

MATH 1300 Linear Algebra for Engineers

Instructor: Richard Taylor

FINAL EXAM

5 December 2011 09:00–12:00

Instructions:

- 1. Read all instructions carefully.
- 2. Read the whole exam before beginning.
- 3. Make sure you have all 9 pages.
- 4. Organization and neatness count.
- 5. You must clearly show your work to receive full credit.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved calculator.

PROBLEM	GRADE	OUT OF
1		5
2		6
3		5
4		4
5		10
6		10
7		5
8		5
9		8
10		5
11		9
TOTAL:		72

Problem 1: Find all solutions of the following system of equations:

 $x_1 + 2x_2 + x_3 + 3x_4 = 4$ $3x_1 + 6x_2 + 5x_3 + 10x_4 = 0$ $5x_1 + 10x_2 + 7x_3 + 17x_4 = 23$

/5

Problem 2: Consider the following linear system in which $\alpha, \beta \in \mathbb{R}$ are arbitrary parameters:

$$x_1 + 2x_2 + x_3 = 11$$

$$x_1 + x_2 + x_3 = 6$$

$$5x_1 - x_2 + \alpha x_3 = \beta$$

Find the value(s) of α and β for which this system has

(a) no solution. /3

/6

(b) a unique solution. /1

(c) infinitely many solutions. /1

(d) Without doing any further calculation, determine the value(s) of α such that the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 5 & -1 & \alpha \end{bmatrix}$$

is *not* invertible.

/1

Problem 3: Solve the matrix equation AXB = C for X, where /5

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 11 & 11 \\ 29 & 27 \end{bmatrix}.$$

Problem 4: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} a & b & x \\ c & d & y \\ 0 & 0 & 1 \end{bmatrix}$ where $a, b, c, d, x, y \in \mathbb{R}$ are arbitrary. Show that if

 ${\cal A}$ is invertible then ${\cal B}$ is also invertible.

/10 **Problem 5:** Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 2 \\ -2 & -2 & 1 \end{bmatrix}$$
.

(a) Without attempting to evaluate A^{-1} , determine whether A is invertible. /3

(a) Evaluate A^{-1} .

(b) Use your answer to part (a) to solve the following linear system. /3

$$x_1 - x_2 + 3x_3 = 1$$

$$2x_1 + x_2 + 2x_3 = 2$$

$$-2x_1 - 2x_2 + x_3 = 3$$

Problem 6: Consider the vectors /10

$$\mathbf{v}_1 = (1, 2, 1, 0)$$
 $\mathbf{v}_2 = (0, -1, 3, k)$ $\mathbf{v}_3 = (1, 1, -k, -4).$

(a) For what value(s) of k are $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly independent? /3

(b) For what value(s) of k is it true that span{ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ } = \mathbb{R}^4 ?

(c) For what value(s) of k are $\mathbf{v}_2, \mathbf{v}_3$ orthogonal to each other? /2

(d) Let $\mathbf{x} = (4, 6, -4, -8)$. For what value(s) of k is $\mathbf{x} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_3\}$?

/5 **Problem 7:** Find an equation (in any form) for the plane passing through the points

(1,2,3), (-1,2,0), and (2,-3,4).

Problem 8: Find the distance from the point (2, 2, 2) to the plane whose equation is x + 2y + 3z = 6.

/5

/3

/8 **Problem 9:** In a certain city, it is known that each year 30% of the people living downtown move to the suburbs, while 20% of the people living in the suburbs move downtown.

(a) Use this information to define a Markov chain and find its transition matrix.

(b) At the steady state, what is the ratio of the suburban to the downtown population? /3

(c) Write (but do not evaluate) a matrix expression that gives the population of each region after 6 years, if initially there are 5 million people living downtown and 3 million in the suburbs. /2

Problem 10: Let A be a 2 × 2 matrix with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 9$, and corresponding eigenvectors $\mathbf{v}_1 = (1, -1)$ and $\mathbf{v}_2 = (1, 1)$. (a) Find A.

/3

(b) Write (but do not evaluate) an expression for $A^{15}.\ /2$

/9 Problem 11: Consider the following system of differential equations for functions x(t), y(t):

$$\begin{cases} x' = x + 3y \\ y' = 3x + y \end{cases}$$

(a) Find the general solution of this system. $\left/ 6 \right.$

(b) Find a particular solution with initial conditions x(0) = 1, y(0) = -2.