
Department of Mathematics & Statistics

MATH 1230

Calculus 2 for Engineering

Section 02

Instructor: Richard Taylor

FINAL EXAM
(take-home)

21 April 2020 14:00–16:00

Instructions:

1. You have 4 hours to complete and submit the exam.

2. Write your solutions either on your own paper or on a printed copy of this exam. Scan or
photograph your solutions (scan to a single PDF document is strongly preferred) and email them
to rtaylor@tru.ca by 21 April 6:00PM PST. Late submissions will not be accepted.

3. Organization and neatness count.

4. Include the following signed and dated Declaration of Academic Integrity on the first page of
your submission (feel free to just print and sign this page and include it with your submission):

By submitting this work for assessment I hereby declare that it is the result of my own effort and
that I did not copy (in whole or in part) the work of any other individual.

I also declare that subsequent to receiving the assigned work I did not discuss the questions or
possible answers with any other person, either face to face or electronically.

By submitting this declaration I agree to any reasonable level of scrutiny deemed necessary to
determine whether I have violated TRU Policy on Student Academic Integrity ED 5-0.

Name:

Student #:

Signature:

Date:
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/21
Problem 1: Evaluate the following integrals.

(a)

∫ (
5x3 − 1

3x2
+

2

x
− 3eπ − 8

√
x
)
dx

/5

(b)

∫ 4

0
3x
√

25− x2 dx
/4

(c)

∫ π

0
sinx cos2 x dx

/4
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Problem 1 continued. . .

(e)

∫
3x− 5

(x+ 1)(x+ 2)
dx

/4

(f)

∫
xe2x dx

/4

/2 Problem 2: Find
d

dx

∫ x2

1
cos(t3) dt.
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/7 Problem 3: Consider the definite integral

∫ 6

0
e
√
x dx.

(a) Use the trapezoid rule with n = 3 trapezoids to approximate the integral. Draw the trapezoids on
the graph.

/4
y

x

y = e
√
x

5

10

15

1 2 3 4 5 6

(b) Use Simpson’s rule with n = 4 to approximate the integral.
/3

/4
Problem 4: A population study suggests that Earth’s human population P is growing at a rate

dP

dt
= 0.2t− 0.01t2

measured in billions of people per year, with time t measured in years from the present date. If the
current population is 7.0 billion, what will be the population 5 years from now?
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Problem 5: For each of the following, determine if the improper integral converges or diverges. If the
integral converges, evaluate it.

(a)

∫ 3

2

dx√
x− 2/3

(b)

∫ ∞

1

1

x3/2
dx

/3
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/5
Problem 6: A tank initially contains 500 liters of water in which 20 kg of salt is dissolved. Water
containing 1 kg/L of salt flows into the tank at the rate of 4 L/min. The mixture is kept thoroughly
mixed and flows out of the tank at 4 L/min. Find an expression for the amount of salt (in kg) in the
tank t minutes after the process starts.
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/4 Problem 7: Solve the differential equation
dy

dx
=
x2

y
with the initial condition y(0) = 2.

/9
Problem 8: For each of the following infinite series, determine whether the series is convergent or
divergent, and evaluate the sum if possible.

(a)

∞∑
k=0

2

(
3

4

)k
/3

(b)
∞∑
k=0

2

(
4

3

)k
/3

(c)

∞∑
n=1

n2

(2n)!
/3
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/4 Problem 9: Find the area of the region bounded between the graphs of y = 2− x, y =
2

x
, y = 1, and

y = 2.
y

x

y = 2− x

y = 2
x

1 2

1

2

/4
Problem 10: During a 4-hour drive from Kamloops to Vancouver, Sarah’s speed v (measured in
km/h) as a function of time t (measured in hours from the start of her trip) was

v(t) = 80 + 40 sin(πt/4).

Calculate her average speed over the entire trip.
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/4
Problem 11: Consider the region bounded by the graphs of y = 1 − x, x = 0 and y = 0. Find the
volume of the solid formed by revolving this region about the y-axis.

y

x

y = 1− x

1

1

/4
Problem 12: Consider the region bounded by the graph of y = x2 and the x-axis, between x = −1
and x = 1. Find the volume of the solid formed by revolving this region about the x-axis.

y

x

y = x2

1−1

1
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Problem 13: Consider the function f(x) = ln(1 + x).

(a) Find the first three terms in the Maclaurin series for f(x).
/3

(b) Use your answer to part (a) to estimate f(0.2).
/2

/2
Problem 14: Set up (but do not evaluate) a definite integral that gives the arc length of the graph

of y = sinx from x = 0 to x =
π

2
.
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/5
Problem 15: The tank shown contains water to a depth of 4 meters. Find the work required to pump
all the water out to the level of the top of the tank. Express your answer in terms of the density of
water, ρ, and the acceleration of gravity, g.
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/8
Problem 16: Given that the Maclaurin series for sinx is

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

(a) Find the Maclaurin series for sin(x2).
/2

(b) Find the Maclaurin series for x sinx.
/2

(c) Use the first three non-zero terms of the power series in part (a) to approximate the definite integral
/4 ∫ 1/2

0
sin(x2) dx.
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