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Instructions:

1. Read the whole exam before beginning.

2. Make sure vou have all 5 pages.
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Problem 1: Evaluate the following:

/ 12 (Note the following trigonometric identities: sin?z + cos?x = 1, cos 2z = 2cos?z — 1 =1 — 2sin’z )
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Use partial fractions:
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Problem 2: Solve the differential equation

dy _
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with the “initial condition” y(0) = 1.

Solve by separating variables then integrating:

d
Yo tit = Injy|=—e'+C
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= = =4 (4=
= y= Aec" (A can be positive or negative)

then impose initial conditions:

1=y90)=A4e! = A=c¢

Problem 3: A pyramid of height 10 m, with square base of side length 15m, is built of stone with
/ 6| density p = 2000kg/m?. Calculate the work against gravity required to build this pyramid? (Use

g=9.8m/s?)

We can construct the pyramid but stacking thin horizontal slices (squares) each of thickness
dy, each of which must be raised to a certain height y from the ground.
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Let « be the width of a given square slice. Similar triangles gives
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so that each slice has mass
2 3 2
dm = px“dy=p 5(10—y) dy.

Lifting each slice to its final height y therefore requires work

dW = (dm)gy = pgy [2(10 - y)Q] dy.

The total work ie therefore
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Problem 4: (a) Show that the Maclaurin series for cosz is
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The Taylor/Maclaurin series formula then gives
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(b) For what values of x does the series in part (a) converge?
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so the series converges for all x € R.

(c) Find the Maclaurin series for f(x) = cos(z?).
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(d) Use your answer to part (b) to find a series representation of

1/2
/ cos(z?) dz
0

and use your series to find an approximate value for this integral, accurate to 5 decimal places.
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Cx(2—z), 0<z<2

/9 Problem 5: Consider the function f(z) = ]
0 otherwise.

(a) For what value of C'is f(x) a probability density function?
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(b) Suppose X is a random variable with probability density f(z) as above. Calculate the probability

that X < 1.
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(c) Suppose X is a random variable with probability density f(x) as above. Calculate its mean u.
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