MATH 3170

Calculus 4

Instructor: Richard Taylor

FINAL EXAM SOLUTIONS

16 April 2013 09:00-12:00

Instructions:

1. Read the whole exam before beginning.
2. Make sure you have all 10 pages.
3. Organization and neatness count.
4. Justify your answers.
5. Clearly show your work.
6. You may use the backs of pages for calculations.
7. You may use an approved formula sheet.
8. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		10
2		10
3		10
4		10
5		6
6		10
7		10
8		10
9		10
TOTAL:		86

/10 Problem 1: Evaluate $\iiint_{D} 8 x y z d V$ where D is the region bounded by the surface $y=x^{2}$, the plane $y+z=9$, and the $x y$-plane.

We can write this as an iterated integral:

$$
\iint_{D^{\prime}} \int_{0}^{9-y} 8 x y z d z d A
$$

where D^{\prime} is the region in the $x y$-plane bounded by $y=x^{2}$ and $y=9 \ldots$

$$
=\int_{-3}^{3} \int_{x^{2}}^{9} \int_{0}^{9-y} 8 x y z d z d y d x
$$

which, after doing the integrals, evaluates to 0 .
We might have anticipated this answer using symmetry: D is symmetric about the $y z$-plane; the integrand is also symmetric, and odd in x.

Problem 2: Evaluate $\int_{0}^{2} \int_{x / 2}^{(x / 2)+1} x^{5}(2 y-x) e^{(2 y-x)^{2}} d y d x$ using the substitution $u=x, v=2 y-x$.
In the $x y$-plane the region of integration is a parallelogram with boundaries $x=0, x=2$, $y=x / 2, y=x / 2+1$.

In the $u v$-plane the boundary $y=x / 2$ transforms to $v=0$. The boundary $y=x / 2+1$ becomes $v=2$. So,

$$
\int_{0}^{2} \int_{x / 2}^{(x / 2)+1} x^{5}(2 y-x) e^{(2 y-x)^{2}} d y d x=\iint_{D} u^{5} v e^{v^{2}} J(u, v) d A
$$

where D is the square $[0,2] \times[0,2]$ and the Jacobian J is given by

$$
J=\left|\begin{array}{ll}
\partial u / \partial x & \partial u / \partial y \\
\partial v / \partial x & \partial v / \partial y
\end{array}\right|^{-1}=\left|\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right|^{-1}=1 / 2 .
$$

Thus the double integral can be written as the iterated integral

$$
\int_{0}^{2} \int_{0}^{2} u^{5} v e^{v^{2}} \cdot \frac{1}{2} d u d v=\underbrace{\int_{0}^{2} u^{5} d u}_{\frac{1}{6} 2^{6}} \underbrace{\int_{0}^{2} \frac{1}{2} v e^{v^{2}} d v}_{\left.\frac{1}{4} e^{2}\right|_{0} ^{2}=\frac{1}{4}\left(e^{4}-1\right)}=\frac{8}{3}\left(e^{4}-1\right)
$$

Problem 3: Evaluate $\int_{C} y z d s$ where C is the curve of intersection of the surfaces $y=\cos x$ and $z=\sin x$, from $(0,1,0)$ to $(\pi,-1,0)$.

Parametrize C :

$$
\begin{aligned}
\left\{\begin{array}{l}
x=x \\
y=\cos x \\
z=\sin x
\end{array}\right. & \Longrightarrow \mathbf{r}(x)=(x, \cos x, \sin x) \\
\Longrightarrow d s=\left|\mathbf{r}^{\prime}(x)\right| d x & =|(1,-\sin x, \cos x)| d x=\sqrt{1+\sin ^{2} x+\cos ^{2} x} d x=\sqrt{2} d x \\
\Longrightarrow \int_{C} y z d s & =\int_{0}^{\pi} \cos x \cdot \sin x \cdot \sqrt{2} d x \\
& =\left.\sqrt{2} \cdot \frac{1}{2} \sin ^{2} x\right|_{0} ^{\pi}=0
\end{aligned}
$$

Problem 4: Let $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+\cos y \sin z \mathbf{j}+\sin y \cos z \mathbf{k}$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ where C is the intersection, in the first octant, of the surface $z=y^{2}$ with the sphere $x^{2}+y^{2}+z^{2}=2$ (oriented counter-clockwise when viewed from the positize z-axis.

A straightforward calculation gives $\nabla \times \mathbf{F}=\mathbf{0}$, so the field is conservative. Thus $\mathbf{F}=\nabla f$ where

$$
\begin{aligned}
f_{x}=x^{2} & \Longrightarrow f=\frac{1}{3} x^{3}+C(y, z) \\
f_{y}=\cos y \sin z=\frac{\partial C}{\partial y} & \Longrightarrow f=\frac{1}{3} x^{3}+\sin y \sin z+C(z) \\
f_{z}=\sin y \cos z=\sin y \cos z+C^{\prime}(z) & \Longrightarrow f=\frac{1}{3} x^{3}+\sin y \sin z
\end{aligned}
$$

In the $x z$-plane the surfaces intersect at A, where

$$
\left\{\begin{array}{l}
z=0^{2}=0 \\
x^{2}+0^{2}+z^{2}=2
\end{array} \Longrightarrow A=(\sqrt{2}, 0,0)\right.
$$

and in the $y z$-plane they intersect at B, where

$$
\left\{\begin{array}{l}
z=y^{2} \\
0^{2}+y^{2}+z^{2}=2
\end{array} \Longrightarrow z^{2}+z-2=0 \Longrightarrow z=1 \Longrightarrow B=(0,1,1)\right.
$$

Thus,

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =f(B)-f(A) \\
& =f(0,1,1)-f(\sqrt{2}, 0,0) \\
& =\sin ^{2} 1-\frac{2^{3 / 2}}{3}
\end{aligned}
$$

Problem 5: Suppose C is a piecewise-smooth, simple closed curve in the $x y$-plane. Let f and g be continuously differentiable single-variable functions. Prove that

$$
\oint_{C} f(x) d x+g(y) d y=0
$$

Since f and g satisfy the hypotheses of Green's Theorem, we have

$$
\begin{aligned}
\oint_{C} f(x) d x+g(y) d y & =\iint_{D}\left(\frac{\partial f}{\partial y}-\frac{\partial g}{\partial x}\right) d A \\
& =\iint_{D}(0-0) d A \\
& =0
\end{aligned}
$$

where D is the plane region enclosed by C.

Problem 6: Let S denote the surface of the cylinder $x^{2}+y^{2}=4,-2 \leq z \leq 2$, and consider the surface integral

$$
\int_{S}\left(z-x^{2}-y^{2}\right) d S
$$

(a) Use an appropriate parametrization of S to calculate the value of the integral.

Parametrize S :

$$
\begin{gathered}
\left\{\begin{array}{l}
x=2 \cos \theta \\
y=2 \sin \theta \\
z=z
\end{array} \quad \Longrightarrow \mathbf{r}(\theta, z)=(-2 \sin \theta, 2 \cos \theta, z)\right. \\
\Longrightarrow \begin{array}{l}
\mathbf{r}_{\theta}=(-2 \sin \theta, 2 \cos , \theta, 0) \\
\mathbf{r}_{z}=(0,0,1)
\end{array} \Longrightarrow d S=\left|\mathbf{r}_{\theta} \times \mathbf{r}_{z}\right| d \theta d z=|(2 \cos \theta, 2 \sin \theta, 0)| d \theta d z=2 d \theta d z
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\int_{S}\left(z-x^{2}-y^{2}\right) d S & =\int_{-2}^{2} \int_{0}^{2 \pi}(z-4) 2 d \theta d z \\
& =2 \underbrace{\int_{0}^{2 \pi} d \theta}_{2 \pi} \underbrace{\int_{-2}^{2}(z-4) d z}_{\frac{1}{2} z^{2}-\left.4 z\right|_{-2} ^{2}=-16}=-64 \pi
\end{aligned}
$$

(b) Use symmetry to evaluate the integral without resorting to a parametrization of the surface.

We have

$$
\begin{aligned}
\int_{S}\left(z-x^{2}-y^{2}\right) d S & =\int_{S}(z-4) d S \\
& =\underbrace{\int_{S} z d S}_{0 \text { by symmetry }}-4 \underbrace{\int_{S} d S}_{\text {area of } S} \\
& =0-4(2 \pi)(2)(4)=-64 \pi
\end{aligned}
$$

Problem 7: Let S be the "silo" composed of the union of surfaces S_{1}, S_{2} where S_{1} is the cylinder

$$
S_{1}: \quad x^{2}+y^{2}=9, \quad 0 \leq z \leq 8
$$

and S_{2} is the hemisphere

$$
S_{2}: \quad x^{2}+y^{2}+(z-8)^{2}=9 . \quad z \geq 8 .
$$

Considering S to have its normal oriented away from the origin, evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ where

$$
\mathbf{F}(x, y, z)=\left(x^{3}+x z+y z^{2}\right) \mathbf{i}+\left(x y z^{3}+y^{7}\right) \mathbf{j}+x^{2} z^{5} \mathbf{k}
$$

Since S is piecewise-smooth we can use Stokes' Theorem:

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the boundary of S, i.e. the circle of radius 3 in the $x y$-plane, centered at the origin.

Parametrize C :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=3 \cos \theta \\
y=3 \sin \theta \\
z=0
\end{array} \quad \Longrightarrow \mathbf{r}(\theta)=(3 \cos \theta, 3 \sin \theta, 0)\right. \\
& \Longrightarrow d \mathbf{r}=\mathbf{r}^{\prime}(\theta) d \theta=(-3 \sin \theta, 3 \cos \theta, 0) d \theta
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi}\left(\cos ^{3} \theta, \sin ^{7} \theta, 0\right) \cdot(-3 \sin \theta, 3 \cos \theta, 0) d \theta \\
& =\int_{0}^{2 \pi}\left(-\sin \theta \cos ^{3} \theta+\cos \theta \sin ^{7} \theta\right) d \theta=0
\end{aligned}
$$

Alternatively, we can use Stokes' Theorem to trade the given integral over S for an integral over any other surface S^{\prime} that has the same boundary C :

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{S^{\prime}} \nabla \times \mathbf{F} \cdot d \mathbf{S} .
$$

We have

$$
\nabla \times \mathbf{F}=\left(-3 x y z^{2}, x+2 y z-2 x z^{5}, y z^{3}-z^{2}\right) .
$$

Thus if we take S^{\prime} to be the circle in the $x y$-plane enclosed by C we get

$$
\iint_{S^{\prime}} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{S^{\prime}}(0, x, 0) \cdot \mathbf{k} d A=\iint_{S^{\prime}} 0 d A=0
$$

Problem 8: Let $\mathbf{F}(x, y, z)=2 x y \mathbf{i}+y^{2} \mathbf{i}+3 y z \mathbf{k}$. Calculate the total flux $\oint_{S} \mathbf{F} \cdot d \mathbf{S}$ where S is
(a) the ball $x^{2}+y^{2}+z^{2}=a^{2}$.

We have

$$
\nabla \cdot \mathbf{F}=2 y+2 y+3 y=7 y
$$

so applying the Divergence Theorem gives

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V=0 \quad \text { (by symmetry) }
$$

(b) the cube $[0, a] \times[0, a] \times[0, a]$.

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V=\underbrace{\int_{0}^{a} d x}_{a} \underbrace{\int_{0}^{a} 7 y d y}_{\frac{7}{2} a^{2}} \underbrace{\int_{0}^{a} d z}_{a}=\frac{7}{2} a^{4}
$$

Problem 9: Use tensor notation to prove the vector identity

$$
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} .
$$

We have

$$
(\mathbf{a} \times \mathbf{b})_{i}=\varepsilon_{i j k} a_{j} b_{k}
$$

so that

$$
\begin{aligned}
((\mathbf{a} \times \mathbf{b}) \times \mathbf{c})_{n} & =\varepsilon_{n i m}\left(\varepsilon_{i j k} a_{j} b_{k}\right) c_{m} \\
& =\varepsilon_{n i m} \varepsilon_{i j k} a_{j} b_{k} c_{m} \\
& =\varepsilon_{i m n} \varepsilon_{i j k} a_{j} b_{k} c_{m} \quad \text { (even permutation) } \\
& =\left(\delta_{m j} \delta_{n k}-\delta_{m k} \delta_{n j}\right) a_{j} b_{k} c_{m} \\
& =\delta_{m j} \delta_{n k} a_{j} b_{k} c_{m}-\delta_{m k} \delta_{n j} a_{j} b_{k} c_{m} \\
& =a_{j} b_{n} c_{j}-a_{n} b_{k} c_{k} \\
& =\underbrace{\left(a_{j} c_{j}\right)}_{\mathbf{a} \cdot \mathbf{c}} b_{n}-\underbrace{\left(b_{k} c_{k}\right)}_{\mathbf{b} \cdot \mathbf{c}} a_{n} \\
& =((\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a})_{n} \quad \sqrt{ }
\end{aligned}
$$

