

MATH 1300 Linear Algebra for Engineers

Instructor: Richard Taylor

FINAL EXAM SOLUTIONS

5 December 2012 14:00–17:00

IB 1020

PROBLEM	GRADE	OUT OF
1		8
2		10
3		10
4		10
5		5
6		4
7		9
8		8
9		7
10		5
11		6
12		8
TOTAL:		90

Instructions:

- 1. Read the whole exam before beginning.
- 2. Make sure you have all 11 pages.
- 3. Organization and neatness count.
- 4. Justify your answers.
- 5. Clearly show your work.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved calculator.

/8

Problem 1: Find the solution(s) of the following linear system:

$$\begin{cases} x_1 + 3x_2 - 2x_3 + 2x_5 = 0\\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1\\ 5x_3 + 10x_4 + 15x_6 = 5\\ 2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6 \end{cases}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 2 & 6 & 0 & 8 & 4 & 18 & 5 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 & -1 \\ 0 & 0 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 4 & 8 & 0 & 18 & 6 \end{bmatrix}$$

$$\implies \begin{cases} x_1 = -2t - 4s - 3w \\ x_2 = w \in \mathbb{R} \\ x_3 = -2s \\ x_4 = s \in \mathbb{R} \\ x_5 = t \in \mathbb{R} \\ x_6 = \frac{1}{3} \end{cases}$$

Problem 2: Consider the following linear system in which $a, b \in \mathbb{R}$ are constants:

$$\begin{cases} ax_{1} + bx_{3} = 2\\ ax_{1} + ax_{2} + 4x_{3} = 4\\ ax_{2} + 2x_{3} = b \end{cases}$$

Determine the value(s) of a and b such that this system has:

(a) A unique solution.

/4

/10

$$\begin{bmatrix} a & 0 & b & 2 \\ a & a & 4 & 4 \\ 0 & a & 2 & b \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} a & 0 & b & 2 \\ 0 & a & 4 - b & 2 \\ 0 & a & 2 & b \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} a & 0 & b & 2 \\ 0 & a & 4 - b & 2 \\ 0 & 0 & b - 2 & b - 2 \end{bmatrix}$$

To get a unique solution we require both $b - 2 \neq 0$ and $a \neq 0$:

$$\implies \boxed{a \neq 0, \ b \neq 2}$$

(b) No solution.

/2

To get no solution we require either:

both b-2=0 and $b-2\neq 0$ (clearly impossible), or

a = 0, but also and $b - 2 \neq 0$ (otherwise the system ends up being consistent)

 $\implies a = 0, b \neq 2$

(c) A one-parameter family of (infinitely many) solutions.

/2

/2

To get a free variable we can have a = 0 and/or b - 2 = 0. In the former case, we actually get two free variables. So for a one-parameter family of solutions we need

$$\implies a \neq 0, b = 2$$

(d) A two-parameter family of (infinitely many) solutions.

The reasoning in part (c) gives

$$\implies a = 0, b = 2$$

the statement is always true, sometimes true, or always false.

/10

/2

$$(a) \quad (AB)^2 = A^2 B^2$$

In general,

 $(AB)^2 = ABAB \neq A^2B^2$

Problem 3: Let A and B be invertible $n \times n$ matrices. For each of the following, indicate whether

unless A and B commute (for example if A = I, or if A = B), so the statement is *sometimes true*.

(b)
$$(AB^{-1})^{-1} = BA$$

In general,

$$(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$$

so the statement is *always true*.

 $^{-1}$

(c)
$$(AB^{-1})(A^{-1}B) = I$$

In general,

1

$$(AB^{-1})(A^{-1}B) = AB^{-1}A^{-1}B \neq I$$

unless A^{-1} and B^{-1} commute (for example if A = I, or if A = B), so the statement is *sometimes true*.

(d)
$$(A-B)^2 = (B-A)^2$$

We have

$$(A - B)^{2} = (A - B)(A - B) = A^{2} - AB - BA + B^{2}$$

and

$$(B - A)^{2} = (B - A)(B - A) = B^{2} - BA - AB + A^{2} = A^{2} - AB - BA + B^{2}$$

so the statement is *always true*.

BA

(e)
$$AB = /2$$

In general this statement isn't true, unless A and B commute. So the statement is *sometimes true*.

MATH 1300 – Final Exam (SOLUTIONS)

 $\frac{10}{10} Problem 4: You have been contracted by Canadian Blood Services to analyze the donation patterns of blood donors in Canada. You find that 80% of people who donate blood in a given year will also donate the next year, while 10% of those who do$ *not*donate in a given year*will*donate the next. In 2012 there were 1 million blood donors and 26 million non-donors.

Assume that these system dynamics are unchanged from year to year, and that the population of Canada remains constant.

(a) Model this situation as a Markov chain: define (in words) the components of your state vector \mathbf{x} , and determine the corresponding transition matrix.

/2

/4

With
$$\mathbf{x} = \begin{bmatrix} x_D \\ x_N \end{bmatrix} = \begin{bmatrix} \# \text{ of donors} \\ \# \text{ of non-donors} \end{bmatrix}$$
 the transition matrix is $A = \begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix}$

(b) How many blood donors will there be in 2015? /2

$$\mathbf{x}^{(3)} = A^3 \mathbf{x}^{(0)} = \begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix}^3 \begin{bmatrix} 1 \\ 26 \end{bmatrix} = \begin{bmatrix} 6.256 \\ 20.744 \end{bmatrix}$$

so there will be 6.256 million donors.

(c) The eigenvalues of the transition matrix are $\lambda_1 = 0.7$ and $\lambda_2 = 1$. Find an expression for the number of blood donors in year n (where n = 0 corresponds to the year 2012).

In general we have $\mathbf{x}^{(n)} = A^n \mathbf{x}^{(0)} = c_1 \lambda_1^n \mathbf{v}_1 + c_2 \lambda_2^n \mathbf{v}_2$, where $\mathbf{x}^{(0)} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$. So first find the eigenvectors:

$$\lambda_{1} = 1: \quad (A - (1)I)\mathbf{v} = \mathbf{0} \implies \begin{bmatrix} -0.2 & 0.1 & 0\\ 0.2 & -0.1 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & -1/2 & 0\\ 0 & 0 & 0 \end{bmatrix} \implies \mathbf{v}_{1} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$
$$\lambda_{2} = 0.7: \quad (A - (0.7)I)\mathbf{v} = \mathbf{0} \implies \begin{bmatrix} 0.1 & 0.1 & 0\\ 0.2 & 0.2 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} \implies \mathbf{v}_{2} = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

We also require

$$c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 26 \end{bmatrix} \implies c_1 = 9, \ c_2 = -8.$$

So

$$\mathbf{x}^{(n)} = 9(1)^n \begin{bmatrix} 1\\ 2 \end{bmatrix} - 8(0.7)^2 \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

and in particular the number of donors in year n is $9-8(0.7)^n$ (million).

(d) Determine the long-term equilibrium number of blood donors at the steady state of this Markov chain.

/2

In the answer to part (c) we can let $n \to \infty$ to find the steady state number of donors is 9 million. Alternatively, the steady state **x** is characterized by

$$\mathbf{x} = A\mathbf{x} \implies (A - I)\mathbf{x} = \mathbf{0}.$$

We could solve this for \mathbf{x} , or just recognize this as the same eigenvector equation we solved for \mathbf{v}_1 in part (c), so that

$$\mathbf{x} = t\mathbf{v}_1 = t \begin{bmatrix} 1\\ 2 \end{bmatrix}, \quad t \in \mathbb{R}.$$

We have $t + 2t = 27 \implies t = 9$ so $\mathbf{x} = 9 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ 18 \end{bmatrix}$. In particular, the equilibrium number of donors is 9 million.

/5	Problem	5: Show	that	$\begin{bmatrix} 0\\b\\0\\0\\0\\0\end{bmatrix}$	$egin{array}{c} a \\ 0 \\ d \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\ c\\ 0\\ f\\ 0\end{array}$	$egin{array}{c} 0 \\ 0 \\ e \\ 0 \\ h \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ g\\ 0 \end{array}$	is	s singula	ar (no	on-in	vert	ble) for al	l values	of the entr	ies.
						$egin{array}{c} 0 \\ b \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} a \\ 0 \\ d \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ c \\ 0 \\ f \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ e \\ 0 \\ h \end{array}$	$\begin{vmatrix} 0\\0\\0\\g\\0\end{vmatrix} = ($	-a)	b c) 0) f) 0	$egin{array}{c} 0 \\ e \\ 0 \\ h \end{array}$	$\begin{array}{c} 0\\ 0\\ g\\ 0\\ \end{array}$			
										= (-a)(l	$(0) \begin{vmatrix} 0 \\ f \\ 0 \end{vmatrix}$	$e \\ 0 \\ h$	$\begin{array}{c} 0\\g\\0\end{array}$			
										= (-a)(b)($f) \begin{vmatrix} e \\ h \end{vmatrix}$	0 0			
										= (-a)(b	•)(f)(0	= 0			

so the matrix is singular, regardless of the values of the entries.

Problem 6: Points A(3,0,2), B(4,3,0) and C(8,1,-1) are the vertices of a right-angled triangle. At which vertex is the right angle?

Side *AB* is in the direction of $\mathbf{u} = (4, 3, 0) - (3, 0, 2) = (1, 3, -2)$.

Side AC is in the direction of $\mathbf{v} = (8, 1, -1) - (3, 0, 2) = (5, 1, -3).$

Side *BC* is in the direction of $\mathbf{w} = (8, 1, -1) - (4, 3, 0) = (4, -2, -1)$.

We can find the angles at the vertices using the dot product:

$\angle A:$	$\mathbf{u} \cdot \mathbf{v} = 5 + 3 + 6 = 14$
$\angle B$:	$\mathbf{u} \cdot \mathbf{w} = 4 - 6 + 2 = 0$
$\angle C$:	$\mathbf{v} \cdot \mathbf{w} = 20 - 2 + 3 = 21$

So the right angle is at vertex B.

Problem 7: Suppose A is an upper-triangular matrix whose diagonal entries are all non-zero.(a) Show that A is invertible.

A is triangular so det A is the product of its diagonal entries, hence det $A \neq 0$ and A is invertible.

(b) Show that the columns of A are linearly independent.

/2

/9

/3

Since A is invertible, the columns of A are (by the big theorem discussed in class) linearly independent.

(c) Calculate A^{-1} for $A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$.

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 \mid 1 & 0 & 0 \\ 0 & 2 & 4 \mid 0 & 1 & 0 \\ 0 & 0 & 5 \mid 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{5}R_3}_{\frac{1}{2}R_2} \begin{bmatrix} 1 & 3 & -1 \mid 1 & 0 & 0 \\ 0 & 1 & 2 \mid 0 & 1/2 & 0 \\ 0 & 0 & 1 \mid 0 & 0 & 1/5 \end{bmatrix}$$
$$\xrightarrow{R_2 - 2R_3}_{R_1 + R_3} \begin{bmatrix} 1 & 3 & 0 \mid 1 & 0 & 1/5 \\ 0 & 1 & 0 \mid 0 & 1/2 & -2/5 \\ 0 & 0 & 1 \mid 0 & 0 & 1/5 \end{bmatrix}$$
$$\xrightarrow{R_1 - 3R_2} \begin{bmatrix} 1 & 0 & 0 \mid 1 & -3/2 & 7/5 \\ 0 & 1 & 0 \mid 0 & 1/2 & -2/5 \\ 0 & 0 & 1 \mid 0 & 0 & 1/5 \end{bmatrix} = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

No. Clearly they are not scalar multiples of each other.

(b) Find a vector \mathbf{v}_3 such that $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is a basis for \mathbb{R}^3 . Prove that your choice really does yield a basis.

Any vector linearly independent of the other 2 will do, e.g. $\mathbf{v}_3 = (0, 0, 1)$.

To prove linearly independence consider the system

/3

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0} \implies \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{A} \mathbf{c} = \mathbf{0}.$$

We have det $A = (-1) \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = -1 \neq 0$ so A is invertible, hence this system has only the trivial solution $\mathbf{c} = A^{-1}\mathbf{0} = \mathbf{0}$.

Since we have 3 linearly independent vectors, they automatically span \mathbb{R}^3 , hence form a basis for \mathbb{R}^3 .

(c) Let $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and \mathcal{B} be the basis you found in part (b). Find $\mathbf{x}_{\mathcal{B}}$ (components of \mathbf{x} relative to \mathcal{B}).

We have $\mathbf{x}_{\mathcal{B}} = (c_1, c_2, c_3)$ where

$$c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + c_{3}\mathbf{v}_{3} = \mathbf{x} \implies \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{REF}} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
$$\implies c_{3} = -1, \quad c_{2} = 1, \quad c_{1} = 1 - 1 = 0$$
$$\implies \mathbf{x}_{\mathcal{B}} = (0, 1, -1).$$

Problem 9: It can be useful to know that the eigenvalues of any 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be found if you know only its determinant and its "trace" (defined as tr(A) = a + d).

(a) Show that the characteristic polynomial of A can be expressed as

$$P(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$

$$P(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - \underbrace{(a + d)}_{\operatorname{tr}(A)} \lambda + \underbrace{ad - bc}_{\det(A)}$$

(b) Let $A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$. Evaluate det(A) and tr(A), form the characteristic polynomial as above, and determine the eigenvalues of A.

/3

We have $\det(A) = (10)(-2) - (-9)(4) = 16$ and $\operatorname{tr}(A) = 10 - 2 = 8$ so $P(\lambda) = \lambda^2 - 8\lambda + 16$ $= (\lambda - 4)^2$ $\implies \lambda = 4$ (with algebraic multiplicity 2) Problem 10: Solve by Gaussian elimination with back-substitution:

$$\begin{cases} x + (1+i)y = 0\\ (1-i)x + 2y = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1+i & 0\\ 1-i & 2 & 0 \end{bmatrix} \xrightarrow{R_2 - (1-i)R_1} \begin{bmatrix} 1 & 1+i & 0\\ 0 & 0 & 0 \end{bmatrix} \quad (\text{note that } (1-i)(1+i) = 2)$$
$$\implies \boxed{\begin{cases} x = -(1+i)t\\ y = t \in \mathbb{R} \end{cases}}$$

Problem 11: Find all of the complex roots of $z^6 = 64$ and sketch their locations in the complex plane.

/5

Since $1 = 1e^{i0} = e^{i(0+n2\pi)}$ we have

$$z^{6} = e^{i(n2\pi)} \implies z = e^{in\frac{2\pi}{6}} = e^{in\frac{\pi}{3}}$$

$$\begin{cases}
n = 0: \quad z = e^{i0} = 1 \\
n = 1: \quad z = e^{i\frac{\pi}{3}} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + i\frac{\sqrt{3}}{2} \\
n = 2: \quad z = e^{i\frac{2\pi}{3}} = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \\
n = 3: \quad z = e^{i\pi} = -1 \\
n = 4: \quad z = e^{i\frac{4\pi}{3}} = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \\
n = 5: \quad z = e^{i\frac{5\pi}{3}} = \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} = \frac{1}{2} - i\frac{\sqrt{3}}{2}
\end{cases}$$

The roots are symmetrically spaced around the unit circle at angles of $\pi/3$.

Problem 12: Find the functions x(t) and y(t) that satisfy

$$\begin{cases} x' = x + 3y \\ y' = 4x + 5y \end{cases}$$

along with the initial conditions x(0) = 2, y(0) = 1.

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 3\\ 4 & 5 \end{bmatrix}}_{A} \begin{bmatrix} x\\y \end{bmatrix} \implies \mathbf{x}' = A\mathbf{x}$$

Eigenvalues:

/8

$$0 = \det(A - \lambda I) = \lambda^2 - 6\lambda - 7 = (\lambda - 7)(\lambda + 1) \implies \lambda = -1, 7$$

Eigenvectors:

$$\lambda_{1} = -1: \quad (A - (-1)I)\mathbf{v} = \mathbf{0} \implies \begin{bmatrix} 2 & 3 & 0 \\ 4 & 6 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 3/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \mathbf{v}_{1} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
$$\lambda_{2} = 7: \quad (A - (7)I)\mathbf{v} = \mathbf{0} \implies \begin{bmatrix} -6 & 3 & 0 \\ 4 & -2 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & -1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \mathbf{v}_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Initial conditions:

$$\mathbf{x}(0) = c_1 \begin{bmatrix} 3\\ -2 \end{bmatrix} + c_2 \begin{bmatrix} 1\\ 2 \end{bmatrix} = \begin{bmatrix} 2\\ 1 \end{bmatrix} \implies \begin{bmatrix} c_1\\ c_2 \end{bmatrix} = \begin{bmatrix} 3 & 1\\ -2 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 2\\ 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 2 & -1\\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 2\\ 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 3\\ 7 \end{bmatrix}$$
$$\implies \mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t} = \frac{3}{8} \begin{bmatrix} 3\\ -2 \end{bmatrix} e^{-t} + \frac{7}{8} \begin{bmatrix} 1\\ 2 \end{bmatrix} e^{7t}$$
$$\begin{bmatrix} x(t) = \frac{9}{8} e^{-t} + \frac{7}{8} e^{7t} \\ y(t) = -\frac{3}{4} e^{-t} + \frac{7}{4} e^{7t} \end{bmatrix}$$