MATH 2110: Quiz \#4 - SOLUTIONS

/10 Problem 1: Use the method of Lagrange multipliers to find the maximum and minimum values of $f(x, y)=3 x+y$ subject to the constraint $x^{2}+y^{2}=10$. Sketch a graph of the constraint curve, together with the level curves of f through the points where the extreme values are attained.

Let $g(x, y)=x^{2}+y^{2}$. Then the constraint is $g(x, y)=10$. Lagrange multipliers gives

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \nabla f = \lambda \nabla g } \\
{ g = 1 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
3=\lambda 2 x \\
1=\lambda 2 y \\
x^{2}+y^{2}=10
\end{array} \Longrightarrow \lambda=\frac{3}{2 x}=\frac{1}{2 y} \Longrightarrow x=3 y\right.\right. \\
(3 y)^{2}+y^{2}=10 \Longrightarrow 10 y^{2}=10 \Longrightarrow y= \pm 1
\end{gathered}
$$

Thus the extreme values are attained at the points $(-3,-1)$ and $(3,1)$.

$$
\begin{aligned}
& f(-3,-1)=-10 \text { is the minimum } \\
& f(3,1)=10 \text { is the maximum }
\end{aligned}
$$

