MATH 2670: Quiz \#1 - SOLUTIONS

/5 Problem 1: Evaluate the line integral $\int_{C} z \ln (x+y) d s$ where C has parametric equations $x=1+3 t, y=2+t^{2}$, $z=t^{4}(-1 \leq t \leq 1)$.

$$
\begin{aligned}
\mathbf{r}(t)=\left(1+3 t, 2+t^{2}, t^{4}\right) & \Longrightarrow d s=\left|\mathbf{r}^{\prime}(t)\right| d t=\left|\left(3,2 t, 4 t^{3}\right)\right| d t=\sqrt{9+4 t^{2}+16 t^{6}} d t \\
\Longrightarrow \int_{C} z \ln (x+y) d s & =\int_{-1}^{1}\left(t^{4}\right) \ln \left((1+3 t)+\left(2+t^{2}\right)\right) \sqrt{9+4 t^{2}+16 t^{6}} d t \\
& =\int_{-1}^{1} t^{4} \ln \left(3+3 t+t^{2}\right) \sqrt{9+4 t^{2}+16 t^{6}} d t \approx 1.73
\end{aligned}
$$

(this integral can't be evaluated analytically...I did it numerically on a computer)

Problem 2: The vector field $\mathbf{F}(x, y)=x^{2} y^{3} \hat{\mathbf{\imath}}+x^{3} y^{2} \hat{\mathbf{\jmath}}$ is conservative. Find a potential function $f(x, y)$ such that $\mathbf{F}=\nabla f$, and use it to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is any smooth curve from $(0,1)$ to $(1,0)$.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=x^{2} y^{3} \Longrightarrow f(x, y)=\frac{1}{3} x^{3} y^{3}+C(y) \\
& \frac{\partial f}{\partial y}=x^{3} y^{2}=x^{3} y^{2}+C^{\prime}(y) \Longrightarrow C(y)=C(=0, \text { say }) \\
& \Longrightarrow f(x, y)=\frac{1}{3} x^{3} y^{3} \\
& \int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,0)-f(0,1)=0-0=0
\end{aligned}
$$

