The repetition threshold for binary rich words

Lucas Mol

Joint work with James D. Currie and Narad Rampersad

Turku, Finland
June 21, 2023

Plan

Words and Repetitions

Rich words

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00,

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00,0101,

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur,

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.
- apple

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.
- apple - not square-free

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine-square-free

Words

- A word is a finite or infinite sequence of symbols taken from some finite alphabet.
- Combinatorics on words is the study of patterns and regularities in words.
- A square is a word of the form $x x$.
- Examples: 00, 0101, murmur, valtavalta
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine - square-free
- Question: Is there an infinite square-free word over a finite alphabet? What is the smallest such alphabet?

THE ORIGIN OF COMBINATORICS ON WORDS

Axel Thue
(1863-1922)

The origin of combinatorics on words

- There is an infinite square-free ternary word.

Axel Thue
(1863-1922)

The origin of combinatorics on words

- There is an infinite square-free ternary word.
- There is no such binary word.

Axel Thue
(1863-1922)

THE ORIGIN OF COMBINATORICS ON WORDS

- There is an infinite square-free ternary word.
- There is no such binary word.
- There is an infinite cube-free binary word.

Axel Thue
(1863-1922)

Morphic words

Thue's constructions relied on iterating a morphism.

Morphic words

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.

Morphic words

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.
- Extend μ to all words over $\{0,1\}$ in the obvious way, e.g.,

$$
\mu(010)=\mu(0) \mu(1) \mu(0)=011001
$$

Morphic words

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.
- Extend μ to all words over $\{0,1\}$ in the obvious way, e.g.,

$$
\mu(010)=\mu(0) \mu(1) \mu(0)=011001
$$

To construct an infinite word:

- Start with 0 , and repeatedly apply μ.

MORPHIC WORDS

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.
- Extend μ to all words over $\{0,1\}$ in the obvious way, e.g.,

$$
\mu(010)=\mu(0) \mu(1) \mu(0)=011001
$$

To construct an infinite word:

- Start with 0 , and repeatedly apply μ.

$$
\mu(0)=01
$$

Morphic words

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.
- Extend μ to all words over $\{0,1\}$ in the obvious way, e.g.,

$$
\mu(010)=\mu(0) \mu(1) \mu(0)=011001
$$

To construct an infinite word:

- Start with 0 , and repeatedly apply μ.

$$
\begin{aligned}
\mu(0) & =01 \\
\mu^{2}(0) & =0110
\end{aligned}
$$

Morphic words

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.
- Extend μ to all words over $\{0,1\}$ in the obvious way, e.g.,

$$
\mu(010)=\mu(0) \mu(1) \mu(0)=011001
$$

To construct an infinite word:

- Start with 0 , and repeatedly apply μ.

$$
\begin{aligned}
\mu(0) & =01 \\
\mu^{2}(0) & =0110 \\
\mu^{3}(0) & =01101001
\end{aligned}
$$

Morphic words

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.
- Extend μ to all words over $\{0,1\}$ in the obvious way, e.g.,

$$
\mu(010)=\mu(0) \mu(1) \mu(0)=011001
$$

To construct an infinite word:

- Start with 0 , and repeatedly apply μ.

$$
\begin{aligned}
\mu(0) & =01 \\
\mu^{2}(0) & =0110 \\
\mu^{3}(0) & =01101001 \\
\mu^{4}(0) & =0110100110010110
\end{aligned}
$$

Morphic words

Thue's constructions relied on iterating a morphism.

- Define μ by $\mu(0)=01$ and $\mu(1)=10$.
- Extend μ to all words over $\{0,1\}$ in the obvious way, e.g.,

$$
\mu(010)=\mu(0) \mu(1) \mu(0)=011001
$$

To construct an infinite word:

- Start with 0 , and repeatedly apply μ.

$$
\begin{aligned}
\mu(0) & =01 \\
\mu^{2}(0) & =0110 \\
\mu^{3}(0) & =01101001 \\
\mu^{4}(0) & =0110100110010110 \\
\vdots & \\
\mu^{\omega}(0) & =0110100110010110 \cdots
\end{aligned}
$$

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a...

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.
- Notice: The Thue-Morse word has many squares, but every square is followed by a letter that breaks the repetition.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.
- Notice: The Thue-Morse word has many squares, but every square is followed by a letter that breaks the repetition.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.
- Notice: The Thue-Morse word has many squares, but every square is followed by a letter that breaks the repetition.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.
- Notice: The Thue-Morse word has many squares, but every square is followed by a letter that breaks the repetition.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.
- Notice: The Thue-Morse word has many squares, but every square is followed by a letter that breaks the repetition.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.
- Notice: The Thue-Morse word has many squares, but every square is followed by a letter that breaks the repetition.

The Thue-Morse word

$$
\mu^{\omega}(0)=0110100110010110 \cdots
$$

- This word is cube-free.
- In fact, it contains no fractional powers larger than 2.
- Example: alfalfa is a 7/3-power

- Pop quiz: 01010 is a... 5/2-power.
- Notice: The Thue-Morse word has many squares, but every square is followed by a letter that breaks the repetition.

Critical exponents and repetition thresholds

Critical exponents and repetition thresholds

- The critical exponent of w is the "largest power" that appears in w.

Critical exponents and repetition thresholds

- The critical exponent of w is the "largest power" that appears in w.
- The critical exponent of the Thue-Morse word is 2.

Critical exponents and repetition thresholds

- The critical exponent of w is the "largest power" that appears in w.
- The critical exponent of the Thue-Morse word is 2.
- The repetition threshold for a set of words L is the smallest critical exponent among all infinite words in L.

Critical exponents and repetition thresholds

- The critical exponent of w is the "largest power" that appears in w.
- The critical exponent of the Thue-Morse word is 2.
- The repetition threshold for a set of words L is the smallest critical exponent among all infinite words in L.
- The repetition threshold for binary words is 2.

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?
- Answer: Every infinite binary word with critical exponent less than $7 / 3$ looks almost like the Thue-Morse word.

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?
- Answer: Every infinite binary word with critical exponent less than 7/3 looks almost like the Thue-Morse word.

Theorem (Karhumäki and Shallit 2004): Let w be an infinite binary word with critical exponent less than $7 / 3$. Then w has a suffix of the form $\mu^{n}\left(w_{n}\right)$ for all $n \geq 1$.

A structure theorem

- Question: Are there other infinite binary words with critical exponent 2? What do they look like?
- Answer: Every infinite binary word with critical exponent less than $7 / 3$ looks almost like the Thue-Morse word.

Theorem (Karhumäki and Shallit 2004): Let w be an infinite binary word with critical exponent less than $7 / 3$. Then w has a suffix of the form $\mu^{n}\left(w_{n}\right)$ for all $n \geq 1$.

- In particular, w contains every finite factor of the Thue-Morse word.

A QUICK REVIEW

A QUICK REVIEW

- Every long enough binary word contains a square.

A QUICK REVIEW

- Every long enough binary word contains a square.
- The Thue-Morse word contains nothing "larger" than a square; it has critical exponent 2.

A QUICK REVIEW

- Every long enough binary word contains a square.
- The Thue-Morse word contains nothing "larger" than a square; it has critical exponent 2.
- Hence, the repetition threshold for binary words is 2.

A QUICK REVIEW

- Every long enough binary word contains a square.
- The Thue-Morse word contains nothing "larger" than a square; it has critical exponent 2.
- Hence, the repetition threshold for binary words is 2.
- If an infinite binary word has critical exponent less than $7 / 3$, then it looks like the Thue-Morse word.

PLAN

Words and Repetitions

Rich words

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes 0 ,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes 0,1 ,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11$,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101,

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101 , so it is rich.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101, so it is rich.
- The word 0120 contains only the palindromes 0,1 , and 2 , so it is not rich.

Rich words

- A palindrome is a finite word that reads the same forwards and backwards.
- Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length n contains at most n distinct nonempty palindromes.

- A word of length n is called rich if it contains n distinct nonempty palindromes.
- The word 01101 contains the palindromes $0,1,11,0110$, and 101 , so it is rich.
- The word 0120 contains only the palindromes 0,1 , and 2 , so it is not rich.
- An infinite word is called rich if all of its finite factors are rich.

Repetitions in Rich words

Theorem (Pelantová and Starosta 2013): Every infinite rich word contains a square.

Repetitions in Rich words

Theorem (Pelantová and Starosta 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.

Repetitions in Rich words

Theorem (Pelantová and Starosta 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.

Question: What powers can be avoided by infinite rich words?

- In particular, what is the repetition threshold for binary rich words?

Repetitions in Rich words

Theorem (Pelantová and Starosta 2013): Every infinite rich word contains a square.

- This result holds over any finite alphabet.

Question: What powers can be avoided by infinite rich words?

- In particular, what is the repetition threshold for binary rich words?
- That is, what is the smallest critical exponent among all infinite binary rich words?

Repetitions in Rich words

Theorem (Baranwal and Shallit 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.

Repetitions in Rich words

Theorem (Baranwal and Shallit 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.
- They conjectured that this is the smallest possible critical exponent among infinite binary rich words.

Repetitions in Rich words

Theorem (Baranwal and Shallit 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.
- They conjectured that this is the smallest possible critical exponent among infinite binary rich words.
- The irrationality of $2+\sqrt{2} / 2$ makes this hard to prove!

Repetitions in Rich words

Theorem (Baranwal and Shallit 2019): There is an infinite binary rich word with critical exponent $2+\sqrt{2} / 2$.

- Note: $2+\sqrt{2} / 2 \approx 2.707$.
- They conjectured that this is the smallest possible critical exponent among infinite binary rich words.
- The irrationality of $2+\sqrt{2} / 2$ makes this hard to prove!
- They proved (by backtracking) that the repetition threshold is at least 2.7

Baranwal and Shallit's construction

Define morphisms f and h by

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=01 \\
& f(2)=011 \\
& h(0)=01 \\
& h(1)=02 \\
& h(2)=022 .
\end{aligned}
$$

Baranwal and Shallit's construction

Define morphisms f and h by

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=01 \\
& f(2)=011 \\
& h(0)=01 \\
& h(1)=02 \\
& h(2)=022 .
\end{aligned}
$$

The infinite word $f\left(h^{\omega}(0)\right)$ is rich and has critical exponent $2+\sqrt{2} / 2$.

Baranwal and Shallit's construction

Define morphisms f and h by

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=01 \\
& f(2)=011 \\
& h(0)=01 \\
& h(1)=02 \\
& h(2)=022 .
\end{aligned}
$$

The infinite word $f\left(h^{\omega}(0)\right)$ is rich and has critical exponent $2+\sqrt{2} / 2$.

- The proof was completed using the automatic theorem proving software Walnut.

AN IRRATIONAL REPETITION THRESHOLD?

AN IRRATIONAL REPETITION THRESHOLD?

- Remember that every infinite binary word with critical exponent close to 2 must look like Thue-Morse.

AN IRRATIONAL REPETITION THRESHOLD?

- Remember that every infinite binary word with critical exponent close to 2 must look like Thue-Morse.
- One might hope that every infinite binary rich word with critical exponent close to $2+\sqrt{2} / 2$ must look like $f\left(h^{\omega}(0)\right)$.

AN IRRATIONAL REPETITION THRESHOLD?

- Remember that every infinite binary word with critical exponent close to 2 must look like Thue-Morse.
- One might hope that every infinite binary rich word with critical exponent close to $2+\sqrt{2} / 2$ must look like $f\left(h^{\omega}(0)\right)$.
- Unfortunately, this is not the case!

AN IRRATIONAL REPETITION THRESHOLD?

- Remember that every infinite binary word with critical exponent close to 2 must look like Thue-Morse.
- One might hope that every infinite binary rich word with critical exponent close to $2+\sqrt{2} / 2$ must look like $f\left(h^{\omega}(0)\right)$.
- Unfortunately, this is not the case!
- Fortunately, it is not much worse than this.

ANOTHER STRUCTURE THEOREM

Every infinite binary rich word with critical exponent less than $14 / 5$ looks like either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

ANOTHER STRUCTURE THEOREM

Every infinite binary rich word with critical exponent less than $14 / 5$ looks like either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.

$$
\begin{array}{lll}
f(0)=0 & g(0)=011 & h(0)=01 \\
f(1)=01 & g(1)=0121 & h(1)=02 \\
f(2)=011 & g(2)=012121 & h(2)=022
\end{array}
$$

Theorem (Currie, Mol, and Rampersad 2020): Let w be an infinite binary rich word with critical exponent less than 14/5. Then w has a suffix of the form $f\left(h^{n}\left(w_{n}\right)\right)$ or $f\left(g\left(h^{n}\left(w_{n}\right)\right)\right)$ for all $n \geq 1$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad 2020): The repetition threshold for infinite binary rich words is $2+\sqrt{2} / 2$.

Sketch of Proof:

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad 2020): The repetition threshold for infinite binary rich words is $2+\sqrt{2} / 2$.

Sketch of Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad 2020): The repetition threshold for infinite binary rich words is $2+\sqrt{2} / 2$.

Sketch of Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- It suffices to show that both u and v are rich and have critical exponent $2+\sqrt{2} / 2$.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad 2020): The repetition threshold for infinite binary rich words is $2+\sqrt{2} / 2$.

Sketch of Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- It suffices to show that both u and v are rich and have critical exponent $2+\sqrt{2} / 2$.
- Baranwal and Shallit handled u.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad 2020): The repetition threshold for infinite binary rich words is $2+\sqrt{2} / 2$.

Sketch of Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- It suffices to show that both u and v are rich and have critical exponent $2+\sqrt{2} / 2$.
- Baranwal and Shallit handled u.
- We handle v.

AN IRRATIONAL REPETITION THRESHOLD!

Theorem (Currie, Mol, and Rampersad 2020): The repetition threshold for infinite binary rich words is $2+\sqrt{2} / 2$.

Sketch of Proof:

- If an infinite binary rich word has critical exponent less than $14 / 5$, then it contains all factors of either $u=f\left(h^{\omega}(0)\right)$ or $v=f\left(g\left(h^{\omega}(0)\right)\right)$.
- It suffices to show that both u and v are rich and have critical exponent $2+\sqrt{2} / 2$.
- Baranwal and Shallit handled u.
- We handle v.
- Our proof technique can also be applied to u, providing an alternate proof of Baranwal and Shallit's result.

Establishing richness

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1001$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=1001$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10010$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=10010$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!
- By a theorem of Rote, this means that u and v are complementary symmetric Rote words.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!
- By a theorem of Rote, this means that u and v are complementary symmetric Rote words.
- By a theorem of Blondin-Massé et al., every complementary symmetric Rote word is rich.

Establishing richness

- For a binary word w, let $\Delta(w)$ denote the sequence of first differences of w modulo 2.
- e.g., $\Delta(0111001)=100101$
- Fact: $\Delta(u)$ and $\Delta(v)$ are Sturmian words.
- Thank you, Edita Pelantová!
- By a theorem of Rote, this means that u and v are complementary symmetric Rote words.
- By a theorem of Blondin-Massé et al., every complementary symmetric Rote word is rich.
- Therefore, both u and v are rich!

Establishing the critical exponent

- We still want to determine the critical exponent of v.

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & =001010010110100101001011 \cdots \\
\Delta(v) & =01111011101110111101110 \cdots
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & =00101001011 \widehat{01001} 01001011 \cdots \\
\Delta(v) & =01111011101110111101110 \cdots
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& v=0010100101101001|01001| 011 \cdots
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & =001010010110100101001011 \cdots \\
\Delta(v) & =01 \begin{array}{|l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
101110 \cdots
\end{array}
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{array}{rl|l|l|l|l|}
v & =00 \begin{array}{|l|l|l|l|l|}
\hline 1010 & 0101 & 1010 & 0101 & 01011 \cdots \\
\Delta(v) & =01 \begin{array}{l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
101110 \ldots
\end{array} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
v & =00 \begin{array}{|l|l|l|l|}
1010 & 0101 & 1010 & 0101 \\
0
\end{array} 01011 \cdots \\
\Delta(v) & =01 \begin{array}{l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
101110 \ldots
\end{array}
\end{aligned}
$$

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& \boldsymbol{v}=00 \begin{array}{|l|l|l|l|l|}
\hline 1010 & 0101 & 1010 & 0101 & 01011 \cdots
\end{array} \\
& \Delta(v)=01 \begin{array}{|l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
\hline
\end{array}
\end{aligned}
$$

- Remember that $\Delta(v)$ is a Sturmian word...

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& \boldsymbol{v}=00 \begin{array}{|l|l|l|l|l|}
\hline 1010 & 0101 & 1010 & 0101 & 01011 \cdots
\end{array} \\
& \Delta(v)=01 \begin{array}{|l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
\hline
\end{array}
\end{aligned}
$$

- Remember that $\Delta(v)$ is a Sturmian word...

Narad Rampersad on Sturmian words:

Establishing the critical exponent

- We still want to determine the critical exponent of v.
- We relate the repetitions in v to the repetitions in $\Delta(v)$.

$$
\begin{aligned}
& v=00 \begin{array}{|l|l|l|l|}
1010 & 0101 & 1010 & 0101 \\
0 & 01011 \cdots \\
\Delta(v) & =01 \begin{array}{l|l|l|l|}
\hline 1110 & 1110 & 1110 & 111 \\
\hline
\end{array} 01110 \ldots
\end{array} \\
& \hline
\end{aligned}
$$

- Remember that $\Delta(v)$ is a Sturmian word...

Narad Rampersad on Sturmian words:
"Basically everything is known about them."

Summary

- Every infinite binary rich word with critical exponent less than 14/5 looks like either u or v.

Summary

- Every infinite binary rich word with critical exponent less than 14/5 looks like either u or v.
- Both u and v are complementary symmetric Rote words; they are rich and have critical exponent $2+\sqrt{2} / 2$.

Summary

- Every infinite binary rich word with critical exponent less than 14/5 looks like either u or v.
- Both u and v are complementary symmetric Rote words; they are rich and have critical exponent $2+\sqrt{2} / 2$.
- We conclude that the repetition threshold for binary rich words is $2+\sqrt{2} / 2$.

Outlook

We have focused on binary words.

Outlook

We have focused on binary words.

- Dejean's Theorem: The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}2, & \text { if } k=2 \\ 7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

Outlook

We have focused on binary words.

- Dejean's Theorem: The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}2, & \text { if } k=2 \\ 7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Open Problem: Determine the repetition threshold for rich words on $k>2$ letters.

Outlook

We have focused on binary words.

- Dejean's Theorem: The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}2, & \text { if } k=2 \\ 7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Open Problem: Determine the repetition threshold for rich words on $k>2$ letters.
- Is it always irrational?

OUtLOOK

We have focused on binary words.

- Dejean's Theorem: The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}2, & \text { if } k=2 \\ 7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Open Problem: Determine the repetition threshold for rich words on $k>2$ letters.
- Is it always irrational?
- Does it approach 2 as $k \rightarrow \infty$?

Outlook

We have focused on binary words.

- Dejean's Theorem: The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}2, & \text { if } k=2 \\ 7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Open Problem: Determine the repetition threshold for rich words on $k>2$ letters.
- Is it always irrational?
- Does it approach 2 as $k \rightarrow \infty$?
- Do similar structure theorems hold over larger alphabets?

Outlook

We have focused on binary words.

- Dejean's Theorem: The repetition threshold for all words on k letters is given by

$$
\operatorname{RT}(k)= \begin{cases}2, & \text { if } k=2 \\ 7 / 4, & \text { if } k=3 \\ 7 / 5, & \text { if } k=4 \\ k /(k-1), & \text { if } k \geq 5\end{cases}
$$

- Open Problem: Determine the repetition threshold for rich words on $k>2$ letters.
- Is it always irrational?
- Does it approach 2 as $k \rightarrow \infty$?
- Do similar structure theorems hold over larger alphabets?
- During this trip: Some progress on the ternary case with Currie and Peltomäki.

Thank you!

