Name:	Student #:

MATH 211 Calculus III

Instructor: Richard Taylor

FINAL EXAM

 $8\ {\rm December}\ 2007\quad 09{:}00{-}12{:}00$

Instructions:

- 1. Read all instructions carefully.
- 2. Read the whole exam before beginning.
- 3. Make sure you have all 8 pages.
- 4. Organization and neatness count.
- 5. You must clearly show your work to receive full credit.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		6
2		5
3		2
4		5
5		6
6		6
7		5
8		8
9		5
10		5

Problem 1: Calculate all the first partial derivatives of each of the following functions. /6

(a)
$$f(x,y) = y\cos(xy)$$

(b)
$$f(x, y, z) = xye^{y+z}$$

Problem 2: Consider the function $f(x,y) = \frac{xy}{3x - 2y}$. (a) Find an equation of the tangent plane to the graph of z = f(x,y) at (1,2,-2).

Problem 3: Write a chain rule for $\frac{\partial w}{\partial p}$ given that w = F(p,q,r,s), where r = f(p,q) and s = g(p,q).

Problem 4: Let $f(x, y, z) = x^2 + 2y^2 - 3z^2$. Find an equation of the tangent plane to the surface f(x, y, z) = 3 at the point (2, 1, 1).

Problem 5: Find the maximum value of x + y + z on the ellipsoid $x^2 + \left(\frac{y}{2}\right)^2 + \left(\frac{z}{3}\right)^2 = 1$.

Problem 6: Find and classify the critical points of $f(x,y) = xy^2 - x^2y - xy + x^2$.

Problem 7: The volume of a cone with radius R and height h can be found by evaluating a double integral of the function $f(r,\theta)=h(1-\frac{r}{R})$ over an appropriate domain. Set up and evaluate this integral in polar coordinates, and show that it gives the expected result $V=\frac{1}{3}\pi R^2h$.

Problem 8: The temperature (in °C) of a metal sheet at a point (x, y) (with x, y in cm) is given by $T(x, y) = 100 + 10e^{-x} \sin y.$

(a) Find the rate of change of temperature at the point $(0, \frac{\pi}{4})$ in the direction of the vector $\mathbf{i} + 3\mathbf{j}$.

(b) Find the direction at $(0, \frac{\pi}{4})$ in which the rate of change of T is greatest, and find this rate of change.

(c) Find the direction(s) at $(0, \frac{\pi}{4})$ in which the directional derivative of T is 0.

(d) An ant located at $(0, \frac{\pi}{4})$ moves with velocity (-1, 2) cm/s. What rate of temperature change does the ant experience: (i) in °C/s? (ii) in °C/cm?

Problem 9: Evaluate $\iint_D e^{-y^2} dA$ where D is the triangular region in the xy-plane with vertices (0,0), (0,1) and (1,1).

/.

Problem 10: For the following iterated integral, sketch the region of integration and evaluate the integral by reversing the order of integration:

$$\int_0^1 \int_x^{\sqrt{x}} \frac{\sin y}{y} \, dy \, dx.$$

/5

Problem 11: (a) Set up a double integral that represents the volume of a tetrahedron with vertices at (1,0,0), (0,1,0), (0,0,1) and (0,0,0).

Problem 12: Find an equation of the plane passing through (1,1,1) and (2,0,3) and perpendicular to the plane x+2y-3z=0.

/5

Problem 13: Find an equation, in symmetric form, for the line through (-1,0,1) that is perpendicular to the plane 2x - y + 7z = 12.

5

Problem 14: Consider the space curves $\mathbf{r}_1(t) = (t, t^2, 0)$ and $\mathbf{r}_2(s) = (s, s, s^3)$.

(a) Show that the only point of intersection of these curves is at the origin.

Problem 15: Consider the space curve

$$\mathbf{r}(t) = \sin t \cos t \,\,\mathbf{i} + \sin^2 t \,\,\mathbf{j} + \cos t \,\,\mathbf{k}.$$

(a) Find the unit tangent T(t).

(b) Find the unit normal $\mathbf{N}(t)$.

(c) Find the curvature $\kappa(t)$.

(d) Find the point(s) of intersection between this curve and the parabolic surface $y = x^2$.