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PLAN

CRITICAL EXPONENTS AND REPETITION THRESHOLDS

RICH WORDS



FRACTIONAL POWERS

I A word w = w1w2 · · ·wn has period p if wi+p = wi for all
1 ≤ i ≤ n − p.
I In this case, the rational number n/p is called an exponent

of w .
I If w has exponent r , then we say that w is an r -power.

I Example: The word alfalfa is a 7/3-power.

=




7/3

I Special case: 2-powers are also called squares.
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CRITICAL EXPONENTS AND REPETITION THRESHOLDS

I The critical exponent of a word w is defined as

sup{r ∈ Q : w contains an r -power}.

I Let µ denote the Thue-Morse morphism, defined by
µ(0) = 01 and µ(1) = 10.

I It is well-known that the Thue-Morse word

µω(0) = 0110100110010110 · · ·

contains no factors of exponent greater than 2.
I It does, however, contain squares.
I So the critical exponent of the Thue-Morse word is 2.

I The repetition threshold for a set of words L is the smallest
critical exponent among all infinite words in L.
I Since every long enough binary word contains a square,

the repetition threshold for the set of all binary words is 2.
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A STRUCTURE THEOREM

I Question: Are there other infinite binary words with critical
exponent 2? What do they look like?

I Answer: It turns out that every infinite binary word with
critical exponent less than 7/3 looks almost like the
Thue-Morse word!

Theorem (Karhumäki and Shallit, 2004): Let w be an infinite
binary word with critical exponent less than 7/3. For every
n ≥ 1, a suffix of w has the form µn(wn) for some infinite binary
word wn.

I In particular, if w is an infinite binary word with critical
exponent less than 7/3, then it contains every factor of the
Thue-Morse word.
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I A palindrome is a finite word that reads the same forwards
and backwards.
I Examples: 1001, 01010, kayak, racecar

Theorem (Droubay, Justin, Pirillo 2001): Every word of length n
contains at most n distinct nonempty palindromes as factors.
I A finite word of length n is called rich if it contains n distinct

nonempty palindromes.
I The word 01101 contains the palindromes

I The word 0120 contains only the palindromes 0, 1, and 2,
so it is not rich.

I An infinite word is called rich if all of its finite factors are
rich.
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Theorem (Pelantová and Starosta, 2013): Every infinite rich
word contains a square.

I This result holds over any finite alphabet.
I So, what types of powers can be avoided by infinite rich

words on k letters?
I Cubes?
I If so, what about fractional powers between 2 and 3?
I We are asking for the repetition threshold for rich words on

k letters, denoted RRT(k).
I We will determine RRT(2).
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Theorem (Pelantová and Starosta, 2013): Every infinite rich
word contains a square.

I This result holds over any finite alphabet.
I So, what types of powers can be avoided by infinite rich

words on k letters?

I Cubes?
I If so, what about fractional powers between 2 and 3?
I We are asking for the repetition threshold for rich words on

k letters, denoted RRT(k).
I We will determine RRT(2).



REPETITIONS IN RICH WORDS
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Theorem (Pelantová and Starosta, 2013): Every infinite rich
word contains a square.

I This result holds over any finite alphabet.
I So, what types of powers can be avoided by infinite rich

words on k letters?
I Cubes?
I If so, what about fractional powers between 2 and 3?
I We are asking for the repetition threshold for rich words on

k letters, denoted RRT(k).
I We will determine RRT(2).



REPETITIONS IN RICH WORDS

Theorem (Baranwal and Shallit, 2019): There is an infinite
binary rich word with critical exponent 2 +

√
2/2.

I Note: 2 +
√

2/2 ≈ 2.707.
I They conjectured that this is the smallest possible critical

exponent among infinite binary rich words, i.e., that
RRT(2) = 2 +

√
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I The irrationality of 2 +
√

2/2 makes this hard to prove!
I Baranwal and Shallit: RRT(2) ≥ 2.7
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BARANWAL AND SHALLIT’S CONSTRUCTION

Define morphisms f and h by

f (0) = 0

f (1) = 01

f (2) = 011

h(0) = 01

h(1) = 02

h(2) = 022.

The infinite word f (hω(0)) is rich and has critical exponent
2 +
√

2/2.
I The proof was completed using the automatic theorem

proving software Walnut.
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AN IRRATIONAL REPETITION THRESHOLD?

I One way to show that RRT(2) = 2 +
√

2/2 would be to give
a structure theorem for infinite binary rich words with
critical exponent less than some number close to (but
larger than) 2 +

√
2/2.

I One would hope that every infinite binary rich word with
critical exponent less than 14/5 looks like f (hω(0)).

I Unfortunately, this is not the case!
I Fortunately, it is not much worse than this.
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ANOTHER STRUCTURE THEOREM

Every infinite binary rich word with critical exponent less than
14/5 looks like either u = f (hω(0)) or v = f (g(hω(0))).

f (0) = 0

f (1) = 01

f (2) = 011

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

Theorem (Currie, Mol, and Rampersad, 2020+): Let w be an
infinite rich word over the binary alphabet {0,1} with critical
exponent less than 14/5. For every n ≥ 1, a suffix of w has the
form f (hn(wn)) or f (g(hn(wn))) for some infinite word wn over
{0,1,2}.
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AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad, 2019+): The repetition
threshold for binary rich words is 2 +

√
2/2.

Proof:

I If an infinite binary rich word has critical exponent less than
14/5, then it contains all factors of u = f (hω(0)) or all
factors of v = f (g(hω(0))).

I Baranwal and Shallit showed that the critical exponent of u
is 2 +

√
2/2.

I So it suffices to show that v has critical exponent at least
2 +
√

2/2.
I In fact, we show that v is rich, and has critical exponent

exactly 2 +
√

2/2.
I Our proof technique can also be applied to u, providing an

alternate proof of Baranwal and Shallit’s result.
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ESTABLISHING RICHNESS

I For a binary word w , let ∆(w) denote the sequence of first
differences of w modulo 2.
I e.g., ∆(0111001) =

I Fact: ∆(u) and ∆(v) are Sturmian words.
I Thank you, Edita Pelantová!

I By a theorem of Rote (1994), this means that u and v are
complementary symmetric Rote words.

I By a theorem of Blondin-Massé et al. (2011), every
complementary symmetric Rote word is rich.

I Therefore, both u and v are rich!
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I By a theorem of Rote (1994), this means that u and v are
complementary symmetric Rote words.

I By a theorem of Blondin-Massé et al. (2011), every
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ESTABLISHING THE CRITICAL EXPONENT

I We still want to determine the critical exponent of v .

I To do this, we relate the repetitions in v to the repetitions in
∆(v).

v = 001010010110100101001011 · · ·
∆(v) = 01111011101110111101110 · · ·

I Remember that ∆(v) is a Sturmian word.
I We can apply general results on repetitions in Sturmian

words to establish the critical exponent of v .
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SUMMARY

I Every infinite binary rich word with critical exponent less
than 14/5 looks like either u or v .

I Both u and v are complementary symmetric Rote words;
we use this fact to prove that they are rich and have critical
exponent 2 +

√
2/2.

I We conclude that the repetition threshold for binary rich
words is 2 +

√
2/2.
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FUTURE PROSPECTS

We have focused on binary words. What about words on k
letters, for k > 2?

I The repetition threshold for all words on k letters is given
by

RT(k) =


7/4, if k = 3;
7/5, if k = 4;
k/(k − 1), if k ≥ 5.

I Determining the repetition threshold for rich words on
k > 2 letters remains an open problem.
I Is RRT(k) rational for k > 2?
I Is lim

k→∞
RRT(k) = 2?
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MORE ABOUT THE STRUCTURE THEOREM

f (0) = 0

f (1) = 01

f (2) = 011

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

Theorem (Currie, Mol, and Rampersad, 2020+): Let w be an
infinite rich word over the binary alphabet {0,1} with critical
exponent less than 14/5. For every n ≥ 1, a suffix of w has the
form f (hn(wn)) or f (g(hn(wn))) for some infinite word wn over
{0,1,2}.

Idea of Proof: Suppose w is an infinite binary rich word with
critical exponent less than 14/5, e.g.,

So some suffix of w can be written in the form f (w ′).
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Now consider w ′.

I Do some backtracking to show that a handful of short
factors cannot appear in w ′.

I Show that w ′ must be rich.
I Obviously, the word w ′ must be cube-free.
I So this gives us a large set of forbidden factors in w ′.
I Divide into two cases:

I w ′ contains the factor 0110.
I w ′ does not contain the factor 0110.
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I Show that the word ending at every unboxed leaf of this
tree contains a forbidden factor.

I So a suffix of w ′ can be written in the form f (g(w ′′)).
I Apply a similar argument to show that some suffix of w ′′

can be written in the form f (g(h(w1))).



f (0) = 0

f (1) = 01

f (2) = 011

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

Case 1: w ′ contains the factor 0110

0

2

1

2

2

1

2

2

1

2

1

001

00

1

2

1

00

0

I Show that the word ending at every unboxed leaf of this
tree contains a forbidden factor.

I So a suffix of w ′ can be written in the form f (g(w ′′)).
I Apply a similar argument to show that some suffix of w ′′

can be written in the form f (g(h(w1))).



f (0) = 0

f (1) = 01

f (2) = 011

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

Case 1: w ′ contains the factor 0110

0

2

1

2

2

1

2

2

1

2

1

001

00

1

2

1

00

0

I Show that the word ending at every unboxed leaf of this
tree contains a forbidden factor.

I So a suffix of w ′ can be written in the form f (g(w ′′)).
I Apply a similar argument to show that some suffix of w ′′

can be written in the form f (g(h(w1))).



f (0) = 0

f (1) = 01

f (2) = 011

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

Case 1: w ′ contains the factor 0110

0

2

1

2

2

1

2

2

1

2

1

001

00

1

2

1

00

0

I Show that the word ending at every unboxed leaf of this
tree contains a forbidden factor.

I So a suffix of w ′ can be written in the form f (g(w ′′)).

I Apply a similar argument to show that some suffix of w ′′

can be written in the form f (g(h(w1))).



f (0) = 0

f (1) = 01

f (2) = 011

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

Case 1: w ′ contains the factor 0110

0

2

1

2

2

1

2

2

1

2

1

001

00

1

2

1

00

0

I Show that the word ending at every unboxed leaf of this
tree contains a forbidden factor.

I So a suffix of w ′ can be written in the form f (g(w ′′)).
I Apply a similar argument to show that some suffix of w ′′

can be written in the form f (g(h(w1))).



Case 2: w ′ does not contain the factor 0110

I Use a similar argument to show that some suffix of w ′ can
be written in the form f (h(w1)).

I So altogether, we see that w has a suffix of the form
f (g(h(w1))), or a suffix of the form f (h(w1)).

I This completes the base case of an inductive proof.
I The inductive step is proved by a similar (though slightly

more technical) unified argument.
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WHY 14/5?

I The constant 14/5 is used in the backtracking at the
beginning of the argument.

I In fact, it appears that the following binary words are rich
and have critical exponent equal to 14/5:

f̃ (hω(0)) and f̃ (g(hω(0))),

where

f̃ (0) = 0

f̃ (1) = 011

f̃ (2) = 01

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

I This suggests that 14/5 is indeed the largest possible
constant for which the structure theorem holds.
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Thank you!
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