

MATH 212 Linear Algebra I

Instructor: Richard Taylor

FINAL EXAM SOLUTIONS

19 April 2008 09:00–12:00

PROBLEM	GRADE	OUT OF
1		6
2		6
3		4
4		3
5		4
6		6
7		7
8		4
9		4
10		4
11		5
TOTAL:		53

Instructions:

- 1. Read all instructions carefully.
- 2. Read the whole exam before beginning.
- 3. Make sure you have all 8 pages.
- 4. Organization and neatness count.
- 5. You must clearly show your work to receive full credit.
- 6. You may use the backs of pages for calculations.
- 7. You may use an approved formula sheet.
- 8. You may use an approved calculator.

Problem 1: Consider the following system of linear equations, in which $a \in \mathbb{R}$ is a given constant.

$$x + 2y - 3z = 4$$
$$3x - y + 5z = 2$$
$$4x + y + (a2 - 14)z = a + 2$$

For what value(s) of a does this system have:

(a) an infinite number of solutions? Find the solutions in this case.

/4

/6

Row reduce the augmented matrix:

$$\begin{bmatrix} 1 & 2 & -3 & | & 4 \\ 3 & -1 & 5 & | & 2 \\ 4 & 1 & a^2 - 14 & | & a+2 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & 2 & -3 & | & 4 \\ 0 & -7 & 14 & | & -10 \\ 0 & -7 & a^2 - 2 & | & a-14 \end{bmatrix}$$
$$\xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 2 & -3 & | & 4 \\ 0 & -7 & 14 & | & -10 \\ 0 & 0 & a^2 - 16 & | & a-4 \end{bmatrix}$$

This system will have a free variable (hence an infinite family of solutions) if and only if both:

$$\begin{cases} a^2 - 16 = 0\\ a - 4 = 0 \end{cases} \implies \boxed{a = 4}$$

(b) a unique solution? Find the solution in this case. $\left/1\right.$

The system will have three pivots (hence a unique solution) if and only if:

$$a^2 - 16 \neq 0 \implies a \neq \pm 4$$

(c) no solution? /1

The system will have no solution if and only if

$$\begin{cases} a^2 - 16 = 0\\ a - 4 \neq 0 \end{cases} \implies \boxed{a = -4}$$

Problem 2: Consider the matrix $A = \begin{bmatrix} k & 0 & 0 \\ 1 & k & 0 \\ 0 & 1 & k \end{bmatrix}$ where $k \in \mathbb{R}$ is a given constant.

(a) Prove that A is invertible if and only if $k \neq 0$. /3

We have:

$$\det A = (k) \begin{vmatrix} k & 0 \\ 1 & k \end{vmatrix} - (1) \begin{vmatrix} 0 & 0 \\ 1 & k \end{vmatrix} + (0) \begin{vmatrix} 0 & 0 \\ k & 0 \end{vmatrix}$$
$$= k(k^2 - 0) - 1(0 - 0) + 0$$
$$= k^3$$

Thus det $A \neq 0$ (hence A is invertible) if and only if $k^3 \neq 0$ (equivalently $k \neq 0$).

(b) Assume $k \neq 0.$ Use the Gauss-Jordan method to calculate $A^{-1}.$ /3

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} k & 0 & 0 \mid 1 & 0 & 0 \\ 1 & k & 0 \mid 0 & 1 & 0 \\ 0 & 1 & k \mid 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - \frac{1}{k}R_1} \begin{bmatrix} k & 0 & 0 \mid 1 & 0 & 0 \\ 0 & k & 0 \mid -1/k & 1 & 0 \\ 0 & 1 & k \mid 0 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{R_3 - \frac{1}{k}R_2} \begin{bmatrix} k & 0 & 0 \mid 1 & 0 & 0 \\ 0 & k & 0 \mid -1/k & 1 & 0 \\ 0 & 1 & k \mid 1/k^2 & -1/k & 1 \end{bmatrix}$$
$$\xrightarrow{\times \frac{1}{k}} \begin{bmatrix} 1 & 0 & 0 \mid 1/k & 0 & 0 \\ 0 & 1 & 0 \mid -1/k^2 & 1/k & 0 \\ 0 & 0 & 1 \mid 1/k^3 & -1/k^2 & 1/k \end{bmatrix} = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

Thus

$$A^{-1} = \begin{bmatrix} 1/k & 0 & 0\\ -1/k^2 & 1/k & 0\\ 1/k^3 & -1/k^2 & 1/k \end{bmatrix}$$

Problem 3: Suppose A is an $n \times n$ matrix such that $A^2 - 3A + I = 0$. Show that $A^{-1} = 3I - A$.

solution #1 (part marks):

If we assume that A is invertible, we can right-multiply both sides by A^{-1} :

$$(A^2 - 3A + I)A^{-1} = (0)A^{-1} \implies A - 3I + A^{-1} = 0$$

 $\implies A^{-1} = 3I - A.$

solution #2:

/4

A better approach: we have

$$I = 3A - A^2 = A(3I - A)$$
$$= (3I - A)A$$

hence A is invertible and its inverse is the matrix 3I - A.

Problem 4: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^4$ and $k \in \mathbb{R}$. Which of the following expressions do not make sense? Explain.

(a) $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$

 $\mathbf{v} \cdot \mathbf{w}$ is a scalar; the dot-product of a vector with a scalar is undefined.

(b) $(\mathbf{u} \cdot \mathbf{v}) + \mathbf{w}$

 $\mathbf{u} \cdot \mathbf{v}$ is a scalar; addition of a scalar and a vector is undefined.

(c) $k \cdot (\mathbf{u} + \mathbf{v})$

 $\mathbf{u}+\mathbf{v}$ is a vector; the dot-product of a scalar with a vector is undefined.

Problem 5: Prove Pythagoras' Theorem:

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

Assume \mathbf{x}, \mathbf{y} are orthogonal (i.e. $\mathbf{x} \cdot \mathbf{y} = 0$). Then:

$$\|\mathbf{x} + \mathbf{y}\|^{2} = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y})$$

= $\mathbf{x} \cdot \mathbf{x} + \underbrace{\mathbf{x} \cdot \mathbf{y}}_{0} + \underbrace{\mathbf{y} \cdot \mathbf{x}}_{0} + \mathbf{y} \cdot \mathbf{y}$
= $\mathbf{x} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{y}$
= $\|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2}$

/6

/4

Problem 6: Let M_{22} be the set of all 2×2 matrices. (Recall that M_{22} is a vector space.) Let V be the set of all matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. Prove that V is a subspace of M_{22} .

Clearly $V \subset M_{22}$ so we need only check the closure axioms:

1. Suppose
$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
, $B = \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in V$. Then $A + B \in V$ since
$$A + B = \begin{bmatrix} a + c & 0 \\ 0 & b + d \end{bmatrix}$$

has the required form for membership in V.

2. Suppose $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in V, \alpha \in \mathbb{R}$. Then $\alpha A \in V$ since $\alpha A = \begin{bmatrix} \alpha a & 0 \\ 0 & \alpha b \end{bmatrix}$

has the required form for membership in V.

Problem 7: Let $\mathbf{u} = (1, 0, 0), \mathbf{v} = (2, 2, 0), \mathbf{w} = (3, 3, 3).$ (a) Prove that $\mathcal{B} = {\mathbf{u}, \mathbf{v}, \mathbf{w}}$ a basis for \mathbb{R}^3 .

We have

/7

 $\overline{/3}$

det
$$\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{vmatrix} = 6 \neq 0$$

so $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Since any 3 linearly independent vectors form a basis for $\mathbb{R}^3, \mathcal{B}$ must be such a basis.

(b) Let $\mathbf{x} = (1, 2, 3)$. Find the vector $\mathbf{x}_{\mathcal{B}}$ giving the coordinates of \mathbf{x} relative to \mathcal{B} . /3

We have $\mathbf{x}_{\mathcal{B}} = (c_1, c_2, c_3)$ where $c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w} = \mathbf{x}$. This gives the a linear system with the following augmented matrix: $\begin{bmatrix} 1 & 2 & 3 & | 1 \end{bmatrix}$

$\left[\begin{array}{ccc c} 0 & 2 & 3 & 2 \\ 0 & 0 & 3 & 3 \end{array}\right]$	
By back-substitution this gives $c_3 = 1 \implies c_2 = -\frac{1}{2} \implies c_1 = -1$ so	
$\mathbf{x}_{\mathcal{B}} = \begin{bmatrix} -1\\ -\frac{1}{2}\\ 1 \end{bmatrix}$	

(c) Is $\mathcal{C}=\{\mathbf{u},\mathbf{v},\mathbf{w},\mathbf{x}\}$ a basis for $\mathbb{R}^3?$ Justify your answer. /1

No. There can be at most 3 linearly independent vectors in \mathbb{R}^3 ; i.e. the linear system with augmented matrix $\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{x} & | & \mathbf{0} \end{bmatrix}$ must have at least one free variable since the coefficient matrix has 4 columns but at most 3 pivots, hence $c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w} + c_4\mathbf{x} = \mathbf{0}$ has more than just the trivial solution and the vectors are therefore not linearly independent.

Problem 8: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation of the (x, y)-plane that effects a counterclockwise rotation by 90° followed by an expansion by a factor of 5 in the *x*-coordinate. Find the standard matrix for T.

We have

 \mathbf{SO}

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$
$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-5\\0\end{bmatrix}$$
$$A = \begin{bmatrix}0 & -5\\1 & 0\end{bmatrix}$$

Problem 9: Find an equation of the plane passing through the point (2, -7, 6) and parallel to the plane 5x - 2y + z = 9.

The given plane has normal $\mathbf{n} = (5, -2, 1)$. The plane in question is parallel to the given plane, so must have the same normal. Therefore the equation of the plane sought is, in normal form:

$$((x, y, z) - (2, -7, 6)) \cdot (5, -2, 1) = 0 \implies (x - 2, y + 7, z - 6) \cdot (5, -2, 1) = 0 \implies (5)(x - 2) + (-2)(y + 7) + (1)(z - 6) = 0 \implies 5x - 2y + z = 30$$

Problem 10: Find the eigenvalues of the matrix $A = \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$.

$$0 = \det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & -7 \\ 1 & 2 - \lambda \end{vmatrix} = -(2 + \lambda)(2 - \lambda) + 7$$
$$= -(4 - \lambda^2) + 7$$
$$= \lambda^2 + 3$$
$$\implies \lambda = \pm \sqrt{3}i$$

/5 **Problem 11:** Consider the matrix $A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$. (a) Show that $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ is an eigenvector for A and find the corresponding eigenvalue.

$$A\mathbf{v} = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ 8 \end{bmatrix} = 4 \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 4\mathbf{v}$$

So **v** is an eigenvector, with corresponding eigenvalue $\lambda = 4$.

(b) Calculate
$$A^5 \mathbf{x}$$
 where $\mathbf{x} = \begin{bmatrix} 9\\ 6 \end{bmatrix}$.

$$A^{5}\mathbf{x} = A^{5}(3\mathbf{v}) = 3(A^{5}\mathbf{v}) = 3(4^{5}\mathbf{v}) = 3072\mathbf{v} = \begin{bmatrix} 9216\\6144 \end{bmatrix}$$