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DYCK WORDS

I A Dyck word is a string of balanced parentheses.
I 0 – left paren
I 1 – right paren

E.g.,
I 001011 = (()()) is Dyck
I 0110 = ())( is not

I Formally, x is Dyck if
I x = ε,
I x = 0y1 for some Dyck word y , or
I x = yz for some Dyck words y and z.



BALANCE AND NESTING LEVEL

I The balance of x is defined by

B(x) = |x |0 − |x |1.

I The word x is Dyck iff

B(x) = 0 and B(x ′) ≥ 0 for all prefixes x ′ of x .

I The nesting level of a Dyck word x , denoted N(x), is the
deepest level of parenthesis nesting in x , e.g.,

N(001011) = 2.

I More generally,

N(x) = max{B(x ′) : x ′ is a prefix of x}.



QUESTIONS

I What repetitions must appear in long Dyck words? What
repetitions can be avoided? What is the relationship
between avoidable repetitions and nesting level?

I Can Walnut be used to prove statements about the Dyck
factors of certain automatic sequences?
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REPETITIONS

I The exponent of a word is its length divided by its smallest
period, e.g.,
I alfalfa = (alf)7/3 has exponent 7/3
I valtavalta = (valta)2 has exponent 2

I A word is α-power-free if it contains no factors of exponent
greater than or equal to α.
I E.g., the fixed point of g = [012,02,1] is 2-power-free.

I A word is α+-power-free if it contains no factors of
exponent greater than α.
I E.g., the Thue-Morse word is 2+-power-free.



Theorem: A characterization of overlap-free Dyck words.

Corollary: There are arbitrarily long overlap-free Dyck words.

Sketch of Proof:
I Let g = [012,02,1], and let s = gω(0).
I Let h = [01,0011,001011].
I Let x be a prefix of s ending in 10.
I Then h(x) and 0h(x)1 are overlap-free Dyck words.

Note: These words have nesting level at most 3.



Theorem: If w is a 7
3 -power-free Dyck word, then N(w) ≤ 3.

Theorem: There are 7
3
+-power-free Dyck words of every

nesting level.

Idea of Proof:

I We sketch the simpler proof that there are cube-free Dyck
words of every nesting level.

I Define f = [001,011].
I It is well-known that f is cube-free.
I Applying f preserves the Dyck property, and increases the

nesting level by one.
I By induction, for all t ≥ 0, the word f t(01) is a cube-free

Dyck word of nesting level t + 1.



SUMMARY: REPETITIONS AND DYCK WORDS

I There are arbitrarily long overlap-free Dyck words, but they
have small nesting level.

I Dyck words of large nesting levels only become attainable
when we allow 7/3-powers.
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WALNUT

I Walnut can be used to prove statements, written in a
certain first-order logic, about automatic sequences.

I But the language of Dyck words is not definable in this
first-order logic!

I So Walnut cannot directly handle the Dyck factors of all
automatic sequences...



RUNNING-SUM SYNCHRONIZED SEQUENCES

I For a binary k -automatic sequence s = (s(n))n≥0, define
its running-sum sequence by

v(n) =
∑

0≤i<n

s(i).

I We say that s is running-sum synchronized if there is a
DFA accepting, in parallel, the base-k representations of n
and v(n).

Theorem: Walnut can handle the Dyck factors of running-sum
synchronized sequences!



AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

I [1,1][1,0] is accepted, since v(3) = 2.
I [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!
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AN EXAMPLE: THUE-MORSE

The DFA on the previous slide was built in Walnut as follows:

def even "Ek n=2*k": # accepts even numbers

def odd "Ek n=2*k+1": # accepts odd numbers

def V "($even(n) & 2*x=n) |
($odd(n) & 2*x+1=n & T[n-1]=@0) |
($odd(n) & 2*x=n+1 & T[n-1]=@1)":

# accepts n and v(n) in parallel



AN EXAMPLE: THUE-MORSE

We can now build an automaton that identifies the Dyck factors
of Thue-Morse:

def N1 "Ey,z $V(i,y) & $V(i+n,z) & x+y=z":
# accepts (i,n,x) if T[i..i+n-1] has x 1’s

def N0 "Ey $N1(i,n,y) & n=x+y":
# accepts (i,n,x) if T[i..i+n-1] has x 0’s

def Dyck "(Ew $N0(i,n,w) & $N1(i,n,w)) &
At,y,z (t<n & $N0(i,t,y) & $N1(i,t,z)) => y>=z":

# accepts (i,n) if T[i..i+n-1] is Dyck



AN EXAMPLE: THUE-MORSE
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The automaton recognizing Dyck factors of Thue-Morse!



AN EXAMPLE: THUE-MORSE

Now we can prove statements about Dyck factors of TM.

I TM has Dyck factors of all even lengths.

We run the command
eval AllLengths "An $even(n) => Ei $Dyck(i,n)":

and Walnut returns TRUE.

I Every Dyck factor of TM has nesting level at most 2.

We run the commands
def Bal "Ey,z $N0(i,n,y) & $N1(i,n,z) &

((y<z & x=0) | (y>=z & y=x+z))":
def Nest "Em (m<n) & $Bal(i,m,x) &

Ap,y (p<n & $Bal(i,p,y)) => y<=x":
eval MaxNest "Ai,n,x ($Dyck(i,n) & $Nest(i,n,x)) => x<=2":

and Walnut returns TRUE.
I We can also count Dyck factors of TM!



SUMMARY: AUTOMATIC SEQUENCES

I Walnut cannot directly handle the Dyck factors of all
automatic sequences.

I Walnut can handle the Dyck factors of automatic
sequences that are running-sum synchronized.



OUTLOOK

Some possible directions for future work:
I Extend to Dyck words with two or more types of parens.
I Develop techniques to recognize/characterize the Dyck

factors of words that are not running-sum synchronized.



Thank you!
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