
Dyck Words, Pattern Avoidance, and
Automatic Sequences

Lucas Mol

Joint work with Narad Rampersad (Winnipeg) and Jeffrey
Shallit (Waterloo)

TRU Mathematics and Statistics Seminar
September 2023

WORDS 2023 CONFERENCE, UMEÅ, SWEDEN

PLAN

INTRODUCTION

REPETITIONS

REPETITIONS AND DYCK WORDS

AUTOMATIC SEQUENCES AND Walnut

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

COMBINATORICS ON WORDS

▶ An alphabet is a finite set of letters, treated simply as
symbols, e.g.,
▶ {a,b,c, . . . ,z} (the English alphabet)
▶ {0,1} (the binary alphabet)
▶ {A,C,G,T} (the DNA alphabet)

▶ A word is a sequence of letters taken from some alphabet,
e.g.,
▶ apple, banana, clementine (English words)
▶ 0110100110010110 (a binary word)
▶ AAGATGCCGT (a DNA string)

▶ We are mostly interested in long words over small
alphabets.

▶ Which patterns can be avoided, and which patterns must
inevitably occur?

COMBINATORICS ON WORDS

▶ An alphabet is a finite set of letters, treated simply as
symbols, e.g.,
▶ {a,b,c, . . . ,z} (the English alphabet)
▶ {0,1} (the binary alphabet)
▶ {A,C,G,T} (the DNA alphabet)

▶ A word is a sequence of letters taken from some alphabet,
e.g.,
▶ apple, banana, clementine (English words)
▶ 0110100110010110 (a binary word)
▶ AAGATGCCGT (a DNA string)

▶ We are mostly interested in long words over small
alphabets.

▶ Which patterns can be avoided, and which patterns must
inevitably occur?

COMBINATORICS ON WORDS

▶ An alphabet is a finite set of letters, treated simply as
symbols, e.g.,
▶ {a,b,c, . . . ,z} (the English alphabet)
▶ {0,1} (the binary alphabet)
▶ {A,C,G,T} (the DNA alphabet)

▶ A word is a sequence of letters taken from some alphabet,
e.g.,
▶ apple, banana, clementine (English words)
▶ 0110100110010110 (a binary word)
▶ AAGATGCCGT (a DNA string)

▶ We are mostly interested in long words over small
alphabets.

▶ Which patterns can be avoided, and which patterns must
inevitably occur?

COMBINATORICS ON WORDS

▶ An alphabet is a finite set of letters, treated simply as
symbols, e.g.,
▶ {a,b,c, . . . ,z} (the English alphabet)
▶ {0,1} (the binary alphabet)
▶ {A,C,G,T} (the DNA alphabet)

▶ A word is a sequence of letters taken from some alphabet,
e.g.,
▶ apple, banana, clementine (English words)
▶ 0110100110010110 (a binary word)
▶ AAGATGCCGT (a DNA string)

▶ We are mostly interested in long words over small
alphabets.

▶ Which patterns can be avoided, and which patterns must
inevitably occur?

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.

▶ e.g. The word 0110 has factors:

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0,

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1,

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01,

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11,

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10,

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011,

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110,

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.

▶ A word is square-free if it contains no squares as factors.
▶ apple
▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.
▶ A word is square-free if it contains no squares as factors.

▶ apple

▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.
▶ A word is square-free if it contains no squares as factors.

▶ apple – not square-free

▶ banana
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.
▶ A word is square-free if it contains no squares as factors.

▶ apple – not square-free
▶ banana

▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.
▶ A word is square-free if it contains no squares as factors.

▶ apple – not square-free
▶ banana – not square-free

▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.
▶ A word is square-free if it contains no squares as factors.

▶ apple – not square-free
▶ banana – not square-free
▶ clementine

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.
▶ A word is square-free if it contains no squares as factors.

▶ apple – not square-free
▶ banana – not square-free
▶ clementine – square-free

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

SQUARES AND SQUARE-FREE WORDS

▶ A square is a word of the form xx , e.g.,
▶ murmur, hotshots, caracara
▶ 00, 010212010212

▶ The factors of a word are its contiguous subwords.
▶ e.g. The word 0110 has factors:

0, 1, 01, 11, 10, 011, 110, and 0110, but NOT 00.
▶ A word is square-free if it contains no squares as factors.

▶ apple – not square-free
▶ banana – not square-free
▶ clementine – square-free

▶ Theorem (Thue,1906): There are arbitrarily long
square-free words over an alphabet of just three letters!

DYCK WORDS

▶ A Dyck word is a string of balanced parentheses.
▶ 0 – left paren
▶ 1 – right paren

E.g.,
▶ 001011 = (()()) is Dyck
▶ 0110 = ())(is not

▶ Formally, x is Dyck if
▶ x = ε,
▶ x = 0y1 for some Dyck word y , or
▶ x = yz for some Dyck words y and z.

▶ Dyck words have been well-studied, but NOT in the context
of combinatorics on words.

BALANCE AND NESTING LEVEL

▶ The balance of x is defined by

B(x) = |x |0 − |x |1.

▶ The word x is Dyck if and only if

B(x) = 0 and B(x ′) ≥ 0 for all prefixes x ′ of x .

▶ The nesting level of a Dyck word x , denoted N(x), is the
deepest level of parenthesis nesting in x , e.g.,

N(001011) = 2.

▶ More generally,

N(x) = max{B(x ′) : x ′ is a prefix of x}.

QUESTIONS

▶ What repetitions must appear in long Dyck words? What
repetitions can be avoided? What is the relationship
between avoidable repetitions and nesting level?

▶ Can Walnut be used to prove statements about the Dyck
factors of certain automatic sequences?

PLAN

INTRODUCTION

REPETITIONS

REPETITIONS AND DYCK WORDS

AUTOMATIC SEQUENCES AND Walnut

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.
▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.
▶ 2+-power-free? Yes!

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent...

4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.
▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.
▶ 2+-power-free? Yes!

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3

▶ A word is α-power-free if it contains no factors of exponent
greater than or equal to α.

▶ A word is α+-power-free if it contains no factors of
exponent greater than α.

▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.
▶ 2+-power-free? Yes!

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.

▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.
▶ 2+-power-free? Yes!

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.
▶ Pop quiz: Is the word

01101001

▶ 2-power-free?

No.
▶ 2+-power-free? Yes!

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.
▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.

▶ 2+-power-free? Yes!

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.
▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.
▶ 2+-power-free?

Yes!

REPETITIONS

▶ The exponent of a word is its length divided by its smallest
period, e.g.,
▶ murmur = (mur)2 has exponent 2
▶ alfalfa = (alf)7/3 has exponent 7/3

▶ Pop quiz: The word educated has exponent... 4/3
▶ A word is α-power-free if it contains no factors of exponent

greater than or equal to α.
▶ A word is α+-power-free if it contains no factors of

exponent greater than α.
▶ Pop quiz: Is the word

01101001

▶ 2-power-free? No.
▶ 2+-power-free? Yes!

REPETITIONS IN BINARY WORDS

Q: Are there arbitrarily long 2-power-free binary words?

A: No!

Q: Are there arbitrarily long 2+-power-free binary words?
A: Hmmmm...

REPETITIONS IN BINARY WORDS

Q: Are there arbitrarily long 2-power-free binary words?
A: No!

Q: Are there arbitrarily long 2+-power-free binary words?
A: Hmmmm...

REPETITIONS IN BINARY WORDS

Q: Are there arbitrarily long 2-power-free binary words?
A: No!

Q: Are there arbitrarily long 2+-power-free binary words?

A: Hmmmm...

REPETITIONS IN BINARY WORDS

Q: Are there arbitrarily long 2-power-free binary words?
A: No!

Q: Are there arbitrarily long 2+-power-free binary words?
A: Hmmmm...

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.

▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.

▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

A CONSTRUCTION

▶ Define µ by µ(0) = 01 and µ(1) = 10.
▶ Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

▶ The map µ is called a morphism.
▶ Start with 0, and repeatedly apply µ:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.

▶ Notice: TM has many squares, but every square is
followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

THE THUE-MORSE WORD (TM)

µω(0) = 0110100110010110 · · ·

▶ Theorem (Thue, 1912): TM is 2+-power-free.
▶ Notice: TM has many squares, but every square is

followed by a letter that breaks the repetition.

PLAN

INTRODUCTION

REPETITIONS

REPETITIONS AND DYCK WORDS

AUTOMATIC SEQUENCES AND Walnut

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

QUESTION

▶ What repetitions must appear in long Dyck words? What
repetitions can be avoided? What is the relationship
between avoidable repetitions and nesting level?

Theorem: A characterization of 2+-power-free Dyck words.

Corollary: There are arbitrarily long 2+-power-free Dyck words.

Sketch of Proof:
▶ Define g by

g(0) = 012, g(1) = 02, and g(2) = 1,

and let s = gω(0) = 012021012102 · · ·
▶ Define h by

h(0) = 01, h(1) = 0011, and h(2) = 001011.

▶ Let x be a prefix of s ending in 10.
▶ Then h(x) and 0h(x)1 are 2+-power-free Dyck words.

Note: These words have nesting level at most 3.

Theorem: If w is a 7
3 -power-free Dyck word, then N(w) ≤ 3.

Theorem: There are 7
3
+-power-free Dyck words of every

nesting level.

Idea of Proof:
▶ We sketch the simpler proof that there are cube-free Dyck

words of every nesting level.
▶ Define f by f (0) = 001 and f (1) = 011.
▶ It is well-known that f preserves cube-freeness.
▶ Applying f preserves the Dyck property, and increases the

nesting level by one.
▶ By induction, for all t ≥ 0, the word f t(01) is a cube-free

Dyck word of nesting level t + 1.

SUMMARY: REPETITIONS AND DYCK WORDS

▶ There are arbitrarily long 2+-power-free Dyck words, but
they have small nesting level.

▶ Dyck words of large nesting levels only become attainable
when we allow 7/3-powers.

PLAN

INTRODUCTION

REPETITIONS

REPETITIONS AND DYCK WORDS

AUTOMATIC SEQUENCES AND Walnut

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.
▶ T [0] = T [(0)2] = 0
▶ T [1] = T [(1)2] = 1
▶ T [2] = T [(10)2] = 1
▶ T [3] = T [(11)2] = 0

AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.
▶ T [0] = T [(0)2] = 0
▶ T [1] = T [(1)2] = 1
▶ T [2] = T [(10)2] = 1
▶ T [3] = T [(11)2] = 0

AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.

▶ T [0] = T [(0)2] = 0
▶ T [1] = T [(1)2] = 1
▶ T [2] = T [(10)2] = 1
▶ T [3] = T [(11)2] = 0

AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.
▶ T [0] = T [(0)2] = 0

▶ T [1] = T [(1)2] = 1
▶ T [2] = T [(10)2] = 1
▶ T [3] = T [(11)2] = 0

AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.
▶ T [0] = T [(0)2] = 0
▶ T [1] = T [(1)2] = 1

▶ T [2] = T [(10)2] = 1
▶ T [3] = T [(11)2] = 0

AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.
▶ T [0] = T [(0)2] = 0
▶ T [1] = T [(1)2] = 1
▶ T [2] = T [(10)2] = 1

▶ T [3] = T [(11)2] = 0

AUTOMATIC SEQUENCES

µω(0) = 0110100110010110 · · ·

▶ It turns out that the Thue-Morse word is the prototypical
example of an automatic sequence.

▶ We have seen its definition in terms of the morphism µ, but
it can also be defined in terms of the following automaton.

0/0

0

1/1
1
1

0

▶ To get the letter at position n in TM, just feed the binary
representation of n into this automaton.
▶ T [0] = T [(0)2] = 0
▶ T [1] = T [(1)2] = 1
▶ T [2] = T [(10)2] = 1
▶ T [3] = T [(11)2] = 0

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 0

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 0

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 0

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 0

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 0

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 1

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = 1

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = n − 1

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = n − 1

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = n

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = n

▶ Walnut returns FALSE.

AUTOMATIC THEOREM-PROVING

▶ Walnut is a software program that can be used to prove
statements, written in a certain first-order logic, about
automatic sequences.

▶ For example, to show that TM is 2+-power-free, we enter

eval TMHasOverlap "Ei,n (n>=1) & Ak (k<=n) => T[i+k]=T[i+k+n]":

T [i] T [i + 1] · · · T [i + n − 1] T [i + n] T [i + n + 1] · · · T [i + 2n − 1] T [i + 2n]

k = n

▶ Walnut returns FALSE.

LENGTHS OF SQUARES IN TM

▶ To show that TM has a square, we enter
eval TMHasSquare "Ei,n (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

and Walnut returns TRUE.

▶ When we enter
def TMSquareLengths "Ei (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

Walnut returns an automaton that accepts all values of n
for which TM has a square of length 2n.

0

0

1
1

2
0, 1

0

▶ To show that TM has arbitrarily long squares, we enter
eval TMLongSquares "Ak En (n>=k) & $TMSquareLengths(n)":

and Walnut returns TRUE.

LENGTHS OF SQUARES IN TM

▶ To show that TM has a square, we enter
eval TMHasSquare "Ei,n (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

and Walnut returns TRUE.

▶ When we enter
def TMSquareLengths "Ei (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

Walnut returns an automaton that accepts all values of n
for which TM has a square of length 2n.

0

0

1
1

2
0, 1

0

▶ To show that TM has arbitrarily long squares, we enter
eval TMLongSquares "Ak En (n>=k) & $TMSquareLengths(n)":

and Walnut returns TRUE.

LENGTHS OF SQUARES IN TM

▶ To show that TM has a square, we enter
eval TMHasSquare "Ei,n (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

and Walnut returns TRUE.

▶ When we enter
def TMSquareLengths "Ei (n>=1) & Ak (k<n) => T[i+k]=T[i+k+n]":

Walnut returns an automaton that accepts all values of n
for which TM has a square of length 2n.

0

0

1
1

2
0, 1

0

▶ To show that TM has arbitrarily long squares, we enter
eval TMLongSquares "Ak En (n>=k) & $TMSquareLengths(n)":

and Walnut returns TRUE.

PLAN

INTRODUCTION

REPETITIONS

REPETITIONS AND DYCK WORDS

AUTOMATIC SEQUENCES AND Walnut

DYCK FACTORS OF SOME AUTOMATIC SEQUENCES

QUESTION

▶ Can Walnut be used to prove statements about the Dyck
factors of automatic sequences?

▶ Remember that Walnut can be used to prove statements,
written in a certain first-order logic, about automatic
sequences.

▶ But the language of Dyck words is not definable in this
first-order logic! (Choffrut, Malcher, Mereghetti, Palano,
2012.)

▶ So Walnut cannot directly handle the Dyck factors of all
automatic sequences...

QUESTION

▶ Can Walnut be used to prove statements about the Dyck
factors of automatic sequences?

▶ Remember that Walnut can be used to prove statements,
written in a certain first-order logic, about automatic
sequences.

▶ But the language of Dyck words is not definable in this
first-order logic! (Choffrut, Malcher, Mereghetti, Palano,
2012.)

▶ So Walnut cannot directly handle the Dyck factors of all
automatic sequences...

QUESTION

▶ Can Walnut be used to prove statements about the Dyck
factors of automatic sequences?

▶ Remember that Walnut can be used to prove statements,
written in a certain first-order logic, about automatic
sequences.

▶ But the language of Dyck words is not definable in this
first-order logic! (Choffrut, Malcher, Mereghetti, Palano,
2012.)

▶ So Walnut cannot directly handle the Dyck factors of all
automatic sequences...

QUESTION

▶ Can Walnut be used to prove statements about the Dyck
factors of automatic sequences?

▶ Remember that Walnut can be used to prove statements,
written in a certain first-order logic, about automatic
sequences.

▶ But the language of Dyck words is not definable in this
first-order logic! (Choffrut, Malcher, Mereghetti, Palano,
2012.)

▶ So Walnut cannot directly handle the Dyck factors of all
automatic sequences...

RUNNING-SUM SYNCHRONIZED SEQUENCES

▶ For an automatic sequence s = (s(n))n≥0, define its
running-sum sequence by

v(n) =
∑

0≤i<n

s(i).

▶ We say that s is running-sum synchronized if there is an
automaton accepting, in parallel, the base-k
representations of n and v(n).

Theorem: Walnut can handle the Dyck factors of running-sum
synchronized sequences!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0

1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1

2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2

2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2

3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3

3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3

3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3

4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The Thue-Morse sequence is running-sum synchronized.

0 1 1 0 1 0 0 1 · · ·

0 1 2 2 3 3 3 4 · · ·

0

[0,0]

1

[1,0]

2

[1,1]

3

[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

▶ [1,1][1,0] is accepted, since v(3) = 2.
▶ [1,0][1,0], [1,0][1,1], and [1,1][1,1] are not accepted!

AN EXAMPLE: THUE-MORSE

The automaton on the previous slide was built in Walnut as
follows:

def even "Ek n=2*k": # accepts even numbers

def odd "Ek n=2*k+1": # accepts odd numbers

def V "($even(n) & 2*x=n) |
($odd(n) & 2*x+1=n & T[n-1]=@0) |
($odd(n) & 2*x=n+1 & T[n-1]=@1)":

accepts n and v(n) in parallel

AN EXAMPLE: THUE-MORSE

We can now build an automaton that identifies the Dyck factors
of Thue-Morse:

def N1 "Ey,z $V(i,y) & $V(i+n,z) & x+y=z":
accepts (i,n,x) if T[i..i+n-1] has x 1’s

def N0 "Ey $N1(i,n,y) & n=x+y":
accepts (i,n,x) if T[i..i+n-1] has x 0’s

def Dyck "(Ew $N0(i,n,w) & $N1(i,n,w)) &
At,y,z (t<n & $N0(i,t,y) & $N1(i,t,z)) => y>=z":

accepts (i,n) if T[i..i+n-1] is Dyck

AN EXAMPLE: THUE-MORSE

0

[0,0]
1

[1,0]
2

[0,1]

3

[1,1]

[1,0]

4
[0,0]

5

[0,1]

6
[1,1]

[1,1]

7

[0,0]

8

[1,0]

9

[0,1]

[0,0]

[1,1]

10
[1,0]

11
[0,1]

[0,0]

12

[1,0]

13
[0,1]

14

[1,1]

[1,0]

[0,0]

15

[0,1]

16

[1,1]

[0,0]

[1,1]

[1,0]

17

[0,1]

[1,1]

[1,0]

[0,0]

[0,1]

[0,0]

[0,1]

[1,1]

18

[1,0]

[1,1]

[0,0]

[1,0]

[0,1]

[1,0]

[1,1]

[0,0]

[0,1]

[0,1]

[0,0]

[1,1]

[1,0]

[0,0]
[1,0] [1,1]

[0,1]

[0,1]

[1,0]

[0,0]

[1,1]

[1,1]

[1,0]

[0,1]

19

[0,0]

[0,0]

[0,1]

[1,1]

[1,0]

[1,1]

[1,0]

[0,0]

[0,1]

[1,0]

[1,1]

[0,0]

[0,1]

[1,1]

[1,0]

[0,1]

[0,0]

[1,1]

[0,0]

[1,0] [0,1]

The automaton recognizing Dyck factors of Thue-Morse!

AN EXAMPLE: THUE-MORSE

Now we can prove statements about Dyck factors of TM.

▶ TM has Dyck factors of all even lengths.

We run the command
eval AllLengths "An $even(n) => Ei $Dyck(i,n)":

and Walnut returns TRUE.

▶ Every Dyck factor of TM has nesting level at most 2.

We run the commands
def Bal "Ey,z $N0(i,n,y) & $N1(i,n,z) &

((y<z & x=0) | (y>=z & y=x+z))":
def Nest "Em (m<n) & $Bal(i,m,x) &

Ap,y (p<n & $Bal(i,p,y)) => y<=x":
eval MaxNest "Ai,n,x ($Dyck(i,n) & $Nest(i,n,x)) => x<=2":

and Walnut returns TRUE.
▶ Walnut can also be used to count the Dyck factors of TM!

SUMMARY: AUTOMATIC SEQUENCES

▶ Walnut cannot directly handle the Dyck factors of all
automatic sequences.

▶ Walnut can handle the Dyck factors of automatic
sequences that are running-sum synchronized.

OUTLOOK

Some possible directions for future work:
▶ Extend to Dyck words with two or more types of parens.
▶ Develop techniques to recognize/characterize the Dyck

factors of words that are not running-sum synchronized.
Jeffrey Shallit and Anatoly Zavyalov have made some progress
in these directions!

THANK YOU!

	Introduction
	Repetitions
	Repetitions and Dyck words
	Automatic sequences and Walnut
	Dyck factors of some automatic sequences

