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WORDS AND REPETITIONS

RICH WORDS



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .

I Examples: 00, 0101, murmur, valtavalta
I A word is square-free if it contains no squares as factors.

I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00,

0101, murmur, valtavalta
I A word is square-free if it contains no squares as factors.

I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101,

murmur, valtavalta
I A word is square-free if it contains no squares as factors.

I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur,

valtavalta

I A word is square-free if it contains no squares as factors.
I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.

I apple
I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple

I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple – not square-free

I banana
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple – not square-free
I banana

I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple – not square-free
I banana – not square-free

I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple – not square-free
I banana – not square-free
I clementine

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple – not square-free
I banana – not square-free
I clementine – square-free

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



WORDS

I A word is a finite or infinite sequence of symbols taken
from some finite alphabet.

I Combinatorics on words is the study of patterns and
regularities in words.

I A square is a word of the form xx .
I Examples: 00, 0101, murmur, valtavalta

I A word is square-free if it contains no squares as factors.
I apple – not square-free
I banana – not square-free
I clementine – square-free

I Question: Is there an infinite square-free word over a finite
alphabet? What is the smallest such alphabet?



THE ORIGIN OF COMBINATORICS ON WORDS

Axel Thue
(1863-1922)

I There is an infinite square-free
ternary word.
I There is no such binary word.

I There is an infinite cube-free
binary word.



THE ORIGIN OF COMBINATORICS ON WORDS

Axel Thue
(1863-1922)

I There is an infinite square-free
ternary word.

I There is no such binary word.
I There is an infinite cube-free

binary word.



THE ORIGIN OF COMBINATORICS ON WORDS

Axel Thue
(1863-1922)

I There is an infinite square-free
ternary word.
I There is no such binary word.

I There is an infinite cube-free
binary word.



THE ORIGIN OF COMBINATORICS ON WORDS

Axel Thue
(1863-1922)

I There is an infinite square-free
ternary word.
I There is no such binary word.

I There is an infinite cube-free
binary word.



MORPHIC WORDS
Thue’s constructions relied on iterating a morphism.

I Define µ by µ(0) = 01 and µ(1) = 10.
I Extend µ to all words over {0,1} in the obvious way, e.g.,

µ(010) = µ(0)µ(1)µ(0) = 011001

To construct an infinite word:
I Start with 0, and repeatedly apply µ.

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

...
µω(0) = 0110100110010110 · · ·
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THE THUE-MORSE WORD

µω(0) = 0110100110010110 · · ·

I This word is cube-free.
I In fact, it contains no fractional powers larger than 2.

I Example: alfalfa is a 7/3-power

=




7/3

I Pop quiz: 01010 is a... 5/2-power.
I Notice: The Thue-Morse word has many squares, but

every square is followed by a letter that breaks the
repetition.
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appears in w .
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critical exponent among all infinite words in L.
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A STRUCTURE THEOREM

I Question: Are there other infinite binary words with critical
exponent 2? What do they look like?

I Answer: Every infinite binary word with critical exponent
less than 7/3 looks almost like the Thue-Morse word.

Theorem (Karhumäki and Shallit 2004): Let w be an infinite
binary word with critical exponent less than 7/3. Then w has a
suffix of the form µn(wn) for all n ≥ 1.
I In particular, w contains every finite factor of the

Thue-Morse word.
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A QUICK REVIEW

I Every long enough binary word contains a square.
I The Thue-Morse word contains nothing “larger” than a

square; it has critical exponent 2.
I Hence, the repetition threshold for binary words is 2.
I If an infinite binary word has critical exponent less than

7/3, then it looks like the Thue-Morse word.
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I A palindrome is a finite word that reads the same forwards
and backwards.

I Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of
length n contains at most n distinct nonempty palindromes.
I A word of length n is called rich if it contains n distinct

nonempty palindromes.
I The word 01101 contains the palindromes

I The word 0120 contains only the palindromes 0, 1, and 2,
so it is not rich.

I An infinite word is called rich if all of its finite factors are
rich.
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I The proof was completed using the automatic theorem
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exponent close to 2 must look like Thue-Morse.

I One might hope that every infinite binary rich word with
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2/2 must look like f (hω(0)).

I Unfortunately, this is not the case!
I Fortunately, it is not much worse than this.
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ANOTHER STRUCTURE THEOREM

Every infinite binary rich word with critical exponent less than
14/5 looks like either u = f (hω(0)) or v = f (g(hω(0))).
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Theorem (Currie, Mol, and Rampersad 2020): Let w be an
infinite binary rich word with critical exponent less than 14/5.
Then w has a suffix of the form f (hn(wn)) or f (g(hn(wn))) for all
n ≥ 1.
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Theorem (Currie, Mol, and Rampersad 2020): The repetition
threshold for infinite binary rich words is 2 +

√
2/2.

Sketch of Proof:

I If an infinite binary rich word has critical exponent less than
14/5, then it contains all factors of either u = f (hω(0)) or
v = f (g(hω(0))).

I It suffices to show that both u and v are rich and have
critical exponent 2 +

√
2/2.

I Baranwal and Shallit handled u.
I We handle v .
I Our proof technique can also be applied to u, providing an

alternate proof of Baranwal and Shallit’s result.
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I By a theorem of Rote, this means that u and v are
complementary symmetric Rote words.

I By a theorem of Blondin-Massé et al., every
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I By a theorem of Rote, this means that u and v are
complementary symmetric Rote words.

I By a theorem of Blondin-Massé et al., every
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complementary symmetric Rote word is rich.

I Therefore, both u and v are rich!



ESTABLISHING RICHNESS

I For a binary word w , let ∆(w) denote the sequence of first
differences of w modulo 2.
I e.g., ∆(0111001) = 1

I Fact: ∆(u) and ∆(v) are Sturmian words.
I Thank you, Edita Pelantová!
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complementary symmetric Rote word is rich.

I Therefore, both u and v are rich!



ESTABLISHING RICHNESS

I For a binary word w , let ∆(w) denote the sequence of first
differences of w modulo 2.
I e.g., ∆(0111001) = 10

I Fact: ∆(u) and ∆(v) are Sturmian words.
I Thank you, Edita Pelantová!
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I By a theorem of Rote, this means that u and v are
complementary symmetric Rote words.

I By a theorem of Blondin-Massé et al., every
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complementary symmetric Rote word is rich.

I Therefore, both u and v are rich!



ESTABLISHING RICHNESS

I For a binary word w , let ∆(w) denote the sequence of first
differences of w modulo 2.
I e.g., ∆(0111001) = 100101

I Fact: ∆(u) and ∆(v) are Sturmian words.
I Thank you, Edita Pelantová!
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We have focused on binary words.

I Dejean’s Theorem: The repetition threshold for all words
on k letters is given by

RT(k) =


2, if k = 2;
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7/5, if k = 4;
k/(k − 1), if k ≥ 5.

I Open Problem: Determine the repetition threshold for rich
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I Is it always irrational?
I Does it approach 2 as k →∞?
I Do similar structure theorems hold over larger alphabets?

I During this trip: Some progress on the ternary case with
Currie and Peltomäki.
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Thank you!
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