

MATH 212 Linear Algebra I

Instructor: Richard Taylor

MIDTERM EXAM #2 SOLUTIONS

28 March 2008 08:30-09:20

Instructions:	PROBLEM	GRADE	OUT OF
1. Read all instructions carefully.	1		6
2. Read the whole exam before beginning.	2		7
3. Make sure you have all 5 pages.			'
4. Organization and neatness count.	3		7
5. You must clearly show your work to receive full credit.	4		4
6. You may use the backs of pages for calculations.	тт		т
7. You may use an approved formula sheet.	5		5
8. You may use an approved calculator.	TOTAL:		29

/4

expand in minors along the first column:

$$\det A = \cos \theta \begin{vmatrix} \cos \theta & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{vmatrix} - (-\sin \theta) \begin{vmatrix} \sin \theta & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{vmatrix}$$
$$= \cos^2 \theta \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} + \sin^2 \theta \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}$$
$$= \cos^2 \theta (\underbrace{\cos^2 \alpha + \sin^2 \alpha}_{1}) + \sin^2 \theta (\underbrace{\cos^2 \alpha + \sin^2 \alpha}_{1})$$
$$= \cos^2 \theta + \sin^2 \theta$$
$$= \boxed{1}$$

(b) Prove that A has an inverse for any values of θ and $\alpha.$ /2

since det $A = 1 \neq 0$ we have that A^{-1} exists $\forall \alpha, \theta \in \mathbb{R}$.

Problem 2: Let $\mathbf{v}_1 = (1, 1), \mathbf{v}_2 = (2, \alpha), \text{ and let } \mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}.$

(a) If $\alpha = 2$, explain why \mathcal{B} is *not* a basis for \mathbb{R}^2 .

if $\alpha = 2$ then $\mathbf{v}_2 = 2\mathbf{v}_1$

/7

/3

- $\implies \mathbf{v}_1, \, \mathbf{v}_2$ are not linearly independent
- $\implies \mathcal{B}$ is not a basis

(b) Prove that if $\alpha \neq 2$ then \mathcal{B} is a basis for \mathbb{R}^2 .

- if $\alpha \neq 2$ then det $\begin{bmatrix} 1 & 2 \\ 1 & \alpha \end{bmatrix} = \alpha - 2 \neq 0$ so the columns \mathbf{v}_1 , \mathbf{v}_2 are linearly independent - then \mathcal{B} is a basis, since *any* two linearly independent vectors form a basis for \mathbf{R}^2 **Problem 3:** Let A be a given $n \times n$ matrix.

(a) Let $V = {\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}}$. (i.e. V is the set of solutions of the linear system $A\mathbf{x} = \mathbf{0}$.) Prove that V is a subspace of \mathbb{R}^n .

/4

Clearly $V \subseteq \mathbb{R}^n$, so we need only check the closure axioms:

1. suppose $\mathbf{x}_1, \mathbf{x}_2 \in V$; then $\mathbf{x}_1 + \mathbf{x}_2 \in V$, since:

$$A(\mathbf{x}_1 + \mathbf{x}_2) = \underbrace{A\mathbf{x}_1}_{\mathbf{0}} + \underbrace{A\mathbf{x}_2}_{\mathbf{0}} = \mathbf{0}$$

2. suppose $\mathbf{x} \in V$, $\alpha \in \mathbb{R}$; then $\alpha \mathbf{x} \in V$, since:

$$A(\alpha \mathbf{x}) = \alpha \underbrace{(A\mathbf{x})}_{\mathbf{0}} = \mathbf{0}$$

(b) Let $\mathbf{b} \in \mathbb{R}^n$ be a given non-zero vector, and let $W = {\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}}$. (i.e. W is the set of solutions of the linear system $A\mathbf{x} = \mathbf{b}$.) Prove that W is *not* a vector space.

/3

solution #1:

W is not closed under addition: if $\mathbf{x}_1, \mathbf{x}_2 \in W$ then $\mathbf{x}_1 + \mathbf{x}_2 \notin W$ since:

$$A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{b} + \mathbf{b} = 2\mathbf{b} \neq \mathbf{b}.$$

solution #2:

W is not closed under scalar multiplication: if $\mathbf{x} \in W$ and $\alpha \neq 0$ then $\alpha \mathbf{x} \notin W$ since:

$$A(\alpha \mathbf{x}) = \alpha(A\mathbf{x}) = \alpha \mathbf{b} \neq \mathbf{b}.$$

solution #3:

W does not contain the ${\bf 0}$ element since

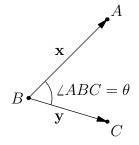
$$A\mathbf{0} = \mathbf{0} \neq \mathbf{b},$$

hence W is not a vector space.

(Note: Any one of these solutions would be sufficient; e.g. it is *not* necessary to show failure of closure under *both* addition and scalar multiplication; failure of just one of these suffices to demonstrate that W is not a vector space.)

/4

Problem 4: The vertices A(3,0,2), B(4,3,0) and C(8,1,-1) form a triangle in \mathbb{R}^3 . Calculate the angle $\angle ABC$ to the nearest degree.



Let
$$\mathbf{x} = BA = (3, 0, 2) - (4, 3, 0) = (-1, -3, 2).$$

Let $\mathbf{y} = \overline{BC} = (8, 1, -1) - (4, 3, 0) = (4, -2, -1)$

Then

 $\mathbf{x} \cdot \mathbf{y} = -4 + 6 - 2 = 0 = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta \implies \cos \theta = 0 \implies \boxed{\theta = 90^\circ}$

Problem 5: The planes x + 2y + 13z = 8 and x + 3y + 18z = 10 intersect in a line. Find the equation of this line:

(a) in parametric (vector) form.

/3

Solve the linear system:

$$\begin{bmatrix} 1 & 2 & 13 & 8 \\ 1 & 3 & 18 & 10 \end{bmatrix} \xrightarrow{R_2 - R_2} \begin{bmatrix} 1 & 2 & 13 & 8 \\ 0 & 1 & 5 & 2 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 5 & 2 \end{bmatrix}$$

The general solution (which gives all points on the line of intersection) is

$$\begin{cases} x = 4 - 3t \\ y = 2 - 5t \\ z = t \end{cases} \quad (t \in \mathbb{R})$$

which can be written in vector form as

 $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ with $\mathbf{x}_0 = (4, 2, 0), \ \mathbf{v} = (-3, -5, 1)$

(b) in symmetric form.

/2

Solve for the parameter t:

$$t = \boxed{\frac{x-4}{-3} = \frac{y-2}{-5} = \frac{z-0}{-1}}$$