MATH 2670: Quiz \#4 - SOLUTIONS

/3 Problem 1: Find the general solution $y(x)$ of the differential equation $(\cos x) y^{\prime}+(\sin x) y=1$.
Re-write the DE in "standard form" as

$$
y^{\prime}+\underbrace{\frac{\sin x}{\cos x}}_{p(x)} y=\frac{1}{\cos x}
$$

Multiply both sides by the integrating factor

$$
\begin{gathered}
e^{\int p(x) d x}=e^{\int \frac{\sin x}{\cos x} d x}=e^{-\ln (\cos x)}=e^{\ln \left([\cos x]^{-1}\right)}=\frac{1}{\cos x} \\
\Longrightarrow \underbrace{\frac{1}{\cos x} y^{\prime}+\frac{\sin x}{\cos ^{2} x} y}_{\frac{d}{d x} \frac{y}{\cos x}}=\frac{1}{\cos ^{2} x}\left(=\sec ^{2} x\right)
\end{gathered}
$$

Integrate both sides:

$$
\Longrightarrow \frac{y}{\cos x}=\int \sec ^{2} x d x=\tan x+C \Longrightarrow y=\sin x+C \cos x, \quad C \in \mathbb{R}
$$

/3 Problem 2: Find the general solution $y(x)$ of the differential equation $\frac{d y}{d x}+2 x y^{2}=0$.
This equation is nonlinear, but at least separable:

$$
\begin{aligned}
\frac{d y}{d x}=-2 x y^{2} & \Longrightarrow \int y^{-2} d y=\int-2 x d x \\
& \Longrightarrow-y^{-1}=x^{2}+C \\
& \Longrightarrow y=\frac{1}{x^{2}+C}, \quad C \in \mathbb{R}
\end{aligned}
$$

/4 Problem 3: A tank initially contains 50 liters of pure water. Chlorinated water containing 5 mg of chlorine per liter is then pumped into the tank at a rate of 10 liters per minute. The well-mixed solution is pumped out at the same rate. How long does it take for the concentration of chlorine in the tank to reach 4 mg per liter? Let $y(t)=\mathrm{mg}$ of Cl in the tank after t minutes. Then

$$
\begin{aligned}
& \frac{d y}{d t}=(\text { rate in })-(\text { rate out })=5 \times 10-\frac{y}{50} \times 10 \\
& \left.\Longrightarrow y^{\prime}+0.2 y=50 \quad \text { (a 1st-order linear DE }\right)
\end{aligned}
$$

Multiply both side by the integrating factor $\mu(t)=e^{\int 0.2 d t}=e^{0.2 t}$:

$$
\begin{aligned}
\Longrightarrow \underbrace{e^{0.2 t} y^{\prime}+0.2 e^{0.2 t} y}_{\frac{d}{d t}\left(e^{0.2 t} y\right)}=50 e^{0.2 t} & \Longrightarrow e^{0.2 t} y=\int 50 e^{0.2 t} d t=250 e^{0.2 t}+C \\
& \Longrightarrow y=250+C e^{-0.2 t}
\end{aligned}
$$

The initial condition $y(0)=0$ gives

$$
0=250+C e^{0} \Longrightarrow C=-250 \Longrightarrow y=250\left(1-e^{-0.2 t}\right)
$$

So, finally, we have $y(t)=4 \times 50=200 \mathrm{mg}$ when

$$
200=250-250 e^{-0.2 t} \Longrightarrow e^{-0.2 t}=\frac{50}{250} \Longrightarrow t=\frac{\ln 5}{0.2} \approx 8.04 \mathrm{~min}
$$

