

MATH 2650 Calculus 3 for Engineering

Instructor: Richard Taylor

FINAL EXAM

13 Dec. 2018 09:00–12:00

Instructions:

- 1. Read the whole exam before beginning.
- 2. Make sure you have all 11 pages.
- 3. Organization and neatness count.
- 4. Justify your answers.
- 5. Clearly show your work.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved formula sheet.
- 8. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		4
2		5
3		4
4		4
5		4
6		5
7		7
8		6
9		6
10		9
11		5
12		5
13		7
TOTAL:		71

/4

Problem 1: Let $f(x,y) = \ln \sqrt{x^2 + y^2}$. Show that $f_{xx} + f_{yy} = 0$.

Problem 2: Consider the function /5

$$f(x,y) = \sqrt{1 + x^2 + y^2 - 2Ax - 2By}$$

where A, B are constants. Find (and simplify) the linear approximation of f(x, y) valid near (x, y) = (0, 0).

Problem 3: Use a chain rule to express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s, if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, z = 2r.

/4

Problem 4: Find a vector \mathbf{v} that is perpendicular to the surface defined by the equation

 $2z^3 = 3(x^2 + y^2)z + \tan^{-1}(xz)$

at the point (1, 1, 1).

(b) On your graph above, indicate the direction of ∇f at the point (2, 1). /1

/5 **Problem 6:** Find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.

/7

/2

Problem 7: A bee flies through a cloud in which the temperature [in °C] at any point (x, y, z) is given by the function

$$T(x, y, z) = \frac{x}{y} - yz \qquad (y \neq 0).$$

When the bee is at the point (4, 1, 1):

(a) In what direction should it fly in order to decrease its temperature most rapidly?

(b) What is the rate of change of temperature in the direction of fastest decrease? /1

(c) What is the directional derivative of the temperature in the direction of the vector $\mathbf{w} = (1, 1, 0)$?

(d) What rate of change of temperature does the bee experience if its velocity is $(1,0,-2)\,\mathrm{m/s?}$ /2

6 **Problem 8:** Find all the local maxima, local minima, and saddle points of the function

 $f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy.$

Problem 9: You are asked to design a cylindrical soup can whose volume is $16\pi \text{ cm}^3$. What is the least possible surface area that the can can have (including the circles at both ends)? Recall that the volume of a cylinder of radius r and height h is $\pi r^2 h$.

13 Dec. 2018

Problem 10: Evaluate:

/9/3

(a) $\iint_D (x^2 + y^2) dA$ where D is the triangular region with vertices (0,0), (1,0) and (0,1).

(b) $\int_0^2 \int_x^2 2y^2 \sin(xy) \, dy \, dx$

(c) $\int_0^1 \int_0^{\sqrt{1-x^2}} e^{-(x^2+y^2)} dy dx$

Problem 11: Find the volume of the solid whose base is the region in the *xy*-plane that is bounded by the parabola $y = 4 - x^2$ and the line y = 3x, while the top of the solid is bounded by the plane z = x + 4.

13 Dec. 2018

/5

Problem 12: Use the substitutions u = x - y, v = 2x + y to evaluate the double integral

$$\iint_D x^2 \, dA$$

where D is region bounded by the lines y = -2x + 4, y = -2x + 7, y = x - 2, y = x + 1.

$$\frac{7}{3}$$
 (a) $\int_0^1 \int_0^\pi \int_0^\pi y \sin z \, dx \, dy \, dz$

(b) $\iiint_D z \, dV$ where D is the region enclosed by the paraboloid $z = x^2 + y^2$ and the plane z = 4