

MATH 3000 Complex Variables

Instructor: Richard Taylor

MIDTERM EXAM #2 SOLUTIONS

18 November 2013 14:30–16:20

Instructions:

- 1. Read the whole exam before beginning.
- 2. Make sure you have all 4 pages.
- $3.\,$ Organization and neatness count.
- 4. Justify your answers.
- 5. Clearly show your work.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		10
2		6
3		5
4		10
TOTAL:		31

/10

Problem 1: Consider the function $f(z) = \frac{1}{z(z^2+1)^2}$.

(a) Obtain a partial fractions expansion of f(z).

/7

We can factor f(z) as

$$f(z) = \frac{1}{z(z+i)^2(z-i)^2}$$

so the partial fractions expansion will have the form

$$f(z) = \frac{A}{z} + \frac{B}{(z+i)^2} + \frac{C}{z+i} + \frac{D}{(z-i)^2} + \frac{E}{z-i}.$$

The coefficients are given by

$$A = \lim_{z \to 0} z f(z) = \lim_{z \to 0} \frac{1}{(z^2 + 1)^2} = 1$$

$$B = \lim_{z \to -i} (z+i)^2 f(z) = \lim_{z \to -i} \frac{1}{z(z-i)^2} = \frac{1}{(-i)(-2i)^2} = -\frac{i}{4}$$

$$C = \lim_{z \to -i} \frac{d}{dz} (z+i)^2 f(z) = \lim_{z \to -i} \frac{d}{dz} \frac{1}{z(z-i)^2} = \lim_{z \to -i} -\frac{(z-i)^2 + 2z(z-i)}{[z(z-i)^2]^2}$$
$$= -\frac{(-2i)^2 + 2(-i)(-2i)}{[-i(-2i)^2]^2} = -\frac{1}{2}$$

$$D = \lim_{z \to i} (z - i)^2 f(z) = \lim_{z \to i} \frac{1}{z(z + i)^2} = \frac{1}{i(2i)^2} = \frac{i}{4}$$

$$E = \lim_{z \to i} \frac{d}{dz} (z - i)^2 f(z) = \lim_{z \to i} \frac{d}{dz} \frac{1}{z(z + i)^2} = \lim_{z \to i} -\frac{(z + i)^2 + 2z(z + i)}{[z(z + i)^2]^2}$$
$$= -\frac{(2i)^2 + 2i(2i)}{[i(2i)^2]^2} = -\frac{1}{2}$$

So finally,

$$f(z) = \frac{1}{z} + \frac{-i/4}{(z+i)^2} + \frac{-1/2}{z+i} + \frac{i/4}{(z-i)^2} + \frac{-1/2}{z-i}$$

/0

(b) Evaluate $\oint_C f(z) dz$ where C is the circle or radius $\frac{1}{2}$ centered at the origin.

$$\oint_C f(z) dz = \oint_C \frac{A}{z} dz + \underbrace{\oint_C \frac{B}{(z+i)^2} + \oint_C \frac{C}{z+i} + \oint_C \frac{D}{(z-i)^2} + \oint_C \frac{E}{z-i}}_{\text{all 0 by Cauchy's Thm}}$$

$$= 2\pi i \cdot A = \boxed{2\pi i}$$

/6

Problem 2: Solve for z: $Log(z^2-1)=i\frac{\pi}{2}$

Let
$$z^2 - 1 = w = re^{i\theta}$$
, then

$$Log(w) = \ln r + i\theta = i\frac{\pi}{2} \implies \begin{cases} \ln r = 0 \\ \theta = \frac{\pi}{2} \end{cases} \implies w = e^{i\pi/2} = i$$

so we have

$$z^{2} - 1 = i \implies z^{2} = 1 + i = \sqrt{2}e^{i\pi/4}$$

$$\implies z = \left[\pm 2^{1/4}e^{i\pi/8} = \pm 2^{1/4}\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)\right]$$

/5

Problem 3: Let $\Gamma \subset \mathbb{C}$ be the figure-eight contour shown below. Evaluate: $\oint_{\Gamma} \frac{z}{z^2 - 2z + 5} dz$.

The poles of $f(z) = \frac{z}{z^2 - 2z + 5}$ are given by

$$z^2 - 2z + 5 = 0 \implies z = \frac{2 \pm \sqrt{-16}}{2} = 1 \pm 2i.$$

Except at these poles, f is analytic.

Note that Γ is *not* a simple closed curve, so we can't apply the Residue Theorem directly. But we can look at Γ as a sum of two loops. Let Γ_1 , Γ_2 be the loops on the left/right, respectively. We have

$$\oint_{\Gamma} f(z) dz = \oint_{\Gamma_1} f(z) dz + \oint_{\Gamma_2} f(z) dz.$$

Since f is analytic in a domain containing each of Γ_1 , Γ_2 , both integrals are zero (by the Residue Theorem).

Alternatively, note that there is a simply connected domain D, containing Γ , in which f is analytic (since the poles of f lie some distance from Γ). So the given integral is zero by Cauchy's Theorem: within D, Γ can be continuously deformed to a point.

/10

Problem 4: Evaluate: $\int_0^\infty \frac{x \sin x}{(x^2+1)^2} dx$

Because the integrand is an even function we have

$$\int_0^\infty \frac{x \sin x}{(x^2 + 1)^2} \, dx = \frac{1}{2} \int_{-\infty}^\infty \frac{x \sin x}{(x^2 + 1)^2} \, dx = \frac{1}{2} \operatorname{Im} \underbrace{\int_{-\infty}^\infty \frac{x e^{ix}}{(x^2 + 1)^2} \, dx}_{-\infty}.$$

Now let $f(z) = \frac{ze^{iz}}{(z^2+1)^2}$ and consider

$$\int_{-R}^{R} f(x) dx + \int_{C} f(z) dz = 2\pi i \sum_{j} \operatorname{Res}(f; z_{j})$$
(1)

where C is semi-circle of radius R, centered at the origin, in the upper half-plane; the sum is taken over poles z_j of f inside this semi-circle. On C we have

$$\begin{split} |f(z)| &= \frac{|z||e^{i(x+iy)}|}{|(z^2+1)^2|} = \frac{|z||e^{ix}||e^{-y}|}{|(z^2+1)^2|} \leq \frac{|z|}{|(z^2+1)^2|} \quad \text{(since } |e^{ix}| = 1 \text{ and } e^{-y} \leq 1) \\ &\leq \frac{|z|}{|z|^4/2} \qquad \text{(since } |z^4+1| \geq |z|^4/2 \text{ for all } |z| \text{ suff. large)} \\ &= \frac{2}{R^3} \end{split}$$

so that

$$\left| \int_C f(z) \, dz \right| \le \frac{2}{R^3} \cdot \frac{\pi}{R} = \frac{2\pi}{R^2} \to 0 \text{ as } R \to \infty.$$

Also, the poles of f(z) are given by $z^2 + 1 = 0 \implies z = \pm i$. Only z = i is enclosed by C. Thus, letting $R \to \infty$ in (1) gives

$$I = \int_{-\infty}^{\infty} f(z) dz = 2\pi i \cdot \text{Res}(f; i)$$

$$= 2\pi i \lim_{z \to i} \frac{d}{dz} (z - i)^2 f(z) \quad \text{(since } i \text{ is a 2nd-order pole)}$$

$$= 2\pi i \lim_{z \to i} \frac{d}{dz} \frac{z e^{iz}}{(z + i)^2}$$

$$= 2\pi i \lim_{z \to i} \frac{(e^{iz} + iz e^{iz})(z + i)^2 - z e^{iz} \cdot 2(z + i)}{(z + i)^4}$$

$$= 2\pi i \lim_{z \to i} \frac{(e^{iz} + iz e^{iz})(z + i) - 2z e^{iz}}{(z + i)^3}$$

$$= 2\pi i \lim_{z \to i} e^{iz} \frac{(1 + iz)(z + i) - 2z}{(z + i)^3} = 2\pi i \cdot e^{-1} \cdot \frac{1}{4} = \frac{\pi i}{2e}$$

and so

$$\int_0^\infty \frac{x \sin x}{(x^2+1)^2} dx = \frac{1}{2} \operatorname{Im} \left(\frac{\pi i}{2e} \right) = \boxed{\frac{\pi}{4e}}$$