ThOMPSON RIVERS

 UNIVERSITY

 UNIVERSITY}

MATH 2240
Differential Equations I

Instructor: Richard Taylor

MIDTERM EXAM \#1 SOLUTIONS

17 February 2012 08:30-09:20

Instructions:

1. Read all instructions carefully.
2. Read the whole exam before beginning.
3. Make sure you have all 6 pages.
4. Organization and neatness count.
5. You must clearly show your work to receive full credit.
6. You may use the backs of pages for calculations.
7. You may use an approved formula sheet.
8. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		10
2		10
3		10
4		10
5		10
TOTAL:		50

Problem 1: Consider the following differential equation in which $k>0$ is a parameter:

$$
\frac{d x}{d t}=k x-x^{3}
$$

(a) Find the equilibrium solutions and classify them as to their stability. Sketch the phase portrait. at equilibrium:

$$
\frac{d x}{d t}=0=x\left(k-x^{2}\right) \Longrightarrow x=0 \pm \sqrt{k}
$$

$x= \pm \sqrt{k}$ are asymptotically stable equilibria
$x=0$ is un unstable equilibrium
(b) Sketch several typical solutions in the (x, t)-plane.

Problem 2: Solve the initial value problem

$$
\frac{d y}{d x}=3 x^{2}\left(y^{2}+1\right), \quad y(0)=1 .
$$

This is a separable equation:

$$
\begin{aligned}
& \int \frac{d y}{y^{2}+1}=\int 3 x^{2} d x \\
& \Longrightarrow \arctan y=x^{3}+C
\end{aligned}
$$

This is a convenient time to impose the initial conditions:

$$
y(0)=1 \Longrightarrow \arctan 1=0^{3}+C \Longrightarrow C=\frac{\pi}{4}
$$

Thus we have

$$
\arctan y=x^{3}+\frac{\pi}{4} \Longrightarrow y=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

Problem 3: Find an integrating factor and the general solution $y(x)$ for the following differential equation:

$$
y^{\prime}=1+x+y+x y
$$

This is a first-order linear DE, which we can write in "standard form" as

$$
y^{\prime} \underbrace{-(1+x)}_{P(x)} y=1+x \text {. }
$$

An integrating factor is given by

$$
\mu(x)=e^{\int P(x) d x}=e^{-\int(1+x) d x}=e^{-\left(x+\frac{x^{2}}{2}\right)}
$$

Multiplying both sides of the DE by μ gives

$$
\underbrace{y^{\prime} e^{-\left(x+\frac{x^{2}}{2}\right)}-(1+x) e^{-\left(x+\frac{x^{2}}{2}\right)} y}_{\frac{d}{d x}\left(y e^{-\left(x+\frac{x^{2}}{2}\right)}\right)}=(1+x) e^{-\left(x+\frac{x^{2}}{2}\right)}
$$

Integrating both sides then gives

$$
\begin{aligned}
y e^{-\left(x+\frac{x^{2}}{2}\right)} & =\int(1+x) e^{-\left(x+\frac{x^{2}}{2}\right)} d x=-e^{-\left(x+\frac{x^{2}}{2}\right)}+C \\
& \Longrightarrow y=-1+C e^{x+\frac{x^{2}}{2}} ; \quad C \in \mathbb{R}
\end{aligned}
$$

Problem 4: Find the general solution $y(x)$:

$$
y^{\prime \prime \prime}+y^{\prime \prime}=e^{-x}
$$

method 1: This is a constant-coefficient linear DE, so first solve the corresponding homogeneous DE:

$$
y^{\prime \prime \prime}+y^{\prime \prime}=0
$$

by assuming $y_{h}=e^{r x}$:

$$
\begin{aligned}
\Longrightarrow 0=r^{3}+r^{2}=r^{2}(r+1) & \Longrightarrow r
\end{aligned}=-1 \text { and } r=0(\text { a repeated root of multiplicity } 2) ~ 子 \begin{aligned}
y_{h} & =c_{1} e^{0}+c_{2} x e^{0}+c_{3} e^{-x} \\
& =c_{1}+c_{2} x+c_{3} e^{-x}
\end{aligned}
$$

Since the ohs e^{-x} satisfies the homogeneous equation, we must assume a particular solution of the form

$$
\begin{aligned}
y_{p} & =A x e^{-x} \\
\Longrightarrow y_{p}^{\prime} & =A e^{-x}-A x e^{-x} \\
\Longrightarrow y_{p}^{\prime \prime} & =-2 A e^{-x}+A x e^{-x} \\
\Longrightarrow y_{p}^{\prime \prime \prime} & =3 A e^{-x}-A x e^{-x}
\end{aligned}
$$

Requiring that this satisfy the given DE yields:

$$
\begin{gathered}
\left(3 A e^{-x}-A x e^{-x}\right)+\left(-2 A e^{-x}+A x e^{-x}\right)=e^{-x} \\
\Longrightarrow A e^{-x}=e^{-x} \Longrightarrow A=1
\end{gathered}
$$

Thus $y_{p}=x e^{-x}$ furnishes a particular solution, and the general solution is

$$
y=y_{h}+y_{p}=c_{1}+c_{2} x+c_{3} e^{-x}+x e^{-x} ; \quad c_{1}, c_{2}, c_{3} \in \mathbb{R}
$$

method 2:

The substitution $u=y^{\prime \prime}$ reduces the DE to first-order:

$$
u^{\prime}+u=e^{-x}
$$

Using the integrating factor $\mu(x)=e^{x}$ gives

$$
\underbrace{u^{\prime} e^{x}+u e^{x}}_{\frac{d}{d x}\left(u e^{x}\right)}=1 \Longrightarrow u e^{x}=\int 1 d x=x+C \Longrightarrow u=y^{\prime \prime}=x e^{-x}+C e^{-x}
$$

Now we can find y by integrating twice:

$$
\begin{aligned}
y^{\prime} & =\int y^{\prime \prime} d x=\int\left(x e^{-x}+C e^{-x}\right) d x \\
& =-(x+1) e^{-x}-C e^{-x}+D \\
\Longrightarrow y & =\int\left[-(x+1) e^{-x}-C e^{-x}+D\right] d x \\
& =x e^{-x}+2 e^{-x}+C e^{-x}+D x+E
\end{aligned}
$$

Rewriting this with $c_{1}=E, c_{2}=D, c_{3}=C+2$ gives the same answer as above.

Problem 5: Kamloops Lake has a volume of $3.7 \mathrm{~km}^{3}$. Water flows into the lake at a rate of $0.5 \mathrm{~km}^{3} / \mathrm{yr}$. Wellmixed water flows out of the lake at this same rate.
At time $t=0$ the lake contains contaminant X at a concentration of $10 \mathrm{~kg} / \mathrm{km}^{3}$. Due to recently introduced environmental regulations, the water flowing into the lake contains contaminant X at a lower concentration of $5 \mathrm{~kg} / \mathrm{km}^{3}$.
(a) Find the amount (in kg) of contaminant X in the lake after t years.

Let $y(t)$ be the amount (in kg) of contaminant X in the lake.

Contaminant X flows into the lake at a constant rate of $\left(0.5 \mathrm{~km}^{3} / \mathrm{yr}\right) \times\left(5 \mathrm{~kg} / \mathrm{km}^{3}\right)=2.5 \mathrm{~kg} / \mathrm{yr}$
Contaminant X flows out of the lake at an instantaneous rate of $(0.5) \times\left(\frac{y}{3.7}\right)=\frac{y}{7.4}$.

Thus the rate of change of y is given by

$$
\frac{d y}{d t}=\text { "rate in" }- \text { "rate out" }=2.5-\frac{y}{7.4} \quad \Longrightarrow \quad \frac{d y}{d t}+\frac{y}{7.4}=2.5
$$

We can solve this DE using the integrating factor $\mu(t)=e^{t / 7.4}$:

$$
\begin{aligned}
\underbrace{\frac{d y}{d t} e^{t / 7.4}+\frac{y}{7.4} e^{t / 7.4}}_{\frac{d}{d t}\left(y e^{t / 7.4}\right)}=2.5 e^{t / 7.4} & \Longrightarrow y e^{t / 7.4}=\int 2.5 e^{t / 7.4} d t=(2.5)(7.4) e^{t / 7.4}+C \\
& \Longrightarrow y=18.5+C e^{-t / 7.4}
\end{aligned}
$$

Imposing initial conditions:

$$
\begin{aligned}
y(0)= & (3.7)(10)=18.5+C \Longrightarrow C=18.5 \\
& \Longrightarrow y(t)=18.5\left(1+e^{-t / 7.4}\right)
\end{aligned}
$$

(b) How long will it take for the concentration of contaminant X in the lake to fall to $6 \mathrm{~kg} / \mathrm{km}^{3}$?

$$
\begin{gathered}
y(T)=(3.7)(6)=18.5\left(1+e^{-T / 7.4}\right) \\
\Longrightarrow e^{-T / 7.4}=\frac{22.2}{18.5}-1=0.2 \\
\Longrightarrow T=-7.4 \ln 0.2 \approx 11.9 \text { years }
\end{gathered}
$$

