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COMBINATORICS ON WORDS

▶ An alphabet is a finite set of letters, treated simply as
symbols, e.g.,
▶ {a,b,c, . . . ,z} (the English alphabet)
▶ {0,1} (the binary alphabet)
▶ {A,C,G,T} (the DNA alphabet)

▶ A word is a sequence of letters taken from some alphabet,
e.g.,
▶ apple, banana, clementine (English words)
▶ 0110100110010110 (a binary word)
▶ AAGATGCCGT (a DNA string)

▶ We are mostly interested in long words over small
alphabets.

▶ Which patterns can be avoided, and which patterns must
inevitably occur?
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SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!
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DYCK WORDS

▶ A Dyck word is a string of balanced parentheses.
▶ 0 – left paren
▶ 1 – right paren

E.g.,
▶ 001011 = (()()) is Dyck
▶ 0110 = ())( is not

▶ Formally, x is Dyck if
▶ x = ε,
▶ x = 0y1 for some Dyck word y , or
▶ x = yz for some Dyck words y and z.

▶ Dyck words have been well-studied, but NOT in the context
of combinatorics on words.



BALANCE AND NESTING LEVEL

▶ The balance of x is defined by

B(x) = |x |0 − |x |1.

▶ The word x is Dyck if and only if

B(x) = 0 and B(x ′) ≥ 0 for all prefixes x ′ of x .

▶ The nesting level of a Dyck word x , denoted N(x), is the
deepest level of parenthesis nesting in x , e.g.,

N(001011) = 2.

▶ More generally,

N(x) = max{B(x ′) : x ′ is a prefix of x}.



QUESTIONS

▶ What repetitions must appear in long Dyck words? What
repetitions can be avoided? What is the relationship
between avoidable repetitions and nesting level?

▶ Can Walnut be used to prove statements about the Dyck
factors of certain automatic sequences?
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REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.
▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.
▶ 2+-power-free? Yes!
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A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·
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THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.
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QUESTION

▶ What repetitions must appear in long Dyck words? What
repetitions can be avoided? What is the relationship
between avoidable repetitions and nesting level?



Theorem: A characterization of 2+-power-free Dyck words.

Corollary: There are arbitrarily long 2+-power-free Dyck words.

Sketch of Proof:
▶ Define g by

g(0) = 012, g(1) = 02, and g(2) = 1,

and let s = gω(0) = 012021012102 · · ·
▶ Define h by

h(0) = 01, h(1) = 0011, and h(2) = 001011.

▶ Let x be a prefix of s ending in 10.
▶ Then h(x) and 0h(x)1 are 2+-power-free Dyck words.

Note: These words have nesting level at most 3.



Theorem: If w is a 7
3 -power-free Dyck word, then N(w) ≤ 3.

Theorem: There are 7
3
+-power-free Dyck words of every

nesting level.

Idea of Proof:
▶ We sketch the simpler proof that there are cube-free Dyck

words of every nesting level.
▶ Define f by f (0) = 001 and f (1) = 011.
▶ It is well-known that f preserves cube-freeness.
▶ Applying f preserves the Dyck property, and increases the

nesting level by one.
▶ By induction, for all t ≥ 0, the word f t(01) is a cube-free

Dyck word of nesting level t + 1.



SUMMARY: REPETITIONS AND DYCK WORDS

▶ There are arbitrarily long 2+-power-free Dyck words, but
they have small nesting level.

▶ Dyck words of large nesting levels only become attainable
when we allow 7/3-powers.
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AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.
▶ T [0] = T [(0)2] = 0
▶ T [1] = T [(1)2] = 1
▶ T [2] = T [(10)2] = 1
▶ T [3] = T [(11)2] = 0
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AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 0

▶ Walnut returns FALSE.
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LENGTHS OF SQUARES IN TM

▶ To show that TM has a square, we enter
eval TMHasSquare "Ei,n (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

and Walnut returns TRUE.

▶ When we enter
def TMSquareLengths "Ei (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

Walnut returns an automaton that accepts all values of n
for which TM has a square of length 2n.

0

0

1
1

2
0, 1

0

▶ To show that TM has arbitrarily long squares, we enter
eval TMLongSquares "Ak En (n>=k) & $TMSquareLengths(n)":

and Walnut returns TRUE.
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QUESTION

▶ Can Walnut be used to prove statements about the Dyck
factors of automatic sequences?

▶ Remember that Walnut can be used to prove statements,
written in a certain first-order logic, about automatic
sequences.

▶ But the language of Dyck words is not definable in this
first-order logic! (Choffrut, Malcher, Mereghetti, Palano,
2012.)

▶ So Walnut cannot directly handle the Dyck factors of all
automatic sequences...
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RUNNING-SUM SYNCHRONIZED SEQUENCES

▶ For an automatic sequence s = (s(n))n≥0, define its
running-sum sequence by

v(n) =
∑

0≤i<n

s(i).

▶ We say that s is running-sum synchronized if there is an
automaton accepting, in parallel, the base-k
representations of n and v(n).

Theorem: Walnut can handle the Dyck factors of running-sum
synchronized sequences!



AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!
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AN EXAMPLE: THUE-MORSE

The automaton on the previous slide was built in Walnut as
follows:

def even "Ek n=2*k": # accepts even numbers

def odd "Ek n=2*k+1": # accepts odd numbers

def V "($even(n) & 2*x=n) |
($odd(n) & 2*x+1=n & T[n-1]=@0) |
($odd(n) & 2*x=n+1 & T[n-1]=@1)":

# accepts n and v(n) in parallel



AN EXAMPLE: THUE-MORSE

We can now build an automaton that identifies the Dyck factors
of Thue-Morse:

def N1 "Ey,z $V(i,y) & $V(i+n,z) & x+y=z":
# accepts (i,n,x) if T[i..i+n-1] has x 1’s

def N0 "Ey $N1(i,n,y) & n=x+y":
# accepts (i,n,x) if T[i..i+n-1] has x 0’s

def Dyck "(Ew $N0(i,n,w) & $N1(i,n,w)) &
At,y,z (t<n & $N0(i,t,y) & $N1(i,t,z)) => y>=z":

# accepts (i,n) if T[i..i+n-1] is Dyck



AN EXAMPLE: THUE-MORSE

0

[0,0]
1

[1,0]
2

[0,1]

3

[1,1]

[1,0]

4
[0,0]

5

[0,1]

6
[1,1]

[1,1]

7

[0,0]

8

[1,0]

9

[0,1]

[0,0]

[1,1]

10
[1,0]

11
[0,1]

[0,0]

12

[1,0]

13
[0,1]

14

[1,1]

[1,0]

[0,0]

15

[0,1]

16

[1,1]

[0,0]

[1,1]

[1,0]

17

[0,1]

[1,1]

[1,0]

[0,0]

[0,1]

[0,0]

[0,1]

[1,1]

18

[1,0]

[1,1]

[0,0]

[1,0]

[0,1]

[1,0]

[1,1]

[0,0]

[0,1]

[0,1]

[0,0]

[1,1]

[1,0]

[0,0]
[1,0] [1,1]

[0,1]

[0,1]

[1,0]

[0,0]

[1,1]

[1,1]

[1,0]

[0,1]

19

[0,0]

[0,0]

[0,1]

[1,1]

[1,0]

[1,1]

[1,0]

[0,0]

[0,1]

[1,0]

[1,1]

[0,0]

[0,1]

[1,1]

[1,0]

[0,1]

[0,0]

[1,1]

[0,0]

[1,0] [0,1]

The automaton recognizing Dyck factors of Thue-Morse!



AN EXAMPLE: THUE-MORSE

Now we can prove statements about Dyck factors of TM.

▶ TM has Dyck factors of all even lengths.

We run the command
eval AllLengths "An $even(n) => Ei $Dyck(i,n)":

and Walnut returns TRUE.

▶ Every Dyck factor of TM has nesting level at most 2.

We run the commands
def Bal "Ey,z $N0(i,n,y) & $N1(i,n,z) &

((y<z & x=0) | (y>=z & y=x+z))":
def Nest "Em (m<n) & $Bal(i,m,x) &

Ap,y (p<n & $Bal(i,p,y)) => y<=x":
eval MaxNest "Ai,n,x ($Dyck(i,n) & $Nest(i,n,x)) => x<=2":

and Walnut returns TRUE.
▶ Walnut can also be used to count the Dyck factors of TM!



SUMMARY: AUTOMATIC SEQUENCES

▶ Walnut cannot directly handle the Dyck factors of all
automatic sequences.

▶ Walnut can handle the Dyck factors of automatic
sequences that are running-sum synchronized.



OUTLOOK

Some possible directions for future work:
▶ Extend to Dyck words with two or more types of parens.
▶ Develop techniques to recognize/characterize the Dyck

factors of words that are not running-sum synchronized.
Jeffrey Shallit and Anatoly Zavyalov have made some progress
in these directions!



THANK YOU!
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