

MATH 130 Linear Algebra for Engineers

Instructor: Richard Taylor

FINAL EXAM SOLUTIONS

10 December 2009 14:00–17:00

Instructions:

- 1. Read all instructions carefully.
- 2. Read the whole exam before beginning.
- 3. Make sure you have all 9 pages.
- 4. Organization and neatness count.
- 5. You must clearly show your work to receive full credit.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		5
2		5
3		5
4		8
5		7
6		4
7		8
8		4
9		9
10		4
11		4
12		10
TOTAL:		73

Problem 1: Find all solutions of the following system of linear equations.

$$x_1 + 2x_2 + x_3 = 38$$

$$2x_1 + x_2 + 3x_3 + 2x_4 = 53$$

$$2x_1 + 4x_2 + x_3 + 4x_4 = 78$$

Ans:

/5

$$\begin{cases} x_1 = 26 - 8t \\ x_2 = 7 + 2t \\ x_3 = -2 + 4t \\ x_4 = t \end{cases} \quad t \in \mathbb{R}$$

/5 Problem 2: Calculate the	inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 3 & 4 \end{bmatrix}$.
Ans:	$A^{-1} = \begin{bmatrix} 3 & -1 & -1 \\ -1 & -1 & 2 \\ 0 & 1 & -1 \end{bmatrix}$

Problem 3: Let p and q be given constants and consider the following system of equations:

 $x_1 + 2x_2 + 2x_3 = q$ $x_2 + px_3 = 1$ $-x_1 + x_2 + px_3 = 5.$

Find the values of p and q (if any) such that this system has (a) no solution.

/3

/5

Ans: $p = 1, q \neq -2$

(b) a unique solution. /1

Ans: $p \neq 1, q$ arbitrary

(c) infinitely many solutions.

/1

Ans: p = 1, q = -2

/8 **Problem 4:** Consider the matrices

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} k & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

(a) Find the value(s) of k such that A and B are inverses of each other. $\big/3$

Ans: k = 7

(b) Solve the following linear system using the inverse of the coefficient matrix.

/2

$$x_1 + 3x_2 + 3x_3 = 12$$

$$x_1 + 4x_2 + 3x_3 = -10$$

$$x_1 + 3x_2 + 4x_3 = 16$$

Ans: $(x_1, x_2, x_3) = (66, -22, 4).$

(c) Let k have the value you found in part (a). Find the matrix X such that AXB = A + B. /3

Ans: $A + B = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 5 & 3 \\ 0 & 3 & 5 \end{bmatrix}$.

Problem 5: Consider the matrix

/7

/3

$$A = \begin{bmatrix} -3 & 2 & 9 & 1 \\ 4 & 1 & -7 & 6 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & -6 & -2 \end{bmatrix}$$

(a) Evaluate $\det A$ in the most computationally efficient manner.

Ans: det A = 44

(b) Is A invertible? Justify your answer. $\left/1\right.$

Yes, because det $A \neq 0$.

(c) List 3 other properties of A that are consequences of your result in part (a). /3

- the columns of A are linearly independent vectors
- the linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution
- $\lambda = 0$ is not an eigenvalue of A

Problem 6: Let $T(\mathbf{x})$ be the linear transformation of \mathbb{R}^2 that carries out a reflection across the *x*-axis followed by a clockwise rotation by 30°. Find the 2 × 2 matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

Ans:
$$A = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & -\sqrt{3}/2 \end{bmatrix}$$

Problem 7: Consider the sets $\mathcal{B} = \{(1,2), (3,4)\}$ and $\mathcal{C} = \{(-1,1), (-3,-4)\}$ in \mathbb{R}^2 .

(a) Show that both \mathcal{B} and \mathcal{C} are bases for \mathbb{R}^2 .

(b) Let $\mathbf{x}_{\mathcal{B}} = (4, -5)$ be the coordinates of a given vector \mathbf{x} relative to the basis \mathcal{B} . Find $\mathbf{x}_{\mathcal{C}}$ (that is, find the coordinates of \mathbf{x} relative to the basis \mathcal{C}).

/8

/4

Ans: $\mathbf{x}_{\mathcal{C}} = (8/7, 23/7)$

Problem 8: Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be a linearly independent set of vectors in \mathbb{R}^n . Show that the vectors

 $\{\mathbf{u},\ \mathbf{u}+\mathbf{v},\ \mathbf{v}+\mathbf{w}\}$

are also linearly independent.

/9

/4

Problem 9: Consider the matrix

$$A = \left[\begin{array}{cc} 2 & -2 \\ -2 & 2 \end{array} \right].$$

(a) Is A diagonalizable? Justify your answer.

Ans: Eigenvalues $\lambda_1 = 0$, $\lambda_2 = 4$ are distinct so the eigenvectors (which are $\mathbf{v}_1 = (1, 1)$ and $\mathbf{v}_2 = (-1, 1)$) are linearly independent, hence A is diagonalizable.

(b) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$. Verify your answer by carrying out the matrix multiplication. /3

Ans: $D = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$, $P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$

(c) Evaluate the matrix A^{10} .

/3

Ans: $A^{10} = \frac{1}{2} \begin{bmatrix} 4^{10} & -4^{10} \\ -4^{10} & 4^{10} \end{bmatrix}$

Problem 10: Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 3 & 2 \\ 1 & 0 & 0 & 4 \end{bmatrix}.$$

Is $\lambda = 2$ an eigenvalue of A? (*Hint:* Do not attempt to calculate all the eigenvalues.)

Ans: No, since $det(A - 2I) = 6 \neq 0$

/4

/4

Problem 11: (a) Write the imaginary number i in polar form.

 $i=e^{i\pi/2}$

(b) Use your answer to part (a) to evaluate \sqrt{i} . Write your answer in Cartesian form. (*Hint*: use the relationship $\sqrt{e^{i\theta}} = (e^{i\theta})^{1/2} = e^{i(\theta/2)}$.)

$$\sqrt{i} = \sqrt{e^{i\pi/2}} = e^{i\pi/4} = \cos(\pi/4) + i\sin(\pi/4) = \frac{\sqrt{2}}{2}(1+i)$$

Problem 12: Consider the following system of linear differential equations:

$$y_1' = -y_2$$

$$y_2' = -4y_1$$

(a) Find all solutions of this system.

/10

/5

 $y_1(t) = c_1 e^{-2t} + c_2 e^{2t}$ $y_2(t) = 2c_1 e^{-2t} - 2c_2 e^{2t}$

(b) Find the particular solution with initial conditions $y_1(0) = 4$, $y_2(0) = -2$.

 $y_1(t) = \frac{5}{2}e^{2t} + \frac{3}{2}e^{-2t}$ $y_2(t) = -5e^{2t} + 3e^{-2t}$

(c) Evaluate the matrix e^{3A} where $A = \begin{bmatrix} 0 & -1 \\ -4 & 0 \end{bmatrix}$.

Ans:

$$e^{3A} = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} e^{-6} & 0 \\ 0 & e^{6} \end{bmatrix} \begin{bmatrix} -2 & -1 \\ -2 & 1 \end{bmatrix} (-\frac{1}{4}) = \begin{bmatrix} \frac{1}{2}(e^{-6} + e^{6}) & \frac{1}{4}(e^{-6} - e^{6}) \\ e^{-6} - e^{6} & \frac{1}{2}(e^{-6} + e^{6}) \end{bmatrix}$$