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About this Document

These lecture notes are intended for my use only, and they are very much a
work in progress. I make them available for free and without any warranty,
expressed or implied. In fact you probably shouldn’t use them at all.

This is not a textbook. Please, buy the required textbook for the course and
use it. My aim is to produce a condensed set of notes to help me organize
and improve upon my lecture material. Thus, very few of my examples
include full solutions; these are to be worked out in class, along with the
sundry other details, diagrams, humorous anecdotes, and everything else
that makes attending lectures worthwhile. Do not use these as a substitute
for taking notes in class.

You are free to copy and distribute this document, in whole or in part. I
don’t even mind if you teach from these notes because you’re too lazy to
make up your own. In either case, please credit the author.
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1 Preliminaries
Lec. #1

Central problem of Differential Calculus:

given f(x), find slope of y = f(x) at x = a.

- this led to definition of the derivative, which in turn had many applications

Central problem of Integral Calculus:

given f(x), find area under y = f(x) from x = a to x = b.

- similarly, this will lead to definition of the integral, which will also have many applications

- the two central problems turn out to be inverses of each other; this gives the Fundamental Theorem
of Calculus, which we will study in detail

2 Areas Under Graphs

To computing the area under a graph, we start with an approximation.

Example 2.1. Find the area under y = x2 between x = 0 and x = 1.

If I gave you this shape as a cutout piece of paper and asked to calculate the area, you might cut it up
into rectangles and add the areas. This is what we’ll do.

Cutting into 4 vertical rectangles, with heights given by the height of the graph at their left endpoints,
we get an area

S4 = 0 + (0.25)(0.25)2 + (0.25)(0.5)2 + (0.25)(0.75)2 ≈ 0.219,

which is an underestimate of the true area.

We could also evaluate heights at right endpoints, and get

S4 = (0.25)(0.25)2 + (0.25)(0.5)2 + (0.25)(0.75)2 + (0.25)(1)2 ≈ 0.469

which is an overestimate of the true area.

Key Idea: we can get a better approximation if we use more, narrower rectangles (again using right
endpoints):

S10 = (0.1)(0.1)2 + (0.1)(0.2)2 + (0.1)(0.3)2 + · · · + (0.1)(0.9)2 + (0.1)(1)2 = 0.385

S50 = (0.02)(0.02)2 + (0.02)(0.04)2 + · · · + (0.02)(0.98)2 + (0.02)(1)2 = 0.3434

S100 = (0.01)(0.01)2 + (0.01)(0.02)2 + · · · + (0.01)(0.99)2 + (0.01)(1)2 = 0.33835

Note that the areas get smaller: each overestimates the true area by less.Lec. #2

What we’d really like is to use an infinite number of rectangles to get the exact area, because as
n → ∞ the error tends to zero. But this gives nonsense: an infinite number of rectangles with zero
width gives... zero area!? Rather, the calculus way to do this is to say that

A = lim
n→∞

Sn.

Our goal is to calculate this limit. To do this we need a formula for Sn, the area that results if we use
n rectangles.
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Note that each rectangle with have a width ∆x = 1/n.

The height of the i’th rectangle comes from evaluating f(x) at the corresponding x-coordinate:

x1 = ∆x, x2 = 2∆x, x3 = 3∆x, . . .

so in general,

xi = i∆x = i

(
1

n

)

=
i

n
.

So the height of the i’th rectangle is

f(xi) =

(
i

n

)2

=
i2

n2
.

Now the area of the i’th rectangle is

Ai = height × width = f(xi)∆x =

(
i2

n2

)
1

n
=

i2

n3

So, finally, the total area of all n rectangles is

Sn = A1 + A2 + A3 + · · · + An

=
n∑

i=1

Ai

=

n∑

i=1

i2

n3
(...aside on “sigma notation”)

=
1

n3

n∑

i=1

i2

=
1

n3
(12 + 22 + 32 + · · · + n2)

=
1

n3

n(n + 1)(2n + 1)

6
=

n(n + 1)(2n + 1)

6n3
.

The hard work is done... now we can use this formula to easily compute the area for any value of n.
For example,

S100 =
100 × 101 × 201

6 × 1003
= 0.33835

S1000 =
1000 × 1001 × 2001

6 × 10003
= 0.3338335

S10000 =
10000 × 10001 × 20001

6 × 100003
= 0.333383335

Even better, though, we can now evaluate limn→∞ to get the exact area. We suspect this limit is 1/3,
and we can prove it: :

A = lim
n→∞

Sn = lim
n→∞

n(n + 1)(2n + 1)

6n3

= lim
n→∞

2n3 + 3n2 + n

6n3

= lim
n→∞

2 + 3
n + 1

n2

6

=
2 + 0 + 0

6
=

1

3
.



MATH 124 – Calculus II Page 8 of 37

Aside on sigma notation and useful formulas
∑n

i=1 Ai is a shorthand for A1 + A2 + · · · + An. In general, anything of the form
∑n

i=1(· · · )
means “plug all values of i from 1 to n in the formula (· · · ), and sum all n terms that result.”

In doing area calculations, there are some useful formulas to have:

n∑

i=1

i = 1 + 2 + 3 + · · · + n =
n(n + 1)

2

n∑

i=1

i2 = 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6

n∑

i=1

i3 = 13 + 23 + 33 + · · · + n3 =

(
n(n + 1)

2

)2

and of course
n∑

i=1

1 = 1 + 1 + · · · + 1
︸ ︷︷ ︸

n terms

= n.

It is also useful to rearrange sums using the following:

n∑

i=1

Cai = C
n∑

i=1

ai

n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi.

These allow us to do sums like

n∑

i=1

(
3i − i2

)
=

n∑

i=1

3i −
n∑

i=1

i2 = 3
n∑

i=1

i −
n∑

i=1

i2 = 3
n(n + 1)

2
− n(n + 1)(2n + 1)

6
.

Let’s do another, simpler area that we already know the answer for:

Example 2.2. Find the area under y = 2x from x = 0 to x = 3.

(note: since the region is a triangle, we know the area is 1
2 × 3 × 6 = 9.)

Now ∆x = 3
n , and xi = i∆x = 3i

n , and we get

Sn =
n∑

i=1

Ai =
n∑

i=1

f(xi)∆x

=

n∑

i=1

(

2 · 3i

n

)(
3

n

)

=
n∑

i=1

18i

n2
and now we evaluate the sum...

=
18

n2

n∑

i=1

i

=
18

n2

n(n + 1)

2
.

So the exact area is

A = lim
n→∞

Sn = lim
n→∞

9n(n + 1)

n2
= lim

n→∞

9n2 + 9n

n2
= lim

n→∞

(

9 +
9

n

)

= 9.
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Lec. #3

Example 2.3. Find the area under y = x between x = 2 and x = 4.

Example 2.4. Find the area under y = x3 between x = 0 and x = 1.

3 The Definite Integral

To find area under y = f(x) between x = a and x = b, we started with the area of n vertical strips:

Sn =
n∑

i=1

f(xi)∆x where ∆x =
b − a

n
,

then we found the exact area by letting n → ∞:

A = lim
n→∞

Sn = lim
n→∞

[
n∑

i=1

f(xi)∆x

]

.

This complicated expression occurs so often that there is a shorthand notation:

Definition 3.1.
∫ b

a
f(x) dx = lim

n→∞

[
n∑

i=1

f(xi)∆x

]

is called the definite integral of f from a to b.

It can be interpreted as the area under y = f(x) between x = a and x = b, but it will also have other
interpretations (as was the case for the derivative).

So, for example,
∫ π
0 sin(x) dx is a number, which we can interpret as the area under y = sinx between

x = 0 and x = π.

You can think of dx as an infinitesimal ∆x. The symbol
∫ b
a means “sum” from a to b, in the sense of

the sum of an infinite number of rectangles each with infinitesimal area dA = f(x) dx (height times
infinitestimal width). (Later, this will be a very useful way of thinking about integrals.) As n → ∞
(and ∆x → 0),

n∑

i=1

f(x)∆x becomes

∫ b

a
f(x) dx.

Note the correspondence between the symbols in the two expressions.

The dx is also notational: it tells us that x is the variable over which the integral is calculated. So,
for example,

∫ π
0 sin(x) dx and

∫ π
0 sin(t) dt both represent the same number, the same area: it doesn’t

matter what label we use for the horizontal axis. So the variables x and t are somewhat arbitrary... we
call such variables dummy variables.

In the same way, the index i in the sum
∑n

i=1 f(xi)∆x is a dummy variable: relabelling the index and
writing e.g.

∑n
k=1 f(xk)∆x doesn’t change the meaning or value of the expression. The name of the

index variable is arbitrary.

4 Properties of the Definite Integral

1. if f(x) ≥ 0 then
∫ b
a f(x) dx is the area under the graph between x = a and x = b.

2. otherwise,
∫ b
a f(x) dx = (area above x-axis) − (area below x-axis).
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3.
∫ b
a Cf(x) dx = C

∫ b
a f(x) dx

4.
∫ b
a (f(x) + g(x)) dx =

∫ b
a f(x) dx +

∫ b
a g(x) dx

5.
∫ a
b f(x) dx = −

∫ b
a f(x) dx

Example 4.1. Using 3. we can calculate:

∫ 1

0
6x2 = 6

∫ 1

0
x2 = 6

(
1

3

)

= 2.

Example 4.2. Using 3. and 4. we can calculate:

∫ 1

0
(2 + 3x − 5x2) dx =

∫ 1

0
2 dx

︸ ︷︷ ︸

=2 (area of rectangle)

+ 3

∫ 1

0
x dx

︸ ︷︷ ︸

= 1

2
(area of triangle)

− 5

∫ 1

0
x2 dx

︸ ︷︷ ︸

= 1

3
(from last day))

= 2 +
3

2
− 5

3
=

11

6
.

Lec. #4

Example 4.3. To evaluate
∫ 3
0 (1 − x) dx we could keep track of positive and negative contributions

from different areas: ∫ 3

0
(1 − x) dx =

∫ 1

0
(1 − x) dx

︸ ︷︷ ︸

= 1

2
(triangle)

+

∫ 3

1
(1 − x) dx

︸ ︷︷ ︸

=−2 (triangle)

= −3

2

or we could use the properties of integrals:

∫ 3

0
(1 − x) dx =

∫ 3

0
1 dx

︸ ︷︷ ︸

=3 (rectangle)

−
∫ 3

0
x dx

︸ ︷︷ ︸

= 9

2
(triangle)

= −3

2
.

Example 4.4. Evaluate
∫ 5
1 (4 − 2x) dx.

Example 4.5. Evaluate
∫ 1
−1

√
1 − x2 dx.

4.1 Integrals and symmetry

Example 4.6. Use symmetry to evaluate: (a)

∫ 2

−2
x3dx (b)

∫ π

−π
sinx dx (c)

∫ 2π

0
sinx dx

5 Fundamental Theorem of Calculus (Part I)

Calculating integrals (areas) using the definition 3.1 is hard—even impossible for many cases. (This
is analogous to calculating derivatives from the definition, i.e. lim

h→0
· · · etc.) We need a better way to

evaluate integrals. The main tool is the following theorem.

Theorem 5.1 (Fundamental Theorem of Calculus, Part I). If f is continuous on the interval [a, b]
then ∫ b

a
f(x) dx = F (b) − F (a)

where F is a function such that F ′(x) = f(x) (i.e. F is an antiderivative of f).
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This theorem says that calculating an integral is basically equivalent to finding an antiderivative. So
integration is like the opposite, or inverse, of differentiation. (Later, in Part II of the theorem, we will
see that this is true in an even broader sense.)

Example 5.1. We can use the Fundamental Theorem to evaluate, e.g.,
∫ 1
0 x2 dx. Here f(x) = x2. We

need an antiderivative F (x) so that F ′(x) = x2. The function F (x) = 1
3x3 works, so:

∫ 1

0
x2 dx = F (1) − F (0) =

1

3
(1)3 − 1

3
(0)3 =

1

3
.

We will be evaluating things like F (b) − F (a) a lot, so the following shorthand is useful:

F (x)
∣
∣
∣

b

a
= F (b) − F (a).

In the previous example we could have written

∫ 1

0
x2 dx =

(
1

3
x3

) ∣
∣
∣
∣

1

0

=
1

3
.

Example 5.2. Evaluate: (a)

∫ 2

0
x dx (b)

∫ 1

0
x3 dx (c)

∫ π

0
sinx dx (d)

∫ 9

0

√
x dx

5.1 Net Change Theorem
Lec. #5

There is another very useful interpretation of the derivative, which comes from the fundamental the-
orem. Recall that if the function x(t) gives the position or displacement of an object at time t, then
the derivative x′(t) gives the velocity at time t. Notice that x(t) is an antiderivate of x′(t). So the
fundamental theorem says:

∫ b

a
x′(t) dt = x(b) − x(a).

Turning this around, it says that the net displacement from time a to time b (i.e. x(b) − x(a)) can be
found by integrating the velocity function time t = a to t = b. This makes physical sense: x′(t) dt
represent the infinitesimal distance (= velocity × time) covered in the infinitesimal time increment dt.
The integral sums all these infinitesimal distances over the whole time interval [a, b] to give the total
distance.

Example 5.3. A particle is travelling along the x-axis such that it’s velocity at time t is v(t) = t2.
How far does the particle travel from time 0 to time 5?

The result above says that the total distance can be found using

x(5) − x(0) =

∫ 5

0
v(t) dt =

∫ 5

0
t2 dt =

(1

3
t3

)
∣
∣
∣
∣

5

0

=
125

3
.

Example 5.4. A particle is travelling along the x-axis such that it’s velocity at time t is v(t) = 4− t.
How far does the particle travel from time 0 to time 5? Interpret using a graph of v′(t) vs. t.

In general, if f ′(t) represents the instantaneous rate of change of a quantity f(t), then the fundamental
theorem can be expressed as:

Theorem 5.2 (Net Change Theorem).

∫ b

a
f ′(t) dt = f(b) − f(a).

This allows us to calculate the net change, f(b) − f(a), given only the rate of change, f ′(t).

Examples:
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• if f ′(t) gives the flow rate (m3/min) of water out of a pipe, then
∫ b
a f ′(t) dt gives the total amount

of water (m3) that comes out of the pipe between time t = a and t = b.

• if f ′(t) gives the rate at which you use electricity in your home ($ per day), then
∫ b
a f ′(t) dt gives

the total amount (in $) that you spend on electricity from time a to time b.

• if f ′(t) is the rate of population growth in a certain country (# of individuals per year), then
∫ b
a f ′(t) dt gives the total increase in population from time a to time b.

5.2 The Indefinite Integral

Since the business of computing integrals boils down to finding antiderivatives, it is useful to have a
notation for the antiderivative of a function.

Definition 5.1.

∫

f(x) dx means “the antiderivative of f(x)”. That is,

∫

f(x) dx = F (x) means F ′(x) = f(x).

So, for example,
∫

3x2 dx = x3. But notice that F (x) = x3 +5 is also an antiderivative for f(x) = 3x2.

In fact we could add any constant to F and still have an antiderivative for f . The most general
antiderivative for f(x) = 3x2 is F (x) = x3 + C where C is an arbitrary constant (the so-called
“constant of integration”).

When we write antiderivatives, we always want to use the most general antiderivative that includes
the constant of integration. So, for example,

∫

x dx =
1

2
x2 + C

∫

xn dx =
1

n + 1
xn+1 + C

∫

ex dx = ex + C
∫

sinx dx = cos x + C
∫

cos x dx = − sinx + C

Example 5.5. Evaluate: (a)
1

1 + x2
dx (b)

∫

(1 + x)(2 − x) dx (c)

∫
1 + x

x3
dx (d)

∫

e3x dx

One special antiderivative is ∫
1

x
dx = ln |x| + C.

Without the absolute value, the integral of 1/x would only be defined for x > 0 because of the lnx is
undefined for x ≤ 0. But there must be some function, defined for x < 0, whose derivative is 1/x. You
can check that ln(−x) is such a function. So we have

∫
1

x
dx =

{

ln(x) if x > 0

ln(−x) if x < 0

Of course the piecewise function on the righthand side can be written simply as ln |x|, and we also
must remember to add a constant of integration.
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6 Substitution Rule
Lec. #6

What if we need to calculate an integral, but we can’t easily recognize an antiderivative? e.g.,
∫

3x2ex3

= ?

One useful trick involves a change of variables. We will rewrite the integral in terms of a new variable
u, related to x by

u = x3.

To integrate with respect to u, we need to relate du (the differential of u) to dx (the differential of x.
Differentiating the equation above we get

du = 3x2dx.

Notice that the expression 3x2 dx occurs in the integral, so we can replace this with du to get:
∫

3x2ex3

=

∫

eu du = eu + C = ex3

+ C.

Note how we revert to writing the integral in terms of x; the variable u was used only as an intermediate
step. Check that ex3

actually is an antiderivative for 3x2ex3

. Notice that this worked because the
derivative of x3 also appears in the integral.

In general, if u = g(x) is differentiable then
∫

f
(
g(x)

)
g′(x) dx =

∫

f(u) du.

Example 6.1. Evaluate: (a)

∫

(3x + 5)8 dx (b)

∫
3x√

1 + x2
dx (c)

∫

tan x dx (d)

∫
lnx

5x
dx

(e)

∫
1

x lnx
dx (f)

∫
ex

1 + ex
dx (g)

∫

cos(x)esin(2x) dx

Suppose we need to evaluate a definite integral using a substitution, e.g.
∫ 1

0
2x

√

1 + x2 dx.

There are two methods for doing this, using the subsitution u = 1 + x2, du = 2x dx. One is to first
find an antiderivative:

∫

2x
√

1 + x2 dx =

∫ √
u du =

2

3
u3/2 =

2

3
(1 + x2)3/2

then evaluate at the endpoints:

∫ 1

0
2x

√

1 + x2 dx =
2

3
(1 + x2)3/2

∣
∣
∣
∣

1

0

=
2

3
23/2 − 2

3
.

The other method is to change the limits of integration when we change variables. When x = 0,
u = 1 + (0)2 = 1. When x = 1, u = 1 + (1)2 = 2. So

∫ 1

0
2x

√

1 + x2 dx =

∫ 2

1

√
u du =

2

3
u3/2

∣
∣
∣
∣

2

1

=
2

3
23/2 − 2

3
.

In the second method, we didn’t need to rewrite the integral in terms of x; instead, we evaluated the
definite integral in terms of u, take care to change the limits when we changed the variable.

Example 6.2. Evaluate: (a)

∫ 7

0

√
4 + 3x dx (b)

∫ √
π

0
x cos(x2) dx (c)

∫ 1/2

0

arcsinx√
1 − x2

dx
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7 Areas Between Graphs

Between y = f(x) and y = g(x) (with f(x) ≥ g(x)) the area of an infinitesimal vertical strip is

dA =
(
f(x) − g(x)

)
dx

so the area enclosed between x = a and x = b is

A =

∫

dA =

∫ b

a

(
f(x) − g(x)

)
dx.

Example 7.1. Find the area enclosed between the curves y = 2 − x2 and y = −x

Example 7.2. Find the area above the x-axis enclosed by y =
√

x, y = x − 2 and x = 0.

x

y

42

2

y =
√

x

y = x − 2

7.1 Integration with respect to y

Sometimes areas are easier to find by taking horizontal strips. In the last example, we can express the
bounding curves as

x = y + 2 and x = y2.

An infinitesimal horizontal strip with height dy has area

dA =
(
(y + 2) − y2

)
dy

So the area enclosed is

A =

∫ 2

0
y + 2 − y2 dy =

(
1
2y2 + 2y − 1

3y3
)
∣
∣
∣
∣

2

0

=
10

3
.

8 Integration by Parts
Lec. #7

Subsitutions for finding antiderivatives essentially carry out the inverse of the chain rule. It helps find
antiderivatives, but not all integrals can be done this way.

Integration by parts is like the inverse of the product rule. Recall that

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x).

Integrating both sides gives

f(x)g(x) =

∫
[
f ′(x)g(x) + f(x)g′(x)

]
dx.

If we let u = f(x) and v = g(x) (so that du = f ′(x) dx and dv = g′(x) dx) we can rewrite this as

uv =

∫

v du +

∫

u dv.
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Rearranging gives the formula
∫

u dv = uv −
∫

v du.

To apply the formula to a given integral, you need to choose two substitutions: one for u, the other for
dv.

Example 8.1. Find

∫

x sinx dx.

Choose u = x and dv = sinx dx. Then du = dx and v = − cos x. The integration by parts formula
gives

∫

x sinx dx = x(− cos x) −
∫

(− cos x) dx

= −x cos x +

∫

cos x dx

= −x cos x + sin x + C.

Example 8.2. Find: (a)

∫

x lnx dx (b)

∫

lnx dx (c)

∫

xex dx (d)

∫

x2ex dx (e)

∫

arctanx dx

Example 8.3. Find

∫

ex cos x dx.

9 Volumes
Lec. #8

9.1 Method of discs

Example 9.1. The region bounded by y = x(1 − x) and y = 0 is revolved about the x-axis. Find the
volume of the resulting solid of revolution.

y = x(1 − x)

x

y

1

y

x

dx

1

Taking thin cross-sections perpendicular to the x-axis, we get circular discs of radius r = x(1 − x).
Each disc has volume

dV = πr2dx = π[x(1 − x)]2 dx.

We get the total volume by adding the infinitesimal volume contributions from each disc:

V =

∫

dV =

∫ 1

0
π[x(1 − x)]2 dx.

Evaluate the integral as usual:

V =

∫ 1

0
π[x(1 − x)]2 dx = π

∫ 1

0
(x2 − 2x2 + x4) dx = π

(
1
3x3 − 1

2x4 + 1
5x5

)
∣
∣
∣
∣

1

0

=
π

30
.
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Example 9.2. The region bounded by y = x2, y = 1 and x = 0 is revolved about the y-axis. Find the
volume of revolution.

y = x2

y = 1

x

y

1

y

x1

Taking thin cross-sections perpendicular to the y-axis we get thin discs of volume

dV = πr2 dy

where r = x =
√

y. The total volume is

V =

∫

dV =

∫ 1

0
π(
√

y)2 dy = π

∫ 1

0
y dy = π

(
1
2y2

)
∣
∣
∣
∣

1

0

=
π

2
.

Example 9.3. The region bounded by y = 3 − x, y = 0 and x = 2 is revolved about the y-axis. Find
the volume of revolution.

y = 3 − x x = 2

x

y

1 3

1

x

y

Taking thin cross-sections perpendicular to the y-axis we get thin “washers” of volume

dV = (πr2
2 − πr2

1) dy = π(r2
2 − r2

1) dy

where r2 = 3 − y and r1 = 2. (Imagine taking thin horizontal strips of the bounded region, and
revolving each strip about the y-axis to form dV .)

y = 3 − x x = 2

x

y

1 3

1

dy

x

y

r1

r2

dy

The total volume is

V =

∫

dV =

∫ 1

0

(
π(3 − y)2 − π(2)2

)
dy = π

∫ 1

0

(
(3 − y)2 − 4

)
dy.

Evaluating the integral we get:

V = π

∫ 1

0

(
(3 − y)2 − 4

)
dy = π

∫ 1

0
(5 − 6y + y2) dy = π

(
5y − 3y2 + 1

3y3
)
∣
∣
∣
∣

1

0

=
7π

3
.
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9.2 Method of shells
Lec. #9

Example 9.4. The previous example can be solved by taking thin vertical strips of the bounded
region, and revolving each strip about the y-axis to form dV .

y = 3 − x

x = 2

x

y

1 3

1

dx

h

x

y

h dx

The infinitesimal volume elements are thin-walled cylinders of volume

dV = 2πrhdx

where r = x and h = 3 − x. The total volume is then

V =

∫

dV =

∫ 3

2
2πx(3 − x) dx.

Evaluating the integral we get

V =

∫ 3

2
2πx(3 − x) dx = π

∫ 3

2
(3x − x2) dx = 2π

(
3
2x2 − 1

3x3
)
∣
∣
∣
∣

3

2

= 2π

(
9

2
− 10

3

)

=
7π

3

which agrees with the answer we got by the method of discs.

Example 9.5. The region bounded by y = 2x − x2 and y = 0 is revolved about the y-axis. Find the
volume of revolution.

y = 2x − x2

x

y

1 2

x

y

y = 2x − x2

Using the method of shells we get thin-walled cylinders of volume

dV = 2πrhdx = 2πx(2x − x2)dx

so the total volume is

V =

∫

dV =

∫ 2

0
2πx(2x − x2) dx = 2π

∫ 2

0
(2x2 − x3) dx = 2π

(
2
3x3 − 1

4x4
)
∣
∣
∣
∣

2

0

=
8π

3
.

10 Fundamental Theorem of Calculus (Part II)
Lec. #10

The first part of the Fundamental Theorem says that integration is effectively the inverse of differen-
tiation, in that

∫ b

a
f ′(x) dx = f(x)

∣
∣
∣
∣

b

a

.

That is, if you differentiate a function f , then integrate, you get back to f . The second part of the
theorem says the opposite is also true: if you integrate f then differentiate, you also get back to f .
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Theorem 10.1. If f is continuous on [a, b] then the function

g(x) =

∫ x

a
f(s) ds a ≤ s ≤ b

is an antiderivative for f ; that is, g′(x) = f(x). In other words,

d

dx

∫ x

a
f(s) ds = f(x).

It is helpful to think of the function g(x) as the “area function”. That is, g(x) is the area under the
graph of f between a and x.

Example 10.1. Find the derivative of: (a) g(x) =

∫ x

1
ln(s) ds (b) g(x) =

∫ 5

x
t2 dt

(c) g(x) =

∫ x2

0

√

1 + r3 dr (d) g(x) =

∫ 0

ex

sin3 t dt

11 Improper Integrals
Lec. #11

Example 11.1. Find the area of the infinite region under the graph of y = 1/x2, to the right of x = 1.

y = 1/x

x

y

1

1

We would like to calculate this area by evaluating the integral

∫ ∞

1

1

x2
dx. However, the definition of

the definite integral only refers finite intervals. Integrals of this type are therefore said to be improper.
The following give precise definitions that make sense of improper integrals.

Definition 11.1.

∫ ∞

a
f(x) dx = lim

t→∞

∫ t

a
f(x) dx, if the limit exists and

∫ t
a f(x) dx exists for all t ≥ a.

Definition 11.2.

∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t
f(x) dx, if the limit exists and

∫ b
t f(x) dx exists for all t ≤ b.

Improper integrals are said to be convergent if the corresponding limit exists, and divergent if not.

Definition 11.3.

∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞

a
f(x) dx, if both

∫ a

−∞
f(x) dx and

∫ ∞

a
f(x) dx are

convergent.

We can apply the first definition to solve the previous example:
∫ ∞

1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞

[

− 1

x

]t

1

= lim
t→∞

[

1 − 1

t

]

= 1

so the area of this infinite region is (somewhat surprisingly) 1.

Example 11.2. For each of the following, determine whether the integral is convergent; if it is, evaluate

the integral. (a)

∫ ∞

1

1

x3
dx (b)

∫ ∞

1

1

x
dx (c)

∫ ∞

1
e−x dx (d)

∫ ∞

−∞

1

1 + x2
dx (e)

∫ ∞

−∞
x3e−x4

dx

Example 11.3. For what values of p is the integral

∫ ∞

1
x−p dx convergent?

Example 11.4. The infinite region bounded by y = 1/x and y = 0 to the right of x = 1 is revolved
about the x-axis. Find the volume of revolution.
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11.1 Discontinuous integrands
Lec. #12

Recall that
∫ b
a f(x) dx is only defined if f is a continuous function. Therefore another kind of “improper”

integral arises if f is discontinuous. The following definition makes sense of this kind of integral.

Definition 11.4. If f is continuous on [a, b) and discontinuous at b then

∫ b

a
f(x) dx = lim

t→b−

∫ t

a
f(x) dx

provided the limit exists.

Definition 11.5. If f is continuous on (a, b] and discontinuous at a then

∫ b

a
f(x) dx = lim

t→a+

∫ b

t
f(x) dx

provided the limit exists.

Again, if the corresponding limit exist we say the integral is convergent and otherwise divergent.

Definition 11.6. If f is discontinuous at c where a < c < b then

∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx

provided both integrals on the right are convergent.

Example 11.5. Evaluate

∫ 1

0

1√
x

dx.

Since f(x) = 1√
x

is discontinuous at x = 0, apply the second definition:

∫ 1

0

1√
x

dx = lim
t→0+

∫ 1

t
x−1/2 dx = lim

t→0+

[

2x1/2

]1

t

= lim
t→0+

[

2 − 2
√

t
]

= 2.

y = 1/
√

x

x

y

1

1

Example 11.6. Evaluate: (a)

∫ 1

−1

1√
x

dx (b)

∫ 1

0
lnx dx (c)

∫ 1

0

1

x
dx

Example 11.7. The infinite region bounded by y = 1/x and y = 0 betweem x = 0 and x = 1 is
revolved about the x-axis. Find the volume of revolution.

Example 11.8. For what values of p is the integral

∫ 1

0
x−p dx convergent?

12 Integrals of Rational Functions
Lec. #13

12.1 Partial Fractions

Recall that
1

x − 3
− 1

x + 2
=

(x + 2) − (x − 3)

(x + 2)(x − 3)
=

5

x2 − x − 6
.
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If we needed to evaluate

∫
6

x2 − x − 6
dx and we happened to know the above result, then we could

do: ∫
6

x2 − x − 6
dx =

∫ [
1

x − 3
− 1

x + 2

]

dx = ln |x − 3| − ln |x + 2| + C.

This suggests a general strategy for integrating rational functions: factor the denominator and try
writing the rational function as a some of simpler functions.

Example 12.1. Evaluate

∫
1

x2 + 2x − 8
dx.

The denominator factors as (x + 4)(x − 2), and we suspect we can write

1

x2 + 2x − 8
=

A

x + 4
+

B

x − 2

for some numbers A, B. To find these numbers, rewrite this with a common denominator:

1

(x + 4)(x − 2)
=

A

x + 4
+

B

x − 2
=

A(x − 2) + B(x + 4)

(x + 4)(x − 2)
=

(A + B)x + (−2A + 4B)

(x + 4)(x − 2)
.

Equating numerators, we get
(A + B)x + (−2A + 4B) = 1.

Since this equation must be true for all values of x, it must be true that
{

A + B = 0

−2A + 4B = 1.

This is a system of two linear equations in two unknowns, and can be solved to give B = 1/6, A = −1/6.
Thus,

∫
1

x2 + 2x − 8
dx =

∫ [−1/6

x + 4
+

1/6

x − 2

]

dx = −1
6 ln |x + 4| + 1

6 ln |x − 2| + C.

Example 12.2. Evaluate: (a)

∫
2x + 3

x2 − 5x + 6
dx (b)

∫
x

x2 + 7x + 10
dx

12.2 Polynomial Long Division

Partial fractions will works for
∫ P (x)

Q(x) dx where P and Q are polynomials with deg P < deg Q. We
will only cover the case where Q factors into a number of linear terms; you can find other cases in any
good calculus text, if you ever need to.

If deg P ≥ deg Q it is necessary to first simply by applying polynomial long division.

Example 12.3. Evaluate

∫
x3 + 5

x − 2
dx.

First expand the rational function by applying polynomial long division:

x2 + 2x + 4

x − 2
)

x3 + 5
− x3 + 2x2

2x2

− 2x2 + 4x

4x + 5
− 4x + 8

13
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So we get

∫
x3 + 5

x − 2
dx =

∫ [

x2 + 2x + 4 +
13

x − 2

]

dx = 1
3x3 + x2 + 4x + 13 ln |x − 2| + C.

Example 12.4. Evaluate: (a)

∫
x2 + 2x − 8

x + 3
dx (b)

∫
x2

x2 − 9
dx

Notice how long division reduces things to the case where deg P < deg Q. Partial fractions is still
sometimes necessary after this reduction.

12.3 Completing the Square
Lec. #14

With polynomial long division we can always eventually reduce a rational function to P (x)
Q(x) where

deg P < deg Q. If Q factors we can then apply partial fractions if necessary. The only case we haven’t
covered is where Q does not factor.

Example 12.5. Evaluate

∫
1

x2 + 4
dx.

Here the denominator doesn’t factor, but it looks a lot like something involving arctan. In fact,

∫
1

x2 + 4
dx =

∫
1

4(x2

4 + 1)
dx =

1

4

∫
1

x2

4 + 1
dx.

Now make the substitution u2 = x2

4 , so u = x
2 and du = 1

2 dx:

1

4

∫
1

x2

4 + 1
dx =

1

4

∫
1

u2 + 1
· 2 du =

1

2

∫
1

u2 + 1
du = 1

2 arctan u + C = 1
2 arctan

(x

2

)

+ C.

The previous example generalizes to the following useful formula:

∫
1

x2 + a2
dx =

1

a
arctan

(x

a

)

+ C.

Example 12.6. Evaluate

∫
1

x2 + 4x + 6
dx.

Again, the denominator doesn’t factor (discriminant: b2 − 4ac = −8 < 0). But complete the square:

∫
1

x2 + 4x + 6
dx =

∫
1

(x + 2)2 + 2
dx

and make the substitution u = x + 2, du = dx:

∫
1

(x + 2)2 + 2
dx =

∫
1

u2 + 2
du.

By the previous “useful formula”, we get

∫
1

u2 + 2
du =

1√
2

arctan

(
u√
2

)

+ C =
1√
2

arctan

(
x + 2√

2

)

+ C.



MATH 124 – Calculus II Page 22 of 37

12.4 General Recipe

Where doing an integral like
∫ P (x)

Q(x) dx the following general recipe is useful:

Case 1: deg P ≥ deg Q. Apply polynomial long division, then proceed to Case 2 if necessary.

Case 2: deg P < deg Q. There are two subcases:

Case (i): Q factors. Use partial fractions.

Case (ii): Q doesn’t factor. Complete the square and use substitutions.

The method of partial fractions itself has many subcases, depending on the factors of Q. We’ll only
deal with the case where all of the factors of Q are simple, linear terms.

13 Integrals of Trig Functions
Lec. #15

Integrals involving trigonometric functions often need to be rewritten using trig identities so that an
obvious substitution can be recognized.

Example 13.1. Evaluate

∫

cos3 x dx.

First peel off one power of cos x:
∫

cos3 x dx =

∫

cos2 x cos x dx

and then write the rest in terms of sinx, using the Pythagorean identity:

=

∫

(1 − sin2 x) cos x dx.

Now u = sinx is an obvious substitution:

=

∫

(1 − u2) du = u − 1
3u3 + C = sin x − 1

3 sin3 x + C.

The same trick will work for any of the following
∫

sinn x dx

∫

sinn x cosm x dx

∫

cosn x dx

∫

cosn x sinm x dx

provided n is an odd number.

Example 13.2. Evaluate: (a)

∫

sin5 x dx (b)

∫

sin2 x cos3 x dx

To integrate even powers of sinx or cos x you need to use double-angle identities:

Example 13.3. Evaluate

∫

sin2 x dx.

We can use a double-angle identity to rewrite this as
∫

sin2 x dx =

∫

1
2(1 − cos 2x) dx.

This is now a straightforward antiderivative:

1
2

∫

(1 − cos 2x) dx = 1
2(x − 1

2 sin 2x) + C.
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14 Applications
Lec. #16

14.1 Arc Length

Problem: Find the length of the curve given by the graph of y = f(x) between x = a and x = b.

L

x

y

y = f(x)

a b

Answer:

L =

∫ b

a

√

1 + [f ′(x)]2 dx

[derivation given in class]

Example 14.1. Find the arc length of the graph of y = x2 between x = 0 and x = 1.

Applying the formula above gives

L =

∫ 1

0

√

1 + (2x)2 dx.

With the substitution u = 2x this becomes

L = 1
2

∫ 2

0

√

1 + u2 du.

The antiderivative can be found in a table of integrals (e.g. #21 in the table at the back of Stewart):

L =
1

2

[
u

2

√

1 + u2 +
1

2
ln

(
u +

√

1 + u2
)
]2

0

=
1

2

[√
5 +

1

2
ln(2 +

√
5)

]

≈ 1.48.

14.2 Average Value of a Function

Problem: Find the average value of f(x) for x between a and b

Answer:

f̄ = favg =
1

b − a

∫ b

a
f(x) dx

Example 14.2. Find the average value of y = x2 for x between 1 and 3.

Applying the formula above gives

f̄ =
1

3 − 1

∫ 3

1
x2 dx =

1

2

(
1

3
x3

) ∣
∣
∣
∣

3

1

=
13

2

Example 14.3. Find the average value of sinx for x between: (a) 0 and 2π (b) 0 and π.
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14.3 Center of Mass

Problem: Find the xcm, the x-coordinate of the center of mass, for the plane region under the graph
of y = f(x) between x = a and x = b. (The region would balance on a pin placed exactly at xcm.)

Answer:

xcm =

∫ b

a
xf(x) dx

∫ b

a
f(x) dx

Example 14.4. Find the x-coordinate of the center of mass of the region under the graph of y = x
between x = 0 and x = 1 (i.e. a triangle).

xcm =

∫ 1

0
x · x dx

∫ 1

0
x dx

=

1
3x3

∣
∣
∣

1

0

1
2x2

∣
∣
∣

1

0

=
1/3

1/2
=

2

3

14.4 Work

Example 14.5. Find the work required to compress a spring (with spring constant k) from its rest
position (x = 0) to a final displacement of X.

When the spring is compressed an amount x, further compression by an infinitesimal amount dx requires
infinitesimal work

dW = F dx = (kx) dx.

Thus the total work to compress the spring from x = 0 to x = X is

W =

∫

dW =

∫ X

0
kx dx = 1

2kx2
∣
∣
∣

X

0
= 1

2kX2

Example 14.6. A cylindrical tank of radius r and height h is to be filled with water. Find the total
work required to fill the tank if the water source is level with the bottom of the tank.

When the tank is filled to height y, increasing the water level by an infinitesimal amount dy requires
the work needed to lift the volume of water

dV = πr2 dy

to a height y. If the density of water is ρ then the mass of water to be lifted is

dm = ρdV = ρπr2 dy.

The infinitesimal amount of work required to lift this mass to height y is

dW = gy dm = ρgπr2y dy.

So the total work required to fill the tank to height h is

W =

∫

dW =

∫ h

0
ρgπr2y dy = ρgπr2

(
1
2y2

)∣
∣
∣

h

0
= 1

2ρgπr2h2

Example 14.7. An inverted conical tank of height h and radius r is to be filled with water of density
ρ. Find the total work required to fill the tank if the water source is level with the bottom of the tank.
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14.5 Probability

A random variable X is one whose value is the result of a random process, and therefore not known in
advance. A random variable is frequently described in terms of its probability density function, f(x),
which has the interpretation that

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx.

In order to be a well-defined probability density function, f must satisfy two conditions:

1. f(x) ≥ 0 and 2.

∫ ∞

−∞
f(x) dx = 1.

Example 14.8. Let

f(x) =

{

Ax(1 − x) if 0 ≤ x ≤ 1

0 otherwise.

For what value of A is f(x) a probability density function?

Example 14.9. Let X be the length of time (in minutes) you are left on hold if you call Microsoft
technical support; X is a random variable with probability density

f(x) =

{

10e−t/10 if x ≥ 0

0 if x < 0.

(a) Verify that f is a probability density function.
(b) Find the probability that a randomly selected caller will be on hold longer than 15 minutes.

14.5.1 Average Values

In the previous example, one might wonder what is the average time that callers spend on hold. This
question can be answered in terms of the probability density function.

In general, if X is a random variable with probability density f(x) then the average, or mean value of
X is given by

x̄ =

∫ ∞

−∞
xf(x) dx.

Example 14.10. Find the average waiting time in the previous example.

More generally, the average value of a function g(x) is given by

ḡ =

∫ ∞

−∞
g(x)f(x) dx.

For example the variance, σ2 of X, is the average value of (x − x̄)2:

σ2 =

∫ ∞

−∞
(x − x̄)2f(x) dx.

The standard deviation, σ, of X is the square root of the variance.

Example 14.11. In the waiting time example above, find the standard deviation of the waiting time.
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15 Differential Equations

15.1 Modeling with Differential Equations
Lec. #17

Suppose you have 1000 in the bank, earning 5% interest annually. In the first year the interest earned
is 0.05 × $1000 = $50. The balance after one year is $1050, so the interest earned in the second year
is 0.05 × $1050 = $52.50, and so on.

As the balance grows, so does the interest earned per year (i.e., the rate of growth of the bank balance).
In the first year the rate of growth is

0.05 × 1000 = 50 ($/yr).

In the second year the rate of growth is

0.05 × 1050 = 52.5 ($/yr).

We can model this growth process mathematically as follows. Let the function x(t) be the bank balance
at time t (so x(0) = 1000). At any given time, the rate of growth of x is 0.05x (in $/yr). We can
express this fact by the equation

dx

dt
= 0.05x or x′(t) = 0.05x(t).

This is called a differential equation: an equation relating a function x(t) to its derivative x′(t) (and
potentially also to its higher derivatives x′′(t), etc). The solution of such an equation consists of the
unknown function x(t) that satisfies it.

If we could find a function x(t) such that x′ = 0.05x (i.e. satisfies the differential equation) then this
function could be used to predict the bank balance at any time in the future.

In fact, we can easily recognize such a function: x(t) = Ae0.05t (where A is an arbitrary constant). The
value of A must be chosen to match the “initial condition” x(0) = 1000:

x(0) = Ae0 = A = 1000.

So the solution is
x(t) = 1000e0.05t.

For example, the bank balance in 10 years will be x(10) = 1000e0.05(10) ≈ $1648.72.

Another process that can be modelled by a similar differential equation is radioactive decay. Suppose
you have 1 kg of a radioactive substance. Through radioactive decay, a certain fraction (say, 0.0002)
of the mass disappears every year. As the mass gradually decays, the amount that decays each year
becomes less, whereas the proportion of the current mass that decays each year, 0.0002, is constant.

Let x(t) be the mass remaining after time t. Then at any given time the rate of change of x is −0.0002x.
This can be expressed as the differential equation

x′ = −0.0002x.

Its solution is
x(t) = Ae−0.0002t

where A = 1 to satisfy the initial condition x(0) = 1.
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15.2 Separable Equations

Differential equations can be very difficult to solve, but we only need to consider the relatively easy
case of separable equations.

Example 15.1. Solve the differential equation
dx

dt
= 0.05x (from the compound interest problem in

the previous section).

Abusing notation somewhat, multiply both sides by dt to obtain

dx = 0.05xdt.

Then divide both sides by x:
dx

x
= 0.05dt.

Now integrate both sides: ∫
dx

x
=

∫

0.05dt =⇒ lnx = 0.05t + C

where C is an arbitrary “constant of integration” that must be included as it will play an important
role. We want to solve for x(t) so exponentiate both sides:

x = e0.05t+C = e0.05teC .

Notice that eC is just a constant, but it is kind of awkward so it is convenient to define a new constant
A = eC . Then

x(t) = Ae0.05t

is the most general solution of the differential equation.

Notice that because the constant A is arbitrary, rather than a single solution we have found a whole
family of solutions — one for each possible value of A. In applications, A usually takes a specific value
chosen so that x(t) satisfies an “initial condition” that specifies a value of x(0).

A differential equation for a function x(t) is called separable if all quantities involving x can be brought
to one side of the equation, with all quantities involving t on the other side. This step is critical because
it permits us to then integrate both sides of the equation.

Example 15.2. Solve the differential equation
dy

dx
= xy.

This equation is separable: it can be written as

dy

y
= x dx.

Integrating both sides we get

∫
dy

y
=

∫

x dx =⇒ ln y = 1
2x2 + C =⇒ y = e

1

2
x2+C = e

1

2
x2

eC = Ae
1

2
x2

where A = eC is an arbitary constant.

Example 15.3. Solve the differential equation: (a)
dy

dx
=

e2x

4y3
(b)

dy

dx
= y2 sinx
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15.3 Mixing Problems
Lec. #18

Example 15.4. A 1000 L tank is initially full of pure water. Water containing 5 mg/L chlorine is
added to the tank at a rate of 80 L/min. The tank is kept well-mixed, and the mixed water flows out a
drain at a rate of 80 L/min (so that the water volume in the tank is kept constant). Find the chlorine
concentration in the tank as a function of time.

Let y(t) be the amount [mg] of chlorine in the tank at time t. Then

dy

dt
= “rate in” − “rate out”

where
“rate in” = 80 L/min × 5 mg/L = 400 mg/min

and similarly

“rate out” = 80 × y

1000
= 0.08y.

Therefore y(t) satisfies the differential equation

dy

dt
= 400 − 0.08y.

This equation is separable, so we can solve it easily:

∫
dy

400 − 0.08y
=

∫

dt =⇒ 1

−0.08
ln(400 − 0.08y) = t + C

=⇒ 400 − 0.08y = e−0.08(t+C) = Ae−0.08t

=⇒ y =
1

0.08

(
400 − Ae−0.08t

)
= 5000 − Be−0.08t

The initial condition requires that y(0) = 0 so

5000 − Be0 = 0 =⇒ B = 5000

so the final solution is
y(t) = 5000 − 5000e−0.08t [mg].

The concentration is given by
y(t)

1000
= 5(1 − e−0.08t) [mg/L].

Notice that as t → ∞ the concentration approaches 5 mg/L, as might be expected. The time required
to approach this equilibrium concentration is related to the constant 0.08. For example, the time it
takes to reach a concentration of 4 mg/L is given by

4 = 5(1 − e−0.08t) =⇒ e−0.08t = 0.2 =⇒ −0.08t = ln(0.2) =⇒ t =
ln(0.2)

−0.08
≈ 20 min.

Example 15.5. A 400 L tank is initially filled with water containing salt at a concentration of 2 g/L.
Fresh water is slowly added to the tank at a rate of 8 L/hr. The tank is kept well-mixed, and the mixed
water flows out a drain at the rate of 8 L/hr. How long does it take for the salt concentration on the
tank to fall to half its initial value?

Let y(t) be the amount [g] of salt in the tank at time t. Then y(t) satisfies the differential equation

dy

dt
= −8 × y

400
= −0.02y.
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This equation is separable:

∫
dy

y
=

∫

−0.02 dt =⇒ ln y = −0.02t + C

=⇒ y = e−0.02t+C = e−0.02teC = Ae−0.02t

Imposing the “initial condition” requires

2 × 400 = Ae0 =⇒ A = 800

so that
y(t) = 800e−0.02t [g].

The time required for y to fall to half its initial value (i.e. 400 g) is given by

400 = 800e−0.02t =⇒ −0.02t = ln(0.5) =⇒ t =
ln(0.5)

−0.02
≈ 34.7 h.

15.4 Exponential growth and decay
Lec. #19

The previous example illustrates a common model that arises in many different contexts.

For example, in radioactive decay, a given mass m of a radioactive substance decreases in time according
to

dm

dt
= −km

That is, a certain fraction k of the mass decays per unit time. As the mass decreases, the rate of decay
decreases in proportion. This differential equation is separable, and its solution is

m(t) = m0e
−kt

where m0 is the mass at time 0.

The decay constant k is related to the half-life, t1/2, of the substance. In fact the half-life is given by
the condition

1

2
m0 = m0e

−kt =⇒ ln(1/2) = −kt =⇒ t =
ln(1/2)

−k
=

ln(2)

k
so

t1/2 =
ln 2

k

Example 15.6. 800 g of a radioactive substance is left on a shelf for 3 years. At the end of this time
there is 750 g of the substance remaining. What is the half-life of this substance.

I similar differential equation models exponential growth. For example, if in a given bacterial culture
the reproduction rate is k [individuals per unit time, per individual in the culture] then the population
satisfies

dx

dt
= kx

whose solution is
x(t) = x0e

kx

where x0 is the population at time 0.

Example 15.7. In 1980 the world population was 4.2 billion; in 2005 it was 6.4 billion. Assuming an
exponential growth model, in what year will the population be 10 billion?
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16 Infinite Series
Lec. #20

16.1 Sequences

A sequence is an infinitely long list of numbers. For example,

{an} = {1, 2, 3, 4, . . .}

is a sequence. The notation {an} refers to a sequence whose n’th term is an. Sometimes we have an
explicit formula for an, e.g. {

1

n

}

= {1, 1
2 , 1

3 , . . .}

and {
n

1 + n

}

= {1
2 , 2

3 , 3
4 , . . .}

If lim
n→∞

an exists then the sequence {an} is said to be convergent. The previous two examples are both

convergent sequences, since for the first,

lim
n→∞

an = lim
n→∞

1

n
= 0

and for the second,

lim
n→∞

an = lim
n→∞

n

1 + n
= 1.

Clearly the sequence {1, 2, 3, 4, . . .} is not convergent.

A sequence {an} can also be defined recursively, as in the famous Fibonacci sequence:

Example 16.1. Let x1 = x2 = 1 and xn = xn−2 + xn−1 for all n ≥ 3. Each subsequent term in the
sequence is defined in terms of the previous terms:

x1 = 1

x2 = 1

x3 = x1 + x2 = 1 + 1 = 2

x4 = x2 + x3 = 1 + 2 = 3

x5 = x3 + x4 = 2 + 3 = 5 . . .

So the Fibonacci sequence is {xn} = {1, 1, 2, 3, 5, 8, 13, 21, . . .}. (Pretty clearly, this sequence does not
converge.)

16.2 Series
Lec. #21

Given a sequence {an}, if we add all the terms in the sequence we get an infinite series:

a1 + a2 + a3 + · · · =
∞∑

n=1

an

For example, the infinite series
∞∑

n=1

1

2n
= 1

2 + 1
4 + 1

8 + · · ·
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arises in many applications. But how is it possible to add up (or even make sense of) the sum of
infinitely many terms? As usual in calculus, We can approach this problem using limits. The idea is
to first define sn to be the sum of the first n terms of the series:

sn = a1 + a2 + · · · + an =
n∑

i=1

ai.

As n increases, more and more terms are included in this sum. We then define the sum of the infinite
series to be

∞∑

n=1

an = lim
n→∞

sn.

If this limit exists then we say the series is convergent ; otherwise, divergent.

Example 16.2. To calculate
∞∑

n=1

1

2n
we first calculate the partial sums:

sn =
n∑

i=1

1

2i
=

n∑

i=1

(
1

2

)i

.

There is a useful formula for a sum of the form
∑n

i=1 ri, which be derived quickly as follows. Let

S =
n∑

i=1

ri = r + r2 + r3 + · · · rn.

Then
rS = r2 + r2 + · · · + rn + rn+1.

If we subtract this two equations most of the terms cancel, and we’re left with:

S − rS = r − rn+1 =⇒ S =
r − rn+1

1 − r
.

So we have
n∑

i=1

ri =
r − rn+1

1 − r

and a similar derivation can be used to show that

n∑

i=0

ri =
1 − rn+1

1 − r

Going back to our problem, we can now calculate the n’th partial sum:

sn =
n∑

i=1

(
1

2

)i

=
(1/2) − (1/2)n+1

1 − (1/2)
.

Letting n → ∞ we find that

∞∑

n=1

1

2n
= lim

n→∞
sn = lim

n→∞

(1/2) − (1/2)n+1

1 − (1/2)
=

(1/2)

1 − (1/2)
= 1.
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16.3 Geometric Series

The series in the previous example is called a geometric series, and our result can be generalized as
follows:

Theorem 16.1. If |r| < 1 then the geometric series

∞∑

n=1

rn = r + r2 + r3 + · · · =
r

1 − r

and
∞∑

n=0

rn = 1 + r + r2 + r3 + · · · =
1

1 − r

are convergent. If |r| ≥ 1 then these series are divergent.

Example 16.3. Decide whether each of the following series is convergent, and if possible evaluate the

infinite sum. (a)
∞∑

n=1

1

3n
(b)

∞∑

n=0

2

πn
(c) 1 + (−1) + 1 + (−1) + · · · =

∞∑

n=0

(−1)n

16.4 Tests for Convergence

We will need ways to decide if a given infinite series
∑∞

n=1 an is convergent, without calculating the
partial sums, which can be very difficult except in special cases.

Theorem 16.2. If lim
n→∞

an 6= 0 or does not exist then
∞∑

n=1

an is divergent.

Example 16.4. The following series are divergent: (a)
∞∑

n=1

n

n + 1
(b)

∞∑

n=1

(−1)n (c)
∞∑

n=1

cos(n)

Note: the previous theorem tells us nothing in the event that lim
n→∞

an = 0. That is, this alone does not

guarantee the convergence of
∑∞

n=1 an.

For example, we will prove shortly that the harmonic series

∞∑

n=1

1

n
= 1 + 1

2 + 1
3 + · · · is divergent

even though limn→∞
1
n = 0.

Theorem 16.3 (Integral Test). If f(x) is a continuous, positive, decreasing function on [1,∞) then
the series

∑∞
n=1 an with an = f(n) is:

• convergent if

∫ ∞

1
f(x) dx is convergent, and

• divergent if

∫ ∞

1
f(x) dx is diveregent.

For example, since f(x) = 1
x is continuous, positive and decreasing on [1,∞) we now know that the

harmonic series
∑∞

n=1
1
n is convergent only if

∫ ∞
1

1
x dx is convergent. We have seen that this improper

integral diverges, so the harmonic series is divergent.
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Example 16.5. Which of the following series converge: (a)
∞∑

n=1

1

n2
(b)

∞∑

n=1

1√
n

(c)
∞∑

n=1

1

1 + n2

Example 16.6. For what values of p does the p-series
∞∑

n=1

1

np
converge?

Theorem 16.4 (Ratio Test). Given a series
∑∞

n=1 an, define L = lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣. Then the series is

• convergent if L < 1,

• divergent if L > 1, and

• could be either convergent or divergent if L = 1.

Example 16.7. Use the ratio test to investigate the converge of the series: (a)

∞∑

n=1

1

(1 + n)2
(b)

∞∑

n=1

n2

n!

(c)

∞∑

n=1

n!

2n

16.5 Power Series

If x is a real number between 0 and 1 then the geometric series
∑∞

n=1 xn converges. Therefore we can
consider this series as a function of x. In fact we know that the sum of the series is

∞∑

n=1

xn =
1

1 − x
.

We can turn this around: given the function f(x) = 1/(1− x), we can represent f in terms of a series.
This turns out to be a very useful way to represent functions.

For a given sequence {cn} the function

f(x) =
∞∑

n=0

cnxn

is called a power series with coefficients cn.

More generally, the function
∞∑

n=0

cn(x − a)n

is the power series centered at a, with coefficients cn.

The central question about a given power series is the values of x for which the series converges (since
this determines the domain of the series, considered as a function of x). The ratio test is usually the
best way to determine the interval of convergence for a power series.

Example 16.8. Find the interval of convergence for the power series: (a) f(x) =

∞∑

n=1

xn

n!
(b) f(x) =

∞∑

n=1

√
nxn (c) f(x) =

∞∑

n=1

3nxn

√
n
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For a power series centered at a, the interval of convergence is always of the form |x − a| < R, where
R is the radius of convergence. Find the radius of convergence for each of the series in the previous
example.

It can be very useful to represent a function in terms of a power series. This is basically because a
power series is essentially a polynomial, and polynomials are easy to manipulate.

One important power series representation we’ve seen already is

1

1 − x
=

∞∑

n=0

xn

which is just a geometry series. This can be used to find power series for other functions, for example:

1

1 − x2
=

∞∑

n=0

(x2)n =
∞∑

n=0

x2n

1

1 + x
=

1

1 + (−x)

∞∑

n=0

(−x)n =
∞∑

n=0

(−1)nxn

x

1 − x
= x

∞∑

n=0

xn =
∞∑

n=0

xxn =
∞∑

n=0

xn+1 =
∞∑

n=1

xn

Theorem 16.5. Suppose the power series

∞∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · ·

is differentiable on the interval (a − R, a + R). Then

• f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · · =
∑∞

n=1 ncn(x − a)n−1

•
∫

f(x) dx = c0(x − a) +
c1

2
(x − a)2 +

c2

3
(x − a)3 + · · · + C =

∞∑

n=0

cn
(x − a)n+1

n + 1
+ C

and both these series have radius of convergence R.

In other words, power series can be differentiated (or integrated) term by term, as if they were just
polynomials.

Example 16.9.

16.6 Taylor and Maclaurin Series

Recall the linearization of a function f(x) near x = a:

P1(x) = L(x) = f(a) + f ′(a)(x − a)

which is just the equation of the tangent line to the graph of f at x = a. L(x) can be defined as the
(unique) linear function that has the same value and derivative at a as f(x).

The linear approximation can be improved by adding a quadratic correction term. The quadratic
approximation of f at a is the (unique) quadratic function that has the same value, derivative and
second derivative at a as f(x).

P2(x) = f(a) + f ′(a)(x − a) + 1
2f ′′(a)(x − a)2
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Example 16.10. Use a quadratic approximation to estimate
√

4.5.

This can be generalized to define the n-degree Taylor polynomial for f(x) based at x = a:

Pn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k

= f(a) + f ′(a)(x − a) + 1
2f ′′(a)(x − a)2 + · · · + 1

n!f
(n)(a)(x − a)n

The function Pn(x) is an n-th degree polynomial that approximates f(x) near x = a. The greater the
value of n, the better the approximation.

By including an infinite number of terms in the Taylor polynomial, we arrive at a Taylor series:

f(x) =

n∑

k=0

f (k)(a)

k!
(x − a)k = f(a) + f ′(a)(x − a) + 1

2f ′′(a)(x − a)2 + · · ·

which is an exact representation (i.e. no longer an approximation) of f(x), provided this infinite series
converges. In the case a = 0 the Taylor series is sometimes called a Maclaurin series:

f(x) =
n∑

k=0

f (k)(0)

k!
xk

Example 16.11. Find Maclaurin series for the functions: (a) ex (b) sinx (c) xe−x

Taylor and Maclaurin series are very useful, both for representing functions that are difficult or impos-
sible to represent in another way, and to obtain approximate solutions to problems (by truncating the
series to a finite number of terms).

Example 16.12. Find a Maclaurin series for e−x2

.

We have the Maclaurin series

ex =
∞∑

n=0

1

n!
xn

so that

e−x2

=
∞∑

n=0

1

n!
(−x2)n

=
∞∑

n=0

(−1)n

n!
x2n

= 1 − x2 +
x4

2!
− x6

3!
+ · · ·

Example 16.13. Find a Maclaurin series for
∫

e−x2

dx.

Integrating the Maclaurin series in the previous example, term by term, we get

∫

e−x2

dx = x − 1

3
x3 +

1

5

x5

2!
− 1

7

x7

3!
+ · · · + C

=
∞∑

n=0

(−1)n

n!(2n + 1)
x2n+1 + C
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Example 16.14. Use a Maclaurin series to evaluate
∫ 0.5
0 e−x2

dx to 3 decimal places.

From the previous example we have

∫ 0.5

0
e−x2

dx =
[

x − 1

3
x3 +

1

5

x5

2!
− 1

7

x7

3!
+ · · ·

]0.5

0

= (0.5) − 1

3
(0.5)3 +

1

5

(0.5)5

2!
− 1

7

(0.5)7

3!
+ · · ·

Truncating the series to different numbers of terms gives the following:

# of terms approx. sum of series

2 0.4583
3 0.4615
4 0.4613
5 0.4613

So, accurate to 3 decimal places, the value of the definite integral is 0.4613.

Example 16.15. Use a Maclaurin series to evaluate

∫ 0.2

0

sin x

x
dx to 3 decimal places.

17 Approximate Integration (Quadrature)

We have seen many examples where the solution of a scientific problem can be represented in terms
of a definite integral. If that integral can be evaluated, then the problem is solved. However, some
integrals can be difficult or impossible to evaluate exactly. In such cases, it is often sufficient to obtain
a very good approximation (say, to 6 decimal places) of the integral. For this, there are many methods
available. In the previous section we saw how Taylor and Maclaurin series can be used to approximate
integrals. In this section we investigate some of the other methods available.

17.1 Midpoint Rule

Recall the definition of the definite integral as the limiting sum of the areas of rectangles:

∫ b

a
f(x) dx = lim

n→∞
Sn = lim

n→∞

[
n∑

i=1

f(xi)∆x

]

.

An obvious way to approximate the integral is simply to evaluate Sn for some large n (rather than take
a limit). A slight improvement on this is to evaluate the height of the i’th rectangle at the midpoint,
x̄i, (rather an the endpoint) of the i’th interval:

∫ b

a
f(x) dx ≈

n∑

i=1

f(x̄i)∆x = ∆x[f(x̄1) + f(x̄2) + · · · + f(x̄n)]

where ∆x = (b − a)/n and

x̄i =
xi + xi+1

2
.

Example 17.1. Use the midpoint rule with n = 4 to approximate

∫ 1

0
x2 dx.
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17.2 Trapezoidal Rule

Rather than subdivide the area under y = f(x) into rectangles, we can clearly do a better job by
subdividing into trapezoids. This results in the formula

∫ b

a
f(x) dx ≈ ∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · · + 2f(xn−1) + f(xn)]

Example 17.2. Use the trapezoidal rule with n = 4 to approximate

∫ 1

0
x2 dx.

17.3 Simpson’s Rule

To more accurately approximate the shape of y = f(x) we can subdivide the curve into parabolic
(rather than straight-line) segments. This results in

∫ b

a
f(x) dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x)3 + · · · + 2f(xn−2) + 4f(xn−1) + f(xn)]

Note that Simpson’s rule is only defined if n is even.

Example 17.3. Use the Simpson’s rule with n = 4 to approximate

∫ 1

0
x2 dx.

17.4 Other methods

Integration plays such a central role in science (physics, chemistry and engineering especially) that
accurate and efficient methods of approximate integration are constantly being developed. The methods
dicussed above are only the most basic; much more sophisticated methods are available.

The TI-series of calculators use Gaussian quadrature, which is highly accurate...

Integrals arising in physics and economics are often evaluated used Monte-Carlo integration, which is
most useful in higher dimensions (Calculus IV)...


