C=2 \end{cases}$$

$$s \to 3 \implies 20A=5 \implies A=\frac{1}{4} \implies B=-\frac{1}{4} \implies C=-\frac{1}{4}$$

so that

$$F(s) = \frac{1}{4} \cdot \frac{1}{s-3} - \frac{1}{4} \cdot \frac{s+1}{s^2 + 2s + 5}$$
$$= \frac{1}{4} \cdot \frac{1}{s-3} - \frac{1}{4} \cdot \frac{(s+1)}{(s+1)^2 + 2^2}$$

which gives

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{4}\mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\} - \frac{1}{4}e^{-t}\mathcal{L}^{-1}\left\{\frac{s}{s^2+2^2}\right\}$$
$$= \left[\frac{1}{4}e^{3t} - \frac{1}{4}e^{-t}\cos 2t\right]$$

Problem 5: Consider the following Sturm-Liouville problem on [0, 3]:

$$y'' + \lambda y = 0,$$
 $y'(0) = 0,$ $y'(3) = 0$

(a) Find the eigenvalues and eigenfunctions for this problem.

case
$$\lambda = -\alpha^2 < 0$$
:

$$y(x) = c_1 \cosh \alpha x + c_2 \sinh \alpha x$$

$$\begin{cases} y'(0) = 0 \\ y'(3) = 0 \end{cases} \implies c_1 = c_2 = 0 \implies \text{only the trivial solution}$$

case $\lambda = 0$:

$$u(x) = c_1 + c_2 x$$

$$\begin{cases} y'(0) = 0 \\ y'(3) = 0 \end{cases} \implies c_2 = 0 \implies y(x) = c_1$$

case $\lambda = \alpha^2 > 0$:

$$y(x) = c_1 \cos \alpha x + c_2 \sin \alpha x$$

$$\begin{cases} y'(0) = 0 \\ y'(3) = 0 \end{cases} \implies c_2 = 0; \sin 3\alpha = 0 \implies 3\alpha = n\pi$$

So the eigenvalues are

$$\lambda_n = \left(\frac{n\pi}{3}\right)^2; \quad n = 0, 1, 2, \dots$$

with corresponding eigenfunctions

$$y_n(x) = \cos\left(\frac{n\pi x}{3}\right)$$

(b) Is $\lambda = 0$ an eigenvalue for this problem? Justify your answer.

Yes. $\lambda = 0$ gives non-trivial solutions y(x) = c; the corresponding eigenfunctions are the constant functions.

Problem 6: Consider the following piecewise continuous function on [-2, 2].

$$f(x) = \begin{cases} -x, & -2 < x < 0 \\ \frac{1}{2}, & 0 < x < 2. \end{cases}$$

(a) Find the Fourier series representation of this function.

We have

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{2}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{2}\right)$$

where

$$\frac{a_0}{2} = \frac{3}{4}$$
 (average of $f(x)$, by inspection)

and

$$\begin{split} a_n &= \frac{1}{2} \int_{-2}^2 f(x) \cos\left(\frac{n\pi x}{2}\right) dx \\ &= \frac{1}{2} \int_{-2}^0 (-x) \cos\left(\frac{n\pi x}{2}\right) dx + \frac{1}{2} \int_0^2 \frac{1}{2} \cos\left(\frac{n\pi x}{2}\right) dx \\ &= -\frac{1}{2} \left[\left(\frac{2}{n\pi}\right)^2 \cos\left(\frac{n\pi x}{2}\right) + \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_{-2}^0 + \frac{1}{2} \left[\frac{1}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_0^2 \\ &= -\frac{1}{2} \left[\left(\frac{2}{n\pi}\right)^2 - \left(\frac{2}{n\pi}\right)^2 \cos(-n\pi) \right] \\ &= \frac{2}{n^2 \pi^2} \left[(-1)^n - 1 \right] \end{split}$$

$$b_{n} = \frac{1}{2} \int_{-2}^{2} f(x) \sin\left(\frac{n\pi x}{2}\right) dx$$

$$= \frac{1}{2} \int_{-2}^{0} (-x) \sin\left(\frac{n\pi x}{2}\right) dx + \frac{1}{2} \int_{0}^{2} \frac{1}{2} \sin\left(\frac{n\pi x}{2}\right) dx$$

$$= -\frac{1}{2} \left[\left(\frac{2}{n\pi}\right)^{2} \sin\left(\frac{n\pi x}{2}\right) - \frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) \right]_{-2}^{0} + \frac{1}{2} \left[-\frac{1}{n\pi} \cos\left(\frac{n\pi x}{2}\right) \right]_{0}^{2}$$

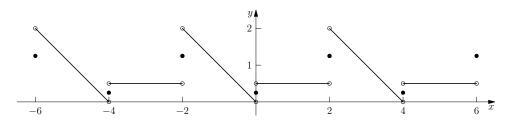
$$= -\frac{1}{2} \left[-\frac{4}{n\pi} \cos(-n\pi) \right] + \frac{1}{n2\pi} \left[1 - \cos(-n\pi) \right]$$

$$= \frac{1}{n\pi} \left[3(-1)^{n} + 1 \right]$$

so

$$f(x) = \frac{3}{4} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2} \cos\left(\frac{n\pi x}{2}\right) + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{3(-1)^n + 1}{n} \sin\left(\frac{n\pi x}{2}\right)$$

(b) Sketch the graph, on the interval [-6, 6], of the function to which the Fourier series in part (a) converges.



Problem 7: Solve the following initial boundary value problem for u(x,t), which models heat flow in a one-dimensional object with one end insulated

$$u_t = 16u_{xx},$$
 $0 < x < 2,$ $t > 0$
 $u(0,t) = 0,$ $u_x(2,t) = 0,$ $t > 0$
 $u(x,0) = x,$ $0 \le x \le 2$

Separation of variables u(x,t) = X(x)T(t) gives

$$\begin{cases} X'' + \lambda X = 0 \\ T' = -16\lambda T \end{cases}$$

which give nontrivial solutions only for $\lambda = \alpha^2 > 0$:

$$X(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x).$$

Boundary conditions X(0) = 0, X'(2) = 0 give $c_1 = 0$ and $\cos(2\alpha) = 0 \implies \alpha = (n + \frac{1}{2})\frac{\pi}{2}$, n = 0, 1, 2, ...

We have $T(t) = Ae^{-16\lambda t} = Ae^{-4(n+\frac{1}{2})^2\pi^2 t}$ so the general solution is

$$u(x,t) = \sum_{n=0}^{\infty} A_n e^{-4(n+\frac{1}{2})^2 \pi^2 t} \sin\left((n+\frac{1}{2})\frac{\pi x}{2}\right)$$

where

$$u(x,0) = x = \sum_{n=0}^{\infty} A_n \sin\left((n + \frac{1}{2})\frac{\pi x}{2}\right).$$

together with orthogonality gives

$$A_n = \frac{\int_0^2 x \sin((n + \frac{1}{2}) \frac{\pi x}{2}) dx}{\int_0^2 \sin^2((n + \frac{1}{2}) \frac{\pi x}{2}) dx}$$

Problem 8: Solve the following initial boundary value problem for u(x,t), which models vibration of a taut string.

$$u_{tt} = 9u_{xx}, \qquad 0 < x < 1, \qquad t > 0$$

 $u(0,t) = u(1,t) = 0, \qquad t > 0$
 $u(x,0) = \sin(\pi x) - 5\sin(3\pi x), \qquad u_t(x,0) = 0, \qquad 0 \le x \le 1$

The standard solution for the wave equation gives

$$u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos(n3\pi t) + B_n \sin(n3\pi t) \right] \sin(n\pi x)$$

where

$$u_t(x,0) = 0 = \sum_{n=1}^{\infty} \left[B_n \cdot n3\pi \right] \sin(n\pi x)$$

gives $B_n = 0$ for all $n = 1, 2, \ldots$ and

$$u(x,t) = \sin(\pi x) - 5\sin(3\pi x) = \sum_{n=1}^{\infty} A_n \sin(n\pi x)$$

gives $A_1 = 1$, $A_3 = -5$ and $A_n = 0$ for all other $n \neq 1, 3$.

Therefore the solution is

$$u(x,t) = \cos(3\pi t)\sin(\pi x) - 5\cos(9\pi t)\sin(3\pi x)$$