

MATH 212 Linear Algebra I

Instructor: Richard Taylor

FINAL EXAM

24 April 2006 19:00–22:00

Instructions:

- 1. Read all instructions carefully.
- 2. Read the whole exam before beginning.
- 3. Make sure you have all 9 pages.
- 4. Organize and write your solutions neatly.
- 5. You may use the backs of pages for calculations.
- 6. You must clearly show your work to receive full credit.
- 7. You may use a calculator.

PROBLEM	GRADE	OUT OF
1		6
2		6
3		6
4		6
5		10
6		5
7		5
8		6
TOTAL:		50

Problem 1: Find all solutions of the linear system

 $x_1 + 2x_2 + 2x_3 + x_4 = 14$ -x_1 - 2x_2 - 3x_4 = -4 $2x_1 + 4x_2 + 8x_3 - 2x_4 = 48.$

SOLUTION:

/6

	1	2	2	1	14	BBEE	1	2	0	3	4	
Gauss-Jordan method gives:	-1	-2	0	-3	-4	$\xrightarrow{\operatorname{ItItLI}}$	0	0	1	-1	5	
	2	4	8	-2	48		0	0	0	0	0	
(a	$c_1 = 4$	$-2x_{2}$	2 —	$3x_4$								
so the general solution is: $\begin{cases} a \\ a \end{cases}$	$c_3 = 5 - $	$+x_4$										
l a	x_2, x_4 a	are fr	ee									

Problem 2: Consider the linear system /6

$$x_1 + x_3 = q$$

$$x_2 + 2x_4 = 0$$

$$x_1 + 2x_3 + 3x_4 = 0$$

$$2x_2 + 3x_3 + px_4 = 3$$

in which the numbers p and q are parameters. Under what conditions (i.e. for what values of p and q) does this system have: (a) a unique solution?

SOLUTION:

	1	0	1	0	$\left \begin{array}{c} q \end{array} \right $		1	0	1	0	q	
	0	T	0	2	0	REF	0	T	0	2	0	
	1	0	2	3	0	,	0	0	1	3	-q	
	0	2	3	p	3		0	0	0	p-13	3 + 3q	
e	o th	oro	ie	9 11 [.]	niau	a solutio	n a	e lo	no	ag n _ 1'	3 ≠ 0 Tł	horoforo $n \neq 13$

(b) no solution?

SOLUTION:

p = 13 and $3 + 3q \neq 0$. Therefore p = 13 and $q \neq -1$.

(c) an infinite number of solutions?

SOLUTION:

p = 13 and q = -1.

SOLUTION:

[1]	0	0	1	0	0		[1]	0	0	1	0	0]	[1	0	0]
4	1	0	0	1	0	$\xrightarrow{\text{RREF}}$	0	1	0	-4	1	0	. Therefore $A^{-1} =$	-4	1	0
0	4	1	0	0	1		0	0	1	16	-4	1		16	-4	1

	[1	0	0		[1	0	
(b) Find a matrix X such that	4	1	0	X =	0	1	
	0	4	1		1	1	

SOLUTION:

$$AX = B \implies X = A^{-1}B = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 16 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \\ 17 & -3 \end{bmatrix}.$$

SOLUTION:

$$det A = (a) \begin{vmatrix} a & 1 \\ 1 & a \end{vmatrix} - (1) \begin{vmatrix} 1 & 1 \\ 1 & a \end{vmatrix} + (1) \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$$
$$= (a)(a^2 - 1) - (1)(a - 1) + (1)(1 - a)$$
$$= a^3 - 3a + 2$$

(b) Under what conditions (i.e. for what value(s) of a) is A not invertible?

SOLUTION:

 $\det A = a^3 - 3a + 2 = 0 \implies a = -2 \text{ or } 1$

/10

Problem 5: Consider the matrix $A = \begin{bmatrix} 3 & 2 \\ 5 & 0 \end{bmatrix}$.

(a) Find the characteristic polynomial for A.

SOLUTION:

$$\left| P(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 \\ 5 & -\lambda \end{vmatrix} = (3 - \lambda)(-\lambda) - 10 = \lambda^2 - 3\lambda - 10$$

(b) Find the eigenvalues for A, and the corresponding eigenvectors.

SOLUTION:

$$\begin{aligned} \det(A - \lambda I) &= 0 \implies \lambda^2 - 3\lambda - 10 = (\lambda - 5)(\lambda + 2) = 0 \implies \lambda = 5 \text{ or } \lambda = -2. \\ \text{case } \lambda_1 &= 5: \ (A - \lambda I)\mathbf{v} = \mathbf{0} \implies \begin{bmatrix} -2 & 2 & | & 0 \\ 5 & -5 & | & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \implies \mathbf{v}_1 = (1, 1) \\ \text{case } \lambda_2 &= -2: \ (A - \lambda I)\mathbf{v} = \mathbf{0} \implies \begin{bmatrix} 5 & 2 & | & 0 \\ 5 & 2 & | & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 2/5 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \implies \mathbf{v}_2 = (2, -5) \end{aligned}$$

Problem 5 continued...

(c) Show that -8 is an eigenvalue of A^3 .

SOLUTION:

Consider \mathbf{v}_2 from part (b):
$(A^{3})\mathbf{v}_{1} = A(A(A\mathbf{v}_{1})) = A(A(\lambda_{1}\mathbf{v}_{1})) = \lambda_{1}A(A\mathbf{v}_{1}) = \lambda_{1}A(\lambda_{1}\mathbf{v}_{1}) = \dots = \lambda_{1}^{3}\mathbf{v}_{1} = (-2)^{3}\mathbf{v}_{1}$
Since $(A^3)\mathbf{v}_1 = (-8)\mathbf{v}_1$, by definition -8 is an eigenvalue of A^3 (with eigenvector \mathbf{v}_1).

(d) Use your answer to (b) to calculate A^5 .

SOLUTION:

We have $A = PDP^{-1}$ with $D = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$ and $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -5 \end{bmatrix}$.
Therefore
$A^{5} = PD^{5}P^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 5^{5} & 0 \\ 0 & (-2)^{5} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & -5 \end{bmatrix}^{-1}$
$= -\frac{1}{7} \begin{bmatrix} 1 & 2 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 5^5 & 0 \\ 0 & (-2)^5 \end{bmatrix} \begin{bmatrix} -5 & -2 \\ -1 & 1 \end{bmatrix}$
$= -\frac{1}{7} \begin{bmatrix} 1 & 2\\ 1 & -5 \end{bmatrix} \begin{bmatrix} (-5)5^5 & (-2)5^5\\ -(-2)^5 & (-2)^5 \end{bmatrix}$
$= -\frac{1}{7} \left[\begin{array}{cc} (-5)5^5 - 2(-2)^5 & (-2)5^5 + 2(-2)^5 \\ (-5)5^5 + 5(-2)^5 & (-2)5^5 - 5(-2)^5 \end{array} \right]$
$= \left[\begin{array}{rrr} 2223 & 902\\ 2255 & 870 \end{array}\right]$

24 April 2006

SOLUTION:

 $T(\mathbf{e}_1) = (-\cos(30), \sin(30)) = (-\sqrt{3}/2, 1/2)$ $T(\mathbf{e}_2) = (\sin(30), \cos(30)) = (1/2, \sqrt{3}/2)$ Therefore $A_T = \begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$. **Problem 7:** Recall that P_2 is the vector space consisting of all polynomials of degree ≤ 2 . Do the polynomials $f(x) = 1 + x + x^2$, $g(x) = x + x^2$ and $h(x) = x^2$ form a basis for P_2 ?

SOLUTION:

f, g, h form a basis for P_2 if and only if for any coefficients A, B, C there exist scalars c_1, c_2, c_3 such that

$$c_1 f(x) + c_2 g(x) + c_2 h(x) = A + Bx + Cx^2$$
$$\implies c_1 (1 + x + x^2) + c_2 (x + x^2) + c_3 (x^2) = A + Bx + Cx^2.$$

Matching coefficients, this is equivalent to the linear system

 $c_1 = A$ $c_1 + c_2 = B$ $c_1 + c_2 + c_3 = C.$

The coefficient matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ has $\det A = 1 \neq 0$, so there is a (unique) solution.

Therefore f, g, h form a basis for P_2 .

Problem 8: Let A be a given 4×4 matrix, and let $V \subset \mathbb{R}^4$ be the set of vectors \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$. That is, $V = {\mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0}}$. Prove that V is a subspace of \mathbb{R}^4 . (V is called the *null space* of A.)

SOLUTION:

Let $\mathbf{x}, \mathbf{y} \in V$. Then $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = 0$.

Then $\mathbf{x} + \mathbf{y} \in V$ since $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$,

and $\alpha \mathbf{x} \in V$ since $A(\alpha \mathbf{x}) = \alpha(A\mathbf{x}) = \alpha \mathbf{0} = \mathbf{0}$.

Since V is a subset of the vector space \mathbb{R}^4 and is closed under addition and scalar multiplication, V is a subspace of \mathbb{R}^4 . qed.