The repetition threshold for binary rich words

Lucas Mol

(8) THE UNIVERSITY OF WINNIPEG

Joint work with James D. Currie and Narad Rampersad

AMS Special Session on Sequences, Words, and Automata Joint Mathematics Meetings, Denver, CO

January 15, 2020

Plan

Critical Exponents and Repetition Thresholds

Rich words

Fractional Powers

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.
- If w has exponent r, then we say that w is an r-power.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.
- If w has exponent r, then we say that w is an r-power.
- Example: The word alfalfa is a $7 / 3$-power.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.
- If w has exponent r, then we say that w is an r-power.
- Example: The word alfalfa is a $7 / 3$-power.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.
- If w has exponent r, then we say that w is an r-power.
- Example: The word alfalfa is a $7 / 3$-power.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.
- If w has exponent r, then we say that w is an r-power.
- Example: The word alfalfa is a $7 / 3$-power.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.
- If w has exponent r, then we say that w is an r-power.
- Example: The word alfalfa is a $7 / 3$-power.

Fractional Powers

- A word $w=w_{1} w_{2} \cdots w_{n}$ has period p if $w_{i+p}=w_{i}$ for all $1 \leq i \leq n-p$.
- In this case, the rational number n / p is called an exponent of w.
- If w has exponent r, then we say that w is an r-power.
- Example: The word alfalfa is a $7 / 3$-power.

- Special case: 2-powers are also called squares.

Critical exponents and repetition thresholds

Critical exponents and repetition thresholds

- The critical exponent of a word w is defined as

$$
\sup \{r \in \mathbb{Q}: w \text { contains an } r \text {-power }\} .
$$

Critical exponents and repetition thresholds

- The critical exponent of a word w is defined as

$$
\sup \{r \in \mathbb{Q}: w \text { contains an } r \text {-power }\} .
$$

- Let μ denote the Thue-Morse morphism, defined by $\mu(0)=01$ and $\mu(1)=10$.

Critical exponents and repetition thresholds

- The critical exponent of a word w is defined as

$$
\sup \{r \in \mathbb{Q}: w \text { contains an } r \text {-power }\} .
$$

- Let μ denote the Thue-Morse morphism, defined by $\mu(0)=01$ and $\mu(1)=10$.
- It is well-known that the Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

contains no factors of exponent greater than 2.

Critical exponents and repetition thresholds

- The critical exponent of a word w is defined as

$$
\sup \{r \in \mathbb{Q}: w \text { contains an } r \text {-power }\} .
$$

- Let μ denote the Thue-Morse morphism, defined by $\mu(0)=01$ and $\mu(1)=10$.
- It is well-known that the Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

contains no factors of exponent greater than 2.

- It does, however, contain squares.

Critical exponents and repetition thresholds

- The critical exponent of a word w is defined as

$$
\sup \{r \in \mathbb{Q}: w \text { contains an } r \text {-power }\} .
$$

- Let μ denote the Thue-Morse morphism, defined by $\mu(0)=01$ and $\mu(1)=10$.
- It is well-known that the Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

contains no factors of exponent greater than 2.

- It does, however, contain squares.
- So the critical exponent of the Thue-Morse word is 2.

Critical exponents and repetition thresholds

- The critical exponent of a word w is defined as

$$
\sup \{r \in \mathbb{Q}: w \text { contains an } r \text {-power }\} .
$$

- Let μ denote the Thue-Morse morphism, defined by $\mu(0)=01$ and $\mu(1)=10$.
- It is well-known that the Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

contains no factors of exponent greater than 2.

- It does, however, contain squares.
- So the critical exponent of the Thue-Morse word is 2.
- The repetition threshold for a set of words L is the smallest critical exponent among all infinite words in L.

Critical exponents and repetition thresholds

- The critical exponent of a word w is defined as

$$
\sup \{r \in \mathbb{Q}: w \text { contains an } r \text {-power }\} .
$$

- Let μ denote the Thue-Morse morphism, defined by $\mu(0)=01$ and $\mu(1)=10$.
- It is well-known that the Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

contains no factors of exponent greater than 2.

- It does, however, contain squares.
- So the critical exponent of the Thue-Morse word is 2.
- The repetition threshold for a set of words L is the smallest critical exponent among all infinite words in L.
- Since every long enough binary word contains a square, the repetition threshold for the set of all binary words is 2 .

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?
- Answer: It turns out that every infinite binary word with critical exponent less than 7/3 looks almost like the Thue-Morse word!

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?
- Answer: It turns out that every infinite binary word with critical exponent less than 7/3 looks almost like the Thue-Morse word!

Theorem (Karhumäki and Shallit, 2004): Let w be an infinite binary word with critical exponent less than $7 / 3$. For every $n \geq 1$, a suffix of w has the form $\mu^{n}\left(w_{n}\right)$ for some infinite binary word w_{n}.

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?
- Answer: It turns out that every infinite binary word with critical exponent less than 7/3 looks almost like the Thue-Morse word!
Theorem (Karhumäki and Shallit, 2004): Let w be an infinite binary word with critical exponent less than $7 / 3$. For every $n \geq 1$, a suffix of w has the form $\mu^{n}\left(w_{n}\right)$ for some infinite binary word w_{n}.
- In particular, if w is an infinite binary word with critical exponent less than $7 / 3$, then it contains every factor of the Thue-Morse word.

A QUICK REVIEW

A QUICK REVIEW

- Every long enough binary word contains a square.

A QUICK REVIEW

- Every long enough binary word contains a square.
- The Thue-Morse word contains nothing "bigger" than a square; it has critical exponent 2.

A QUICK REVIEW

- Every long enough binary word contains a square.
- The Thue-Morse word contains nothing "bigger" than a square; it has critical exponent 2.
- This means that the repetition threshold for the set of all binary words is 2 .

A QUICK REVIEW

- Every long enough binary word contains a square.
- The Thue-Morse word contains nothing "bigger" than a square; it has critical exponent 2.
- This means that the repetition threshold for the set of all binary words is 2.
- If an infinite binary word has critical exponent less than $7 / 3$, then it contains every factor of the Thue-Morse word.

Critical Exponents and Repetition Thresholds

Rich words

RIch words

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes 0 ,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes 0,1 ,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11$,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101 , so it is rich.

RICH words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101 , so it is rich.
- The word 0120 contains only the palindromes 0,1 , and 2 , so it is not rich.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes as factors.

- A finite word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101 , so it is rich.
- The word 0120 contains only the palindromes 0,1 , and 2 , so it is not rich.
- An infinite word is called rich if all of its finite factors are rich.

Repetitions in Rich words

Theorem (Pelantová and Starosta, 2013): Every infinite rich word contains a square.

Repetitions in Rich words

Theorem (Pelantová and Starosta, 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.

Repetitions in Rich words

Theorem (Pelantová and Starosta, 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.
- So, what types of powers can be avoided by infinite rich words on k letters?

Repetitions in Rich words

Theorem (Pelantová and Starosta, 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.
- So, what types of powers can be avoided by infinite rich words on k letters?
- Cubes?

Repetitions in rich words

Theorem (Pelantová and Starosta, 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.
- So, what types of powers can be avoided by infinite rich words on k letters?
- Cubes?
- If so, what about fractional powers between 2 and 3 ?

Repetitions in rich words

Theorem (Pelantová and Starosta, 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.
- So, what types of powers can be avoided by infinite rich words on k letters?
- Cubes?
- If so, what about fractional powers between 2 and 3 ?
- We are asking for the repetition threshold for rich words on k letters, denoted RRT (k).

Repetitions in rich words

Theorem (Pelantová and Starosta, 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.
- So, what types of powers can be avoided by infinite rich words on k letters?
- Cubes?
- If so, what about fractional powers between 2 and 3 ?
- We are asking for the repetition threshold for rich words on k letters, denoted RRT (k).
- We will determine RRT(2).

Repetitions in Rich words

Theorem (Baranwal and Shallit, 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

Repetitions in Rich words

Theorem (Baranwal and Shallit, 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.

Repetitions in rich words

Theorem (Baranwal and Shallit, 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.
- They conjectured that this is the smallest possible critical exponent among infinite binary rich words, i.e., that $\operatorname{RRT}(2)=2+\sqrt{2} / 2$.

Repetitions in rich words

Theorem (Baranwal and Shallit, 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.
- They conjectured that this is the smallest possible critical exponent among infinite binary rich words, i.e., that $\operatorname{RRT}(2)=2+\sqrt{2} / 2$.
- The irrationality of $2+\sqrt{2} / 2$ makes this hard to prove!

Repetitions in rich words

Theorem (Baranwal and Shallit, 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.
- They conjectured that this is the smallest possible critical exponent among infinite binary rich words, i.e., that $\operatorname{RRT}(2)=2+\sqrt{2} / 2$.
- The irrationality of $2+\sqrt{2} / 2$ makes this hard to prove!
- Baranwal and Shallit: RRT(2) ≥ 2.7

Baranwal and Shallit's construction

Define morphisms f and h by

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=01 \\
& f(2)=011 \\
& h(0)=01 \\
& h(1)=02 \\
& h(2)=022 .
\end{aligned}
$$

Baranwal and Shallit's construction

Define morphisms f and h by

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=01 \\
& f(2)=011 \\
& h(0)=01 \\
& h(1)=02 \\
& h(2)=022 .
\end{aligned}
$$

The infinite word $f\left(h^{\omega}(0)\right)$ is rich and has critical exponent $2+\sqrt{2} / 2$.

Baranwal and Shallit's construction

Define morphisms f and h by

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=01 \\
& f(2)=011 \\
& h(0)=01 \\
& h(1)=02 \\
& h(2)=022 .
\end{aligned}
$$

The infinite word $f\left(h^{\omega}(0)\right)$ is rich and has critical exponent $2+\sqrt{2} / 2$.

- The proof was completed using the automatic theorem proving software Walnut.

AN IRRATIONAL REPETITION THRESHOLD?

AN IRRATIONAL REPETITION THRESHOLD?

- One way to show that $\operatorname{RRT}(2)=2+\sqrt{2} / 2$ would be to give a structure theorem for infinite binary rich words with critical exponent less than some number close to (but larger than) $2+\sqrt{2} / 2$.

AN IRRATIONAL REPETITION THRESHOLD?

- One way to show that $\operatorname{RRT}(2)=2+\sqrt{2} / 2$ would be to give a structure theorem for infinite binary rich words with critical exponent less than some number close to (but larger than) $2+\sqrt{2} / 2$.
- One would hope that every infinite binary rich word with critical exponent less than 14/5 looks like $f\left(h^{\omega}(0)\right)$.

AN IRRATIONAL REPETITION THRESHOLD?

- One way to show that $\operatorname{RRT}(2)=2+\sqrt{2} / 2$ would be to give a structure theorem for infinite binary rich words with critical exponent less than some number close to (but larger than) $2+\sqrt{2} / 2$.
- One would hope that every infinite binary rich word with critical exponent less than 14/5 looks like $f\left(h^{\omega}(0)\right)$.
- Unfortunately, this is not the case!

AN IRRATIONAL REPETITION THRESHOLD?

- One way to show that $\operatorname{RRT}(2)=2+\sqrt{2} / 2$ would be to give a structure theorem for infinite binary rich words with critical exponent less than some number close to (but larger than) $2+\sqrt{2} / 2$.
- One would hope that every infinite binary rich word with critical exponent less than $14 / 5$ looks like $f\left(h^{\omega}(0)\right)$.
- Unfortunately, this is not the case!
- Fortunately, it is not much worse than this.

Another structure theorem

Every infinite binary rich word with critical exponent less than $14 / 5$ looks like either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

ANOTHER STRUCTURE THEOREM

Every infinite binary rich word with critical exponent less than $14 / 5$ looks like either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Theorem (Currie, Mol, and Rampersad, 2020+): Let w be an infinite rich word over the binary alphabet $\{0,1\}$ with critical exponent less than $14 / 5$. For every $n \geq 1$, a suffix of w has the form $f\left(h^{n}\left(w_{n}\right)\right)$ or $f\left(g\left(h^{n}\left(w_{n}\right)\right)\right)$ for some infinite word w_{n} over $\{0,1,2\}$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad, 2019+): The repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Proof:

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad, 2019+): The repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of $u=f\left(h^{\omega}(0)\right)$ or all factors of $v=f\left(g\left(h^{\omega}(0)\right)\right)$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad, 2019+): The repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of $u=f\left(h^{\omega}(0)\right)$ or all factors of $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- Baranwal and Shallit showed that the critical exponent of u is $2+\sqrt{2} / 2$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad, 2019+): The repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of $u=f\left(h^{\omega}(0)\right)$ or all factors of $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- Baranwal and Shallit showed that the critical exponent of u is $2+\sqrt{2} / 2$.
- So it suffices to show that v has critical exponent at least $2+\sqrt{2} / 2$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad, 2019+): The repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of $u=f\left(h^{\omega}(0)\right)$ or all factors of $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- Baranwal and Shallit showed that the critical exponent of u is $2+\sqrt{2} / 2$.
- So it suffices to show that v has critical exponent at least $2+\sqrt{2} / 2$.
- In fact, we show that v is rich, and has critical exponent exactly $2+\sqrt{2} / 2$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad, 2019+): The repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of $u=f\left(h^{\omega}(0)\right)$ or all factors of $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- Baranwal and Shallit showed that the critical exponent of u is $2+\sqrt{2} / 2$.
- So it suffices to show that v has critical exponent at least $2+\sqrt{2} / 2$.
- In fact, we show that v is rich, and has critical exponent exactly $2+\sqrt{2} / 2$.
- Our proof technique can also be applied to u, providing an alternate proof of Baranwal and Shallit's result.

Establishing richness

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1001$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1001$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10010$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10010$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!
- By a theorem of Rote (1994), this means that u and v are complementary symmetric Rote words.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!
- By a theorem of Rote (1994), this means that u and v are complementary symmetric Rote words.
- By a theorem of Blondin-Massé et al. (2011), every complementary symmetric Rote word is rich.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!
- By a theorem of Rote (1994), this means that u and v are complementary symmetric Rote words.
- By a theorem of Blondin-Massé et al. (2011), every complementary symmetric Rote word is rich.
- Therefore, both u and v are rich!

Establishing the critical exponent

- We still want to determine the critical exponent of v.

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & =001010010110100101001011 \cdots \\
\Delta(v) & =01111011101110111101110 \cdots
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & = 0 0 1 0 1 0 0 1 0 1 1 \longdiv { 0 1 0 0 1 0 1 0 0 1 } 0 1 1 \cdots \\
\Delta(v) & =01111011101110111101110 \cdots
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& v=00101001011001001|01001| 011 \cdots
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & =001010010110100101001011 \cdots \\
\Delta(v) & =01 \begin{array}{|l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
101110 \cdots
\end{array}
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& \boldsymbol{v}=00 \begin{array}{|l|l|l|l|}
\hline 1010 & 0101 & 1010 & 0101 \\
\hline
\end{array} 01011 \cdots \\
& \Delta(v)=01 \begin{array}{|l|l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 & 101110 \cdots
\end{array}
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & =00 \begin{array}{|l|l|l|l|}
\hline 1010 & 0101 & 1010 & 0101 \\
0
\end{array} 01011 \cdots \\
\Delta(v) & =01 \begin{array}{l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
\hline
\end{array} 01110 \ldots
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& v=00 \begin{array}{|l|l|l|l|}
1010 & 0101 & 1010 & 0101 \\
0 & 01011 \cdots \\
\Delta(v) & =01 \begin{array}{l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
\hline
\end{array} 01110 \cdots
\end{array} \\
& \hline
\end{aligned}
$$

- Remember that $\Delta(v)$ is a Sturmian word.

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- To do this, we relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& v=00 \begin{array}{|l|l|l|l|}
1010 & 0101 & 1010 & 0101 \\
0 & 01011 \cdots \\
\Delta(v) & =01 \begin{array}{l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
\hline
\end{array} 01110 \cdots
\end{array} \\
& \hline
\end{aligned}
$$

- Remember that $\Delta(v)$ is a Sturmian word.
- We can apply general results on repetitions in Sturmian words to establish the critical exponent of v.

Summary

- Every infinite binary rich word with critical exponent less than $14 / 5$ looks like either u or v.

Summary

- Every infinite binary rich word with critical exponent less than 14/5 looks like either u or v.
- Both u and v are complementary symmetric Rote words; we use this fact to prove that they are rich and have critical exponent $2+\sqrt{2} / 2$.

Summary

- Every infinite binary rich word with critical exponent less than 14/5 looks like either u or v.
- Both u and v are complementary symmetric Rote words; we use this fact to prove that they are rich and have critical exponent $2+\sqrt{2} / 2$.
- We conclude that the repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Future prospects

We have focused on binary words. What about words on k letters, for $k>2$?

Future prospects

We have focused on binary words. What about words on k letters, for $k>2$?

- The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

Future prospects

We have focused on binary words. What about words on k letters, for $k>2$?

- The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}7 / 4, & \text { if } k=3 ; \\ 7 / 5, & \text { if } k=4 ; \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Determining the repetition threshold for rich words on $k>2$ letters remains an open problem.

Future prospects

We have focused on binary words. What about words on k letters, for $k>2$?

- The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}7 / 4, & \text { if } k=3 ; \\ 7 / 5, & \text { if } k=4 ; \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Determining the repetition threshold for rich words on $k>2$ letters remains an open problem.
- Is RRT (k) rational for $k>2$?

Future prospects

We have focused on binary words. What about words on k letters, for $k>2$?

- The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 ; \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Determining the repetition threshold for rich words on $k>2$ letters remains an open problem.
- Is RRT (k) rational for $k>2$?
- Is $\lim _{k \rightarrow \infty} \operatorname{RRT}(k)=2$?

More about the Structure Theorem

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Theorem (Currie, Mol, and Rampersad, 2020+): Let w be an infinite rich word over the binary alphabet $\{0,1\}$ with critical exponent less than $14 / 5$. For every $n \geq 1$, a suffix of w has the form $f\left(h^{n}\left(w_{n}\right)\right)$ or $f\left(g\left(h^{n}\left(w_{n}\right)\right)\right)$ for some infinite word w_{n} over $\{0,1,2\}$.

More about the Structure Theorem

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Theorem (Currie, Mol, and Rampersad, 2020+): Let w be an infinite rich word over the binary alphabet $\{0,1\}$ with critical exponent less than $14 / 5$. For every $n \geq 1$, a suffix of w has the form $f\left(h^{n}\left(w_{n}\right)\right)$ or $f\left(g\left(h^{n}\left(w_{n}\right)\right)\right)$ for some infinite word w_{n} over $\{0,1,2\}$.

Idea of Proof: Suppose w is an infinite binary rich word with critical exponent less than $14 / 5$, e.g.,

$$
w=1001100100110110010011 \cdots
$$

More about the Structure Theorem

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Theorem (Currie, Mol, and Rampersad, 2020+): Let w be an infinite rich word over the binary alphabet $\{0,1\}$ with critical exponent less than $14 / 5$. For every $n \geq 1$, a suffix of w has the form $f\left(h^{n}\left(w_{n}\right)\right)$ or $f\left(g\left(h^{n}\left(w_{n}\right)\right)\right)$ for some infinite word w_{n} over $\{0,1,2\}$.

Idea of Proof: Suppose w is an infinite binary rich word with critical exponent less than 14/5, e.g.,

$$
w=1|0| 011|0| 01|0| 011|011| 0|01| 0 \mid 011 \cdots
$$

More about the Structure Theorem

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Theorem (Currie, Mol, and Rampersad, 2020+): Let w be an infinite rich word over the binary alphabet $\{0,1\}$ with critical exponent less than $14 / 5$. For every $n \geq 1$, a suffix of w has the form $f\left(h^{n}\left(w_{n}\right)\right)$ or $f\left(g\left(h^{n}\left(w_{n}\right)\right)\right)$ for some infinite word w_{n} over $\{0,1,2\}$.

Idea of Proof: Suppose w is an infinite binary rich word with critical exponent less than $14 / 5$, e.g.,

$$
w=1|0| 011|0| 01|0| 011|011| 0|01| 0 \mid 011 \cdots
$$

So some suffix of w can be written in the form $f\left(w^{\prime}\right)$.

Now consider w^{\prime}.

Now consider w^{\prime}.

- Do some backtracking to show that a handful of short factors cannot appear in w^{\prime}.

Now consider w^{\prime}.

- Do some backtracking to show that a handful of short factors cannot appear in w^{\prime}.
- Show that w^{\prime} must be rich.

Now consider w^{\prime}.

- Do some backtracking to show that a handful of short factors cannot appear in w^{\prime}.
- Show that w^{\prime} must be rich.
- Obviously, the word w^{\prime} must be cube-free.

Now consider w^{\prime}.

- Do some backtracking to show that a handful of short factors cannot appear in w^{\prime}.
- Show that w^{\prime} must be rich.
- Obviously, the word w^{\prime} must be cube-free.
- So this gives us a large set of forbidden factors in w^{\prime}.

Now consider w^{\prime}.

- Do some backtracking to show that a handful of short factors cannot appear in w^{\prime}.
- Show that w^{\prime} must be rich.
- Obviously, the word w^{\prime} must be cube-free.
- So this gives us a large set of forbidden factors in w^{\prime}.
- Divide into two cases:
- w^{\prime} contains the factor 0110.
- w^{\prime} does not contain the factor 0110.

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Case 1: w^{\prime} contains the factor 0110

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Case 1: w^{\prime} contains the factor 0110

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Case 1: w^{\prime} contains the factor 0110

- Show that the word ending at every unboxed leaf of this tree contains a forbidden factor.

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Case 1: w^{\prime} contains the factor 0110

- Show that the word ending at every unboxed leaf of this tree contains a forbidden factor.
- So a suffix of w^{\prime} can be written in the form $f\left(g\left(w^{\prime \prime}\right)\right)$.

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Case 1: w^{\prime} contains the factor 0110

- Show that the word ending at every unboxed leaf of this tree contains a forbidden factor.
- So a suffix of w^{\prime} can be written in the form $f\left(g\left(w^{\prime \prime}\right)\right)$.
- Apply a similar argument to show that some suffix of $w^{\prime \prime}$ can be written in the form $f\left(g\left(h\left(w_{1}\right)\right)\right)$.

Case 2: w^{\prime} does not contain the factor 0110

- Use a similar argument to show that some suffix of w^{\prime} can be written in the form $f\left(h\left(w_{1}\right)\right)$.

Case 2: w^{\prime} does not contain the factor 0110

- Use a similar argument to show that some suffix of w^{\prime} can be written in the form $f\left(h\left(w_{1}\right)\right)$.
- So altogether, we see that w has a suffix of the form $f\left(g\left(h\left(w_{1}\right)\right)\right)$, or a suffix of the form $f\left(h\left(w_{1}\right)\right)$.

Case 2: w^{\prime} does not contain the factor 0110

- Use a similar argument to show that some suffix of w^{\prime} can be written in the form $f\left(h\left(w_{1}\right)\right)$.
- So altogether, we see that w has a suffix of the form $f\left(g\left(h\left(w_{1}\right)\right)\right)$, or a suffix of the form $f\left(h\left(w_{1}\right)\right)$.
- This completes the base case of an inductive proof.

Case 2: w^{\prime} does not contain the factor 0110

- Use a similar argument to show that some suffix of w^{\prime} can be written in the form $f\left(h\left(w_{1}\right)\right)$.
- So altogether, we see that w has a suffix of the form $f\left(g\left(h\left(w_{1}\right)\right)\right)$, or a suffix of the form $f\left(h\left(w_{1}\right)\right)$.
- This completes the base case of an inductive proof.
- The inductive step is proved by a similar (though slightly more technical) unified argument.

WhY 14/5?

- The constant $14 / 5$ is used in the backtracking at the beginning of the argument.

WHY 14/5?

- The constant $14 / 5$ is used in the backtracking at the beginning of the argument.
- In fact, it appears that the following binary words are rich and have critical exponent equal to $14 / 5$:

$$
\tilde{f}\left(h^{\omega}(0)\right) \text { and } \tilde{f}\left(g\left(h^{\omega}(0)\right)\right)
$$

where

$$
\begin{aligned}
& \tilde{f}(0)=0 \\
& \tilde{f}(1)=011 \\
& \tilde{f}(2)=01
\end{aligned}
$$

$$
g(0)=011
$$

$$
h(0)=01
$$

$$
g(1)=0121
$$

$$
h(1)=02
$$

$$
g(2)=012121
$$

$$
h(2)=022
$$

WHY 14/5?

- The constant $14 / 5$ is used in the backtracking at the beginning of the argument.
- In fact, it appears that the following binary words are rich and have critical exponent equal to $14 / 5$:

$$
\tilde{f}\left(h^{\omega}(0)\right) \text { and } \tilde{f}\left(g\left(h^{\omega}(0)\right)\right)
$$

where

$$
\begin{aligned}
& \tilde{f}(0)=0 \\
& \tilde{f}(1)=011 \\
& \tilde{f}(2)=01
\end{aligned}
$$

$$
g(0)=011
$$

$$
h(0)=01
$$

$$
g(1)=0121
$$

$$
h(1)=02
$$

$$
g(2)=012121
$$

$$
h(2)=022
$$

- This suggests that $14 / 5$ is indeed the largest possible constant for which the structure theorem holds.

Thank you!

