MATH 2670: Quiz #4 — SOLUTIONS

Problem 1: Find the general solution y(x) of the differential equation (cosz)y’ + (sinz)y = 1.

Re-write the DE in “standard form” as
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Multiply both sides by the integrating factor
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Integrate both sides:
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Problem 2: Find the general solution y(z) of the differential equation d—y +2zy% = 0.
x

This equation is nonlinear, but at least separable:
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Problem 3: A tank initially contains 50 liters of pure water. Chlorinated water containing 5 mg of chlorine per
liter is then pumped into the tank at a rate of 10 liters per minute. The well-mixed solution is pumped out at
the same rate. How long does it take for the concentration of chlorine in the tank to reach 4 mg per liter?

Let y(t) = mg of Cl in the tank after ¢ minutes. Then
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Multiply both side by the integrating factor pu(t) = ef 0-24% = ¢0-2¢,
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The initial condition y(0) = 0 gives
0=250+Cc® — C = —-250 — y = 250(1 — e—O.Qt).

So, finally, we have y(t) = 4 x 50 = 200 mg when
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