Thompson Rivers

Calculus II

Instructor: Richard Taylor

MIDTERM EXAM \#2 SOLUTIONS

27 March 2014 10:00-11:15

Instructions:

1. Read the whole exam before beginning.
2. Make sure you have all 5 pages.

PROBLEM	GRADE	OUT OF
1		12
2		6

Problem 1: Evaluate the following:
(Note the following trigonometric identities: $\sin ^{2} x+\cos ^{2} x=1, \cos 2 x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$)
(a) $\int_{1}^{3} \frac{d x}{\sqrt{3-x}}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 3^{-}} \int_{1}^{t} \frac{d x}{\sqrt{3-x}} \\
& =\lim _{t \rightarrow 3^{-}}\left[-2(3-x)^{1 / 2}\right]_{1}^{t} \\
& =\lim _{t \rightarrow 3^{-}}[\underbrace{-2(3-t)^{1 / 2}}_{\rightarrow 0}+2(3-1)^{1 / 2}] \\
& =2 \sqrt{2}
\end{aligned}
$$

(b) $\int_{0}^{\pi} \cos ^{10} x \sin ^{3} x d x$

$$
\begin{aligned}
& =\int_{0}^{\pi} \cos ^{10} x \sin ^{2} x \sin x d x \\
& =\int_{0}^{\pi} \cos ^{10} x\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int_{1}^{-1}-u^{10}\left(1-u^{2}\right) d u \quad(u=\cos x) \\
& =\int_{-1}^{1}\left(u^{12}-u^{10}\right) d u \\
& =\left[\frac{1}{13} u^{13}-\frac{1}{11} u^{11}\right]_{-1}^{1} \\
& =2\left(\frac{1}{11}-\frac{1}{13}\right)=\frac{4}{143}
\end{aligned}
$$

(c) $\int \frac{x^{2}+2}{(x-1)(2 x-8)(x+2)} d x$

Use partial fractions:

$$
\frac{x^{2}+2}{(x-1)(2 x-8)(x+2)}=\frac{A}{x-1}+\frac{B}{2 x-8}+\frac{C}{x+2}
$$

Problem 2: Solve the differential equation

$$
\frac{d y}{d t}=y e^{-t}
$$

with the "initial condition" $y(0)=1$.
Solve by separating variables then integrating:

$$
\begin{aligned}
\frac{d y}{y}=e^{-t} d t & \Longrightarrow \ln |y|=-e^{-t}+C \\
& \Longrightarrow|y|=e^{-e^{-t}+C}=A e^{-e^{-t}} \quad\left(A=e^{C}\right) \\
& \Longrightarrow y=A e^{-e^{-t}} \quad(A \text { can be positive or negative })
\end{aligned}
$$

then impose initial conditions:

$$
\begin{aligned}
1=y(0)=A e^{-1} & \Longrightarrow A=e \\
& \Longrightarrow y=e e^{-e^{-t}}=e^{\left(1-e^{-t}\right)}
\end{aligned}
$$

Problem 3: A pyramid of height 10 m , with square base of side length 15 m , is built of stone with density $\rho=2000 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the work against gravity required to build this pyramid? (Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.)

We can construct the pyramid but stacking thin horizontal slices (squares) each of thickness $d y$, each of which must be raised to a certain height y from the ground.

Let x be the width of a given square slice. Similar triangles gives

$$
\frac{x}{10-y}=\frac{15}{10} \Longrightarrow x=\frac{3}{2}(10-y)
$$

so that each slice has mass

$$
d m=\rho x^{2} d y=\rho\left[\frac{3}{2}(10-y)^{2}\right] d y
$$

Lifting each slice to its final height y therefore requires work

$$
d W=(d m) g y=\rho g y\left[\frac{3}{2}(10-y)^{2}\right] d y
$$

The total work is therefore

Problem 4: (a) Show that the Maclaurin series for $\cos x$ is

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

The Taylor/Maclaurin series formula then gives

$$
\begin{aligned}
\cos x=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} & =1+0 \cdot x-\frac{1}{2!} x^{2}+0 \cdot x^{3}+\frac{1}{4!} x^{4}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

(b) For what values of x does the series in part (a) converge?

Apply the ratio test with $a_{n}=\frac{(-1)^{n}}{(2 n)!} x^{2 n}$:

$$
\begin{gathered}
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{x^{2(n+1)} /(2[n+1])!}{x^{2 n} /(2 n)!}=\frac{x^{2 n+2}}{x^{2 n}} \cdot \frac{(2 n)!}{(2 n+2)!}=x^{2} \frac{(2 n)!}{(2 n)!(2 n+1)(2 n+2)}=\frac{x^{2}}{(2 n+1)(2 n+2)} \\
\Longrightarrow L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+1)(2 n+2)}=0<1
\end{gathered}
$$

so the series converges for all $x \in \mathbb{R}$.
(c) Find the Maclaurin series for $f(x)=\cos \left(x^{2}\right)$.

$$
\begin{aligned}
\cos \left(x^{2}\right)=1 & -\frac{\left(x^{2}\right)^{2}}{2!}+\frac{\left(x^{2}\right)^{4}}{4!}-\frac{\left(x^{2}\right)^{6}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n}}{(2 n)!} \\
& =1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\frac{x^{12}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{(2 n)!}
\end{aligned}
$$

(d) Use your answer to part (b) to find a series representation of

$$
\int_{0}^{1 / 2} \cos \left(x^{2}\right) d x
$$

and use your series to find an approximate value for this integral, accurate to 5 decimal places.
$/ 9$ Problem 5: Consider the function $f(x)= \begin{cases}C x(2-x), & 0 \leq x \leq 2 \\ 0 & \text { otherwise. }\end{cases}$
(a) For what value of C is $f(x)$ a probability density function?

$$
\begin{aligned}
1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{2} C x(2-x) d x & =C \int_{0}^{2}\left(2 x-x^{2}\right) d x \\
& =C\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{2}=C \cdot \frac{4}{3} \Longrightarrow C=\frac{3}{4}
\end{aligned}
$$

(b) Suppose X is a random variable with probability density $f(x)$ as above. Calculate the probability that $X<\frac{1}{4}$.

$$
\begin{aligned}
\operatorname{prob}\left(X<\frac{1}{4}\right)=\int_{-\infty}^{1 / 4} f(x) d x & =\int_{0}^{1 / 4} \frac{3}{4} x(2-x) d x \\
& =\frac{3}{4}\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1 / 4}=\frac{11}{256} \approx 0.043
\end{aligned}
$$

(c) Suppose X is a random variable with probability density $f(x)$ as above. Calculate its mean μ. $/ 3$

$$
\begin{aligned}
\mu=\int_{-\infty}^{\infty} x f(x) d x & =\int_{0}^{2} x \cdot \frac{3}{4} x(2-x) d x \\
& =\frac{3}{4} \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x
\end{aligned}
$$

