THOMPSON RIVERS UNIVERSITY

MATH 224
Differential Equations I

Instructor: Richard Taylor

MIDTERM EXAM \#1 SOLUTIONS

26 February 2010 08:30-09:20

Instructions:

1. Read all instructions carefully.
2. Read the whole exam before beginning.
3. Make sure you have all 5 pages.
4. Organization and neatness count.
5. You must clearly show your work to receive full credit.
6. You may use the backs of pages for calculations.
7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		8
2		6
3		6
4		8
5		6
TOTAL:		34

Problem 1: Consider the autonomous differential equation

$$
\frac{d y}{d t}=y^{2}\left(y^{2}-1\right)
$$

(a) Determine the equilibrium solutions of this equation.
$/ 2$

$$
\frac{d y}{d t}=y^{2}\left(y^{2}-1\right)=0 \Longrightarrow y=0, \pm 1
$$

(b) Draw the one-dimensional phase portrait and determine the stability (asymtotically stable, unstable or semi-stable) of each equilibrium.

$$
\begin{aligned}
& y=1 \text { is unstable } \\
& y=0 \text { is semi-stable } \\
& y=-1 \text { is asymptotically stable }
\end{aligned}
$$

(c) Sketch the graph of several solutions in the ty-plane.

Problem 2: Solve the initial value problem

$$
\frac{d y}{d x}=\frac{2 x}{y+x^{2} y}, \quad y(0)=-2 .
$$

Separable equation:

$$
\begin{aligned}
\frac{d y}{d x}=\frac{2 x}{y\left(1+x^{2}\right)} & \Longrightarrow \int y d y=\int \frac{2 x}{1+x^{2}} d x \\
& \Longrightarrow \frac{1}{2} y^{2}=\ln \left(1+x^{2}\right)+C \\
& \Longrightarrow y= \pm \sqrt{2 \ln \left(1+x^{2}\right)+C}
\end{aligned}
$$

Impose initial conditions:

$$
\begin{aligned}
y(0) & =-2= \pm \sqrt{2 \ln (1)+C} \Longrightarrow 4=C \\
& \Longrightarrow y=-\sqrt{2 \ln \left(1+x^{2}\right)+4}
\end{aligned}
$$

Problem 3: Solve the differential equation

$$
x^{3} y^{\prime}+4 x^{2} y=e^{-x} .
$$

Linear equation with integrating factor

$$
\mu(x)=e^{\int 4 / x d x}=e^{4 \ln x}=e^{\ln x^{4}}=x^{4} .
$$

Multiplying both sides by μ gives

$$
\begin{gathered}
\underbrace{x^{4} y^{\prime}+4 x^{3} y}_{\frac{d}{d x}\left(x^{4} y\right)}=x e^{-x} \Longrightarrow x^{4} y=\int x e^{-x} d x \\
\Longrightarrow y=\frac{1}{x^{4}} \int x e^{-x} d x=\frac{1}{x^{4}}\left[-(x+1) e^{-x}+C\right] \\
\Longrightarrow y=\frac{C}{x^{4}}-\frac{x+1}{x^{4}} e^{-x}
\end{gathered}
$$

Problem 4: Consider the differential equation

$$
y^{\prime \prime}+9 y=f(x) .
$$

(a) Find the general solution in the case where $f(x)=x e^{3 x}$.

Homogeneous case:

$$
y^{\prime \prime}+9 y=0 \Longrightarrow y_{h}=c_{1} \cos 3 x+c_{2} \sin 3 x
$$

Use undetermined coefficients to find a particular solution:

$$
\begin{aligned}
& y_{p}=(A+B x) e^{3 x} \\
\Longrightarrow & y_{p}^{\prime}=3 A e^{3 x}+B e^{3 x}+3 B x e^{3 x} \\
\Longrightarrow & y_{p}^{\prime \prime}=9 A e^{3 x}+3 B e^{3 x}+3 B e^{3 x}+9 B x e^{3 x} \\
\Longrightarrow & \underbrace{(9 A+6 B+9 B x) e^{3 x}}_{y_{p}^{\prime \prime}}+9 \underbrace{(A+B x) e^{3 x}}_{y_{p}}=x e^{3 x}
\end{aligned}
$$

Match coefficients:

$$
\left\{\begin{array}{l}
18 A+6 B=0 \\
9 B+9 B=1
\end{array} \quad \Longrightarrow B=\frac{1}{18}, A=-\frac{1}{54}\right.
$$

So the general solution is:

$$
y=c_{1} \cos 3 x+c_{2} \sin 3 x+\left(\frac{x}{18}-\frac{1}{54}\right) e^{3 x}
$$

(b) For the case $f(x)=x \cos 3 x$, determine a suitable form for the particular solution if the method of undetermined coefficients is to be used. Do not attempt to determine the coefficients, and do not attempt to find the general solution.

$$
y_{p}=x[(A+B x) \cos 3 x+(C+D x) \sin 3 x]
$$

Problem 5: Consider the differential equation

$$
y^{\prime \prime}+2 y^{\prime}-3 y=g(x) .
$$

Use variation of parameters to find the general solution of this equation. Express your answer in terms of an appropriate integral involving $g(x)$.

Solve the corresponding homogeneous equation (i.e. with $g(x)=0$):

$$
y=e^{r x} \Longrightarrow r^{2}+2 r-3=(r+3)(r-1)=0 \Longrightarrow r=1,-3
$$

So two homogeneous solutions are

$$
y_{1}=e^{x} \quad y_{2}=e^{-3 x} .
$$

Now use variation of parameters: seek a particular solution of the form

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

This yields the following system of equations:

$$
\left\{\begin{array}{l}
u_{1}^{\prime} e^{x}+u_{2}^{\prime} e^{-3 x}=0 \\
u_{1}^{\prime} e^{x}-3 u_{2}^{\prime} e^{-3 x}=f(x)
\end{array} \quad \Longrightarrow u_{1}^{\prime}=\frac{1}{4} e^{-x} f(x), u_{2}^{\prime}=-\frac{1}{4} e^{3 x} f(x)\right.
$$

Integrating these gives

$$
\begin{aligned}
y_{p} & =e^{x} \int_{0}^{x} \frac{1}{4} e^{-s} f(s) d s+e^{-3 x} \int_{0}^{x}\left(-\frac{1}{4}\right) e^{3 s} f(s) d s \\
& =\frac{1}{4} \int_{0}^{x}\left[e^{x} e^{-s}-e^{-3 x} e^{3 s}\right] f(s) d s \\
& =\frac{1}{4} \int_{0}^{x}\left[e^{x-s}-e^{-3(x-s)}\right] f(s) d s
\end{aligned}
$$

so the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-3 x}+\int_{0}^{x} G(x-s) f(s) d s
$$

where

$$
G(t)=\frac{1}{4}\left(e^{t}-e^{-3 t}\right) .
$$

