
Dyck Words, Pattern Avoidance, and
Automatic Sequences

Lucas Mol, Thompson Rivers University
Narad Rampersad, University of Winnipeg

Jeffrey Shallit, University of Waterloo

WORDS 2023

PLAN

INTRODUCTION

REPETITIONS AND DYCK WORDS

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

DYCK WORDS

I A Dyck word is a string of balanced parentheses.
I 0 – left paren
I 1 – right paren

E.g.,
I 001011 = (()()) is Dyck
I 0110 = ())(is not

I Formally, x is Dyck if
I x = ε,
I x = 0y1 for some Dyck word y , or
I x = yz for some Dyck words y and z.

BALANCE AND NESTING LEVEL

I The balance of x is defined by

B(x) = |x |0 − |x |1.

I The word x is Dyck iff

B(x) = 0 and B(x ′) ≥ 0 for all prefixes x ′ of x .

I The nesting level of a Dyck word x , denoted N(x), is the
deepest level of parenthesis nesting in x , e.g.,

N(001011) = 2.

I More generally,

N(x) = max{B(x ′) : x ′ is a prefix of x}.

QUESTIONS

I What repetitions must appear in long Dyck words? What
repetitions can be avoided? What is the relationship
between avoidable repetitions and nesting level?

I Can Walnut be used to prove statements about the Dyck
factors of certain automatic sequences?

PLAN

INTRODUCTION

REPETITIONS AND DYCK WORDS

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

REPETITIONS

I The exponent of a word is its length divided by its smallest
period, e.g.,
I alfalfa = (alf)7/3 has exponent 7/3
I valtavalta = (valta)2 has exponent 2

I A word is α-power-free if it contains no factors of exponent
greater than or equal to α.
I E.g., the fixed point of g = [012,02,1] is 2-power-free.

I A word is α+-power-free if it contains no factors of
exponent greater than α.
I E.g., the Thue-Morse word is 2+-power-free.

Theorem: A characterization of overlap-free Dyck words.

Corollary: There are arbitrarily long overlap-free Dyck words.

Sketch of Proof:
I Let g = [012,02,1], and let s = gω(0).
I Let h = [01,0011,001011].
I Let x be a prefix of s ending in 10.
I Then h(x) and 0h(x)1 are overlap-free Dyck words.

Note: These words have nesting level at most 3.

Theorem: If w is a 7
3 -power-free Dyck word, then N(w) ≤ 3.

Theorem: There are 7
3
+-power-free Dyck words of every

nesting level.

Idea of Proof:

I We sketch the simpler proof that there are cube-free Dyck
words of every nesting level.

I Define f = [001,011].
I It is well-known that f is cube-free.
I Applying f preserves the Dyck property, and increases the

nesting level by one.
I By induction, for all t ≥ 0, the word f t(01) is a cube-free

Dyck word of nesting level t + 1.

SUMMARY: REPETITIONS AND DYCK WORDS

I There are arbitrarily long overlap-free Dyck words, but they
have small nesting level.

I Dyck words of large nesting levels only become attainable
when we allow 7/3-powers.

PLAN

INTRODUCTION

REPETITIONS AND DYCK WORDS

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

WALNUT

I Walnut can be used to prove statements, written in a
certain first-order logic, about automatic sequences.

I But the language of Dyck words is not definable in this
first-order logic!

I So Walnut cannot directly handle the Dyck factors of all
automatic sequences...

RUNNING-SUM SYNCHRONIZED SEQUENCES

I For a binary k -automatic sequence s = (s(n))n≥0, define
its running-sum sequence by

v(n) =
∑

0≤i<n

s(i).

I We say that s is running-sum synchronized if there is a
DFA accepting, in parallel, the base-k representations of n
and v(n).

Theorem: Walnut can handle the Dyck factors of running-sum
synchronized sequences!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0

1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1

2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2

2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2

3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3

3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3

3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3

4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The DFA on the previous slide was built in Walnut as follows:

def even "Ek n=2*k": # accepts even numbers

def odd "Ek n=2*k+1": # accepts odd numbers

def V "($even(n) & 2*x=n) |
($odd(n) & 2*x+1=n & T[n-1]=@0) |
($odd(n) & 2*x=n+1 & T[n-1]=@1)":

accepts n and v(n) in parallel

AN EXAMPLE: THUE-MORSE

We can now build an automaton that identifies the Dyck factors
of Thue-Morse:

def N1 "Ey,z $V(i,y) & $V(i+n,z) & x+y=z":
accepts (i,n,x) if T[i..i+n-1] has x 1’s

def N0 "Ey $N1(i,n,y) & n=x+y":
accepts (i,n,x) if T[i..i+n-1] has x 0’s

def Dyck "(Ew $N0(i,n,w) & $N1(i,n,w)) &
At,y,z (t<n & $N0(i,t,y) & $N1(i,t,z)) => y>=z":

accepts (i,n) if T[i..i+n-1] is Dyck

AN EXAMPLE: THUE-MORSE

0

[0,0]
1

[1,0]
2

[0,1]

3

[1,1]

[1,0]

4
[0,0]

5

[0,1]

6
[1,1]

[1,1]

7

[0,0]

8

[1,0]

9

[0,1]

[0,0]

[1,1]

10
[1,0]

11
[0,1]

[0,0]

12

[1,0]

13
[0,1]

14

[1,1]

[1,0]

[0,0]

15

[0,1]

16

[1,1]

[0,0]

[1,1]

[1,0]

17

[0,1]

[1,1]

[1,0]

[0,0]

[0,1]

[0,0]

[0,1]

[1,1]

18

[1,0]

[1,1]

[0,0]

[1,0]

[0,1]

[1,0]

[1,1]

[0,0]

[0,1]

[0,1]

[0,0]

[1,1]

[1,0]

[0,0]
[1,0] [1,1]

[0,1]

[0,1]

[1,0]

[0,0]

[1,1]

[1,1]

[1,0]

[0,1]

19

[0,0]

[0,0]

[0,1]

[1,1]

[1,0]

[1,1]

[1,0]

[0,0]

[0,1]

[1,0]

[1,1]

[0,0]

[0,1]

[1,1]

[1,0]

[0,1]

[0,0]

[1,1]

[0,0]

[1,0] [0,1]

The automaton recognizing Dyck factors of Thue-Morse!

AN EXAMPLE: THUE-MORSE

Now we can prove statements about Dyck factors of TM.

I TM has Dyck factors of all even lengths.

We run the command
eval AllLengths "An $even(n) => Ei $Dyck(i,n)":

and Walnut returns TRUE.

I Every Dyck factor of TM has nesting level at most 2.

We run the commands
def Bal "Ey,z $N0(i,n,y) & $N1(i,n,z) &

((y<z & x=0) | (y>=z & y=x+z))":
def Nest "Em (m<n) & $Bal(i,m,x) &

Ap,y (p<n & $Bal(i,p,y)) => y<=x":
eval MaxNest "Ai,n,x ($Dyck(i,n) & $Nest(i,n,x)) => x<=2":

and Walnut returns TRUE.
I We can also count Dyck factors of TM!

SUMMARY: AUTOMATIC SEQUENCES

I Walnut cannot directly handle the Dyck factors of all
automatic sequences.

I Walnut can handle the Dyck factors of automatic
sequences that are running-sum synchronized.

OUTLOOK

Some possible directions for future work:
I Extend to Dyck words with two or more types of parens.
I Develop techniques to recognize/characterize the Dyck

factors of words that are not running-sum synchronized.

Thank you!

	Introduction
	Repetitions and Dyck words
	Dyck factors of some automatic sequences

