
MATH 2670 Lecture Notes

Richard Taylor, 2020

Introduction

Reading mathematics is a fairly advanced skill. Most students find that an interactive lecture
format is an easier way to get acquainted with new mathematical ideas. But reading math is a skill
worth learning, and this seems as good a time as any to start working on it.

The dates indicated here are the days I would have covered the material in class, and I’ve put
them here to help you pace your work. In the right-hand margin I have indicated the relevant
sections of the textbook. In some places I have suggested specific sections you should definitely
read, and exercises you should attempt as you progress. I will add to this document as we go, so
check back here often.

I’ve purposefully made these notes brief and to the point. You should use the textbook for
supplemental information, and especially be sure to do the assigned readings. I aim to get you
solving relevant problems on your own as quickly as possible. If you read these notes, do the
assigned readings, and still find it difficult to get started on the problems, send me an email ASAP.
I will help however I can, and your feedback will help me to make these notes better.

March 23

1 Fourier Series
Ch. 11

1.1 Periodic Functions

Periodic functions (like the familiar sine and cosine) play an important role in analyzing signals and
systems, in many branches of engineering. The figure below shows the graph of a typical periodic
function, with period equal to 2p (this turns out to be a convenient way to represent the period):

y = f(x)

xp 2p 3p−p−2p−3p

This function is periodic (with period 2p) because f(x) = f(x+ 2p) for all x; i.e. the shape of
the graph repeats itself on every interval of length 2p.
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1.2 Fourier Series
Sec. 11.2

Pretty much any periodic function you are likely to encounter will be at least piecewise continuous
(i.e. its graph might have discontinuities but otherwise consists of continuous pieces). It turns out
that any such function can be represented as a superposition of sines and cosines. This can be
useful for a lot of reasons, not least because the sine and cosine functions are already familiar.

The Fourier series of a periodic function f(x) with period 2p is given by

f(x) =
a0
2

+ a1 cos

(
πx

p

)
+ a2 cos

(
2πx

p

)
+ a3 cos

(
3πx

p

)
+ · · ·

+ b1 sin

(
πx

p

)
+ b2 sin

(
2πx

p

)
+ a3 sin

(
3πx

p

)
+ · · · (1)

or simply

f(x) =
a0
2

+
∞∑
n=1

an cos

(
nπx

p

)
+
∞∑
n=1

bn sin

(
nπx

p

)
. (2)

Note that every sine and cosine term in eq. (2) has period 2p (check this). Consequently, the
infinite sum in this formula is itself a periodic function with period 2p.

An important skill is to determine the values of the coefficients an, bn for a given periodic
function. These can be found using the following formulas:

an =
1

p

∫ p

−p
f(x) cos

(
nπx

p

)
dx (3)

bn =
1

p

∫ p

−p
f(x) sin

(
nπx

p

)
dx. (4)

Reading Assignment: Zill pp. 431–432. This explains where eqs. (3)–(4) come from.

Example. Calculate the Fourier series representation of the “square wave” periodic function whose
graph is shown:

y = f(x)

x2 4−2

1

−1

Solution. The period is 2p = 4 (so p = 2) and on the interval (−2, 2) the function is given by

f(x) =

{
−1 −2 ≤ x < 0

1 0 ≤ x ≤ 2.
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With p = 2, eq. (3) gives the cosine coefficients as

an =
1

2

∫ 2

−2
f(x) cos

(nπx
2

)
dx = 0 (5)

because the product of f (an odd function) and the cosine (an even function) is odd, so integrates
to zero on a symmetric interval. Exploiting symmetry like this saves a lot of effort!

Eq. (4) gives the sine coefficients as

bn =
1

2

∫ 2

−2
f(x) sin

(nπx
2

)
dx (6)

=

∫ 2

0
sin
(nπx

2

)
dx (by even symmetry) (7)

=

[
− 2

nπ
cos
(nπx

2

)]2
0

(8)

=
2

nπ

[
1 − cos(nπ)

]
. (9)

Note that cos(nπ) = (−1)n so we can write this as

bn =
2

nπ

[
1 − (−1)n

]
. (10)

Finally, putting this back into eq. (2) gives

f(x) =
∞∑
n=1

2

nπ

[
1 − (−1)n

]
sin
(nπx

2

)
(11)

=
4

π
sin
(πx

2

)
+

4

3π
sin

(
3πx

2

)
+

4

5π
sin

(
5πx

2

)
+ · · · (12)

(the terms with n even are all zero). You should try plotting (via a graphing calculator or Wolfram
Alpha) the graph of the sum of the first 3 terms of this series. Then try 4 terms, 5 terms, etc. and
investigate what happens as you increase the number of terms. Does you graph start to resemble
the square wave above? How does it differ? What does the series evaluate to at x = 0?

Reading Assignment: Read Zill Sec. 11.2, Examples 1 and 3.

Exercises: Zill 11.2; #1, 3, 9.
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Remarks

• You need to take care in using eq. (3) to evaluate a0. When n = 0 the form of the integral
changes, so you need to find a0 by a separate calculation. It helps to notice that the leading
term a0

2 in (2) is just the average value of f(x); often you can find this by inspection of the
graph.

• A function need not be periodic to have a Fourier series representation. Formulas (3)–(4) for
the coefficients an and bn depend on the values of f(x) only on the interval [−p, p]. So even
if f(x) is defined only on this interval, we can still calculate its Fourier series. In this case
the Fourier series (which itself is defined on the whole real line) is a periodic extension of f .

y = f(x)

xp 2p 3p−p−2p−3p

f(x) defined only on [0, 2p]

y = f(x)

xp 2p 3p−p−2p−3p

Periodic extension of f

• Formulas (3)–(4) for the coefficients an and bn involve an integral of f(x) on the interval
[−p, p], i.e. a whole period. There is nothing special about this interval; the formulas give the
correct result as long as the integral is taken over any whole period; e.g. we could just as well
integrate over [0, 2p]. Sometimes this can make calculations easier.

• You can think of the Fourier series (2) for f(x) is a decomposition of f into a sum of sines
and cosines of different frequencies. This makes most sense if we take x to be time, so that
f(x) is a periodic signal in time. Notice that the frequencies nπ/p are integer multiples of a
fundamental frequency π/p, which corresponds to the overall period of 2p. To musicians, these
multiples of the fundamental frequency will be familiar as the harmonics or upper partials of
a fundamental tone.

• The coefficients an, bn together (technically, the quantity a2n + b2n) have a physical interpreta-
tion as the “amount of energy in the signal” at frequency nπ/p. To musicians this corresponds
to the strengths of the various harmonics in a complex musical tone (the main reason a trum-
pet and violin sound quite different, even when playing the same note, is that the various
harmonics have differing relative strengths). This connection will be important if/when you
study the Fourier transform and spectral analysis. A spectrum analyzer in the lab is basically
a device for calculating Fourier series coefficients.

1.3 Cosine and Sine Series
Sec. 11.3

In the square-wave example above, the function f(x) had odd symmetry (f(−x) = −f(x)). Con-
sequently, the coefficients an of the cosine terms in its Fourier series (2) are all zero. The Fourier
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series (12) for f then contains sine terms only, and we call such a series a sine series:

f(x) =
∞∑
n=1

bn sin

(
nπx

p

)
. (13)

In fact for any odd function f(x), equation (3) gives an = 0 for all n. This is because the

function f(x) cos
(
nπx
p

)
is odd. In eq. (3) we are integrating this function over a symmetric interval,

and this integral will be zero by symmetry.

On the other hand, for any even function f(x), equation (4) gives bn = 0 for all n, because

the function f(x) sin
(
nπx
p

)
is odd. The Fourier series for f(x) will contain cosine terms only, and

we call such a series a cosine series:

f(x) =
a0
2

+
∞∑
n=1

an cos

(
nπx

p

)
. (14)

Occasionally you might encounter the following problem: f(x) is given on the interval [0, p],
and you want to find either a cosine series or sine series representation for f . To solution to this
problem is to simply extend the definition of f(x) to the symmetric interval [−p, p], so that the
extension is either an odd function (if we want a sine series) or an even function (if we want a
cosine series).

Example. Find the cosine series for the function f(x) = x on the interval [0, π].

Solution. We want a cosine series (an even function, by definition) so we first extend the definition
of f to make it an even function on the symmetric interval [−π, π]:

y = f(x)

xπ 2π 3π

π

original f(x) on [0, π]

y = f(x)

xπ 2π 3π−π−2π−3π

π

even (periodic) extension of f

Now we just need to calculate the Fourier series for this even extension. The coefficients bn of
the sine terms will all be zero, so we just need the coefficients an of the cosine terms. The period
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here is 2p = 2π so p = π, and eq. (3) gives:

an =
1

π

∫ π

−π
f(x) cos(nx) dx (15)

=
2

π

∫ π

0
f(x) cos(nx) dx (by symmetry, since the integrand is even) (16)

=
2

π

∫ π

0
x cos(nx) dx (integrate this by parts) (17)

=
2

π

[
x

n
sin(nx) +

1

n2
cos(nx)

]π
0

(18)

=
2

π

[π
n

sin(nπ)︸ ︷︷ ︸
0

+
1

n2
cos(nπ)︸ ︷︷ ︸
(−1)n

]
−
[

0

n
sin(0)︸ ︷︷ ︸

0

+
1

n2
cos(0)︸ ︷︷ ︸

1

] (19)

=
2

π

(−1)n − 1

n2
. (20)

We need to take care with the n = 0 term though, because the form of the integral is different in
this case. Eq. (3) gives:

a0 =
1

π

∫ π

−π
f(x) dx (21)

=
2

π

∫ π

0
x dx (by even symmetry) (22)

=
2

π
· π

2

2
= π. (23)

Finally, putting everything back into eq. (2) gives:

f(x) = x =
π

2
+
∞∑
n=1

2

π

(−1)n − 1

n2
cos(nx). (24)

This series will agree with f(x) = x on the interval [0, π]. But beyond this integral it actually
represents the even periodic function in the graph above.

In general, if f(x) is defined on the interval [0, p] then we can use the method in the example
above to derive the following formulas:

f(x) =
a0
2

+

∞∑
n=1

an cos

(
nπx

p

)
(cosine series) (25)

where

an =
2

p

∫ p

0
f(x) cos

(
nπx

p

)
dx. (26)
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f(x) =
∞∑
n=1

bn cos

(
nπx

p

)
(sine series) (27)

where

bn =
2

p

∫ p

0
f(x) sin

(
nπx

p

)
dx. (28)

Reading Assignment: Zill Sec. 11.3, especially Example 3.

Exercises: Zill 11.3; #25, 27, 29, 31.
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1.4 Convergence of Fourier Series

As for any other infinite series, we should be concerned about whether the Fourier series in eq. (2)
converges. The theory is beyond the level of this course, but it turns out that if the original f(x)
is continuous then its Fourier series converges to f(x) everywhere; in other words, a continuous
function and its Fourier series are really the same function. However, at a point where f(x) has
a jump discontinuity, its Fourier series essentially interpolates between the values of its left- and
right-hand limits at that point:

Theorem. Let f(x) be a periodic function and suppose that both f(x) and f ′(x) are piecewise
continuous. Then:

• If f(x) is continuous at x then its the Fourier series converges to f(x) at that point.

• If f(x) has a jump discontinuity at x then at that point its Fourier series converges to the
average

f(x+) + f(x−)

2

where

f(x+) = lim
h→0+

f(x+ h)

f(x−) = lim
h→0−

f(x+ h).

Reading Assignment: Zill Sec. 11.1, Example 3

2 Power Series Solutions of Differential Equations
Ch. 6

Our methods for solving differential equations basically consist of the following:

1. guess the right form of the solution (with some undetermined constants)

2. plug this into the DE to determine the values of the constants.

This works great if you can guess the correct form of the solution, but sometimes you can’t. But
recall from Calculus 2 that all functions of scientific interest have a power series representation

y(x) =

∞∑
n=0

cn(x− a)n (29)

where a is some constant (we say the series is “centered at a”). If f(x) is known then the coefficients
cn can be found using the Taylor series formula.
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For our purposes here, eq. (29) is an extremely general guess as to the form for the solution
of a differential equation. Faced with a DE that we can’t solve any other way, our strategy is to
assume the solution has the form of a power series; by plugging eq. (29) into the DE we should be
able to determine the values of the coefficients cn. The following example shows how this works in
practice. . .

Example. Find a power series solution of the differential equation

y′′ + y = 0.

We already know the solution of this problem (the general solution is y = c1 cosx + c2 sinx) so it
makes a nice test case.

Solution. This is a bit long and involved. I’ve numbered the steps here to highlight the key ideas
and provide a recipe you can use in other problems. . .

1. Assume a power series for y, y′ and y′′.

We might as well assume y(x) can be represented by a power series centered at a = 0
(Maclaurin series) so that

y =

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · · (30)

Differentiating term by term gives a power series for y′:

y′ =
∞∑
n=0

ncnx
n−1 = c1x+ 2c2x+ 3c3x

2 + · · · (31)

The n = 0 term is redundant (why?) so we can simply delete it and write

y′ =

∞∑
n=1

ncnx
n−1. (32)

Differentiating again gives

y′′ =
∞∑
n=1

n(n− 1)cnx
n−2 (33)

but again the n = 1 term is redundant so we might as well write

y′′ =
∞∑
n=2

n(n− 1)cnx
n−2. (34)

2. Substitute into the DE to get a recurrence relation.

Substituting our series for y and y′′ into the DE gives

∞∑
n=2

n(n− 1)cnx
n−2 +

∞∑
n=0

cnx
n = 0. (35)
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To get a useful equation for the coefficients cn, we need to do two things: (1) re-index the
series so each has a common factor xn, and (2) combine the two series into one. First, let’s
re-index the first series by replacing n with n+ 2 to get:

∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n +

∞∑
n=0

cnx
n = 0. (36)

(You should probably write out several terms of the first series here to convince yourself that
eq. (36) really is equivalent to (35)). Since the two series range over the same values of n, we
can combine them into one (and factor out the common xn):

∞∑
n=0

[
(n+ 2)(n+ 1)cn+2 + cn

]︸ ︷︷ ︸
an

xn = 0. (37)

The left-hand side is a power series function with coefficients an. Since this function must be
identically zero (i.e. the right-hand side) it follows that all the an must be zero:

(n+ 2)(n+ 1)cn+2 + cn = 0 (n = 0, 1, 2, . . .) (38)

This gives a recurrence relation for our unknown coefficients cn. It will help if we solve for
cn+2 to get

cn+2 = − cn
(n+ 2)(n+ 1)

(n = 0, 1, 2, . . .) (39)

3. Solve the recurrence relation to find the coefficients.

Eq. (39) is really a system of infinitely many (linear) equations for infinitely many unknowns
cn. Fortunately, it isn’t too hard to solve this system. With n = 0 and n = 1 eq. (39) gives

c2 = − c0
2 · 1

, c3 = − c1
3 · 2

(40)

(I haven’t multiplied out the denominators; this turns out to be good strategy). With n = 2
and n = 3 eq. (39) gives

c4 = − c2
4 · 3

, c5 = − c3
5 · 4

(41)

but we can substitute eq. (40) into these to get

c4 =
c0

4 · 3 · 2 · 1
=
c0
4!
, c5 =

c1
5 · 4 · 3 · 2

=
c1
5!
. (42)

By the same process, with n = 4 and n = 5 eq. (39) gives

c6 = − c4
6 · 5

= −c0
6!
, c7 = − c5

7 · 6
= −c1

7!
. (43)

By now the pattern should be clear, so e.g. you could immediately write a formula for, say,
c8 and c9.
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4. Put the coefficients back into the power series.

Putting these coefficient back into eq. (30) and simplifying gives

y = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + · · · (44)

= c0 + c1x− c0
2!
x2 − c1

3!
x3 +

c0
4!
x4 +

c1
5!
x5 − · · · (45)

= c0

[
1 − 1

2!
x2 +

1

4!
x4 − · · ·

]
︸ ︷︷ ︸

y0(x)

+c1

[
x− 1

3!
x3 +

1

5!
x5 − · · ·

]
︸ ︷︷ ︸

y1(x)

. (46)

Note that c0 and c1 remain undetermined: as usual, the solution of a 2nd-order DE involved 2
constants of integration. Also, as expected because the equation is linear, the general solution
is a linear combination of two independent solutions:

y0(x) = 1 − 1

2!
x2 +

1

4!
x4 − · · · (47)

y1(x) = x− 1

3!
x3 +

1

5!
x5 − · · · . (48)

(You might recognize these as the power series for cosx and sinx.)

Reading Assignment: Sec. 6.1 Example 4.

Exercises: Sec. 6.1; #35, 37.

The End.
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