Avoiding Additive Powers in Words

Plan

Power Avoidance

Decision Algorithms

Outlook

Alphabets and words

- An alphabet is a finite set of letters, e.g.,
- $\{a, b, c, \ldots, z\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)

Alphabets and words

- An alphabet is a finite set of letters, e.g.,
- $\{a, b, c, \ldots, z\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)
- A word is a sequence of letters taken from some alphabet, e.g.,
- apple, banana, clementine (English words)
- 0110100110010110 (a binary word)
- AAGATGCCGT (a DNA string)

Alphabets and words

- An alphabet is a finite set of letters, e.g.,
- $\{a, b, c, \ldots, z\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)
- A word is a sequence of letters taken from some alphabet, e.g.,
- apple, banana, clementine (English words)
- 0110100110010110 (a binary word)
- AAGATGCCGT (a DNA string)
- We are mostly interested in long words over small alphabets.

Alphabets and words

- An alphabet is a finite set of letters, e.g.,
- $\{a, b, c, \ldots, z\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)
- A word is a sequence of letters taken from some alphabet, e.g.,
- apple, banana, clementine (English words)
- 0110100110010110 (a binary word)
- AAGATGCCGT (a DNA string)
- We are mostly interested in long words over small alphabets.
- Which patterns can be avoided, and which patterns must inevitably occur?

Squares

- A square is a word of the form $x x$, e.g.,

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- A word is square-free if it contains no squares as factors.

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00, 010212010212
- A word is square-free if it contains no squares as factors.
- apple

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00, 010212010212
- A word is square-free if it contains no squares as factors.
- apple - not square-free

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00, 010212010212
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine - square-free

Squares

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00, 010212010212
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine-square-free
- Question: Are squares avoidable over some finite alphabet?
- That is, are there arbitrarily long square-free words over some finite alphabet?

A CONSTRUCTION

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
$-h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
h(0)=012
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021
\end{aligned}
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
$-h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021 \\
h^{3}(0) & =012021012102
\end{aligned}
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
$-h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021 \\
h^{3}(0) & =012021012102 \\
h^{4}(0) & =012021012102012021020121
\end{aligned}
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021 \\
h^{3}(0) & =012021012102 \\
h^{4}(0) & =012021012102012021020121 \\
\vdots & \\
h^{\omega}(0) & =012021012102012021020121 \cdots
\end{aligned}
$$

The Origin of combinatorics on words

Theorem: $h^{\omega}(0)=012021012102012021020121 \ldots$ is square-free.

Abelian and Additive SQuares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines

Abelian and Additive SQuares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?

Abelian and Additive SQuares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?
- Theorem (Keränen 1992): $\sigma^{\omega}(0)$ avoids abelian squares, where
$\sigma(0)=0120232123203231301020103101213121021232021013010203212320231210212320232132303132120$
$\sigma(1)=1231303230310302012131210212320232132303132120121310323031302321323031303203010203231$
$\sigma(2)=2302010301021013123202321323031303203010203231232021030102013032030102010310121310302$
$\sigma(3)=3013121012132120230313032030102010310121310302303132101213120103101213121021232021013$

Abelian and Additive Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?
- Theorem (Keränen 1992): $\sigma^{\omega}(0)$ avoids abelian squares, where
$\sigma(0)=0120232123203231301020103101213121021232021013010203212320231210212320232132303132120$
$\sigma(1)=1231303230310302012131210212320232132303132120121310323031302321323031303203010203231$
$\sigma(2)=2302010301021013123202321323031303203010203231232021030102013032030102010310121310302$
$\sigma(3)=3013121012132120230313032030102010310121310302303132101213120103101213121021232021013$
An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.
- Examples: 012012, 012021, 013202

Abelian and Additive Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?
- Theorem (Keränen 1992): $\sigma^{\omega}(0)$ avoids abelian squares, where
$\sigma(0)=0120232123203231301020103101213121021232021013010203212320231210212320232132303132120$
$\sigma(1)=1231303230310302012131210212320232132303132120121310323031302321323031303203010203231$
$\sigma(2)=2302010301021013123202321323031303203010203231232021030102013032030102010310121310302$
$\sigma(3)=3013121012132120230313032030102010310121310302303132101213120103101213121021232021013$
An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.
- Examples: 012012, 012021,013202
- Question (Justin 1972): Are additive squares avoidable over some finite subset of \mathbb{Z} ?

Abelian and Additive Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?
- Theorem (Keränen 1992): $\sigma^{\omega}(0)$ avoids abelian squares, where
$\sigma(0)=0120232123203231301020103101213121021232021013010203212320231210212320232132303132120$
$\sigma(1)=1231303230310302012131210212320232132303132120121310323031302321323031303203010203231$
$\sigma(2)=2302010301021013123202321323031303203010203231232021030102013032030102010310121310302$
$\sigma(3)=3013121012132120230313032030102010310121310302303132101213120103101213121021232021013$
An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.
- Examples: 012012, 012021,013202
- Question (Justin 1972): Are additive squares avoidable over some finite subset of \mathbb{Z} ?
- We don't know!

Some Progress

Theorem (Cassaigne, Currie, Schaeffer and Shallit 2014): Additive cubes are avoidable over $\{0,1,3,4\}$.

Some Progress

Theorem (Cassaigne, Currie, Schaeffer and Shallit 2014): Additive cubes are avoidable over $\{0,1,3,4\}$.

- The word

$$
h^{\omega}(0)=0314301103434303101101103143 \cdots
$$

avoids additive cubes, where

$$
\begin{aligned}
& h(0)=03 \\
& h(1)=43 \\
& h(3)=1 \\
& h(4)=01
\end{aligned}
$$

Some Progress

Theorem (Cassaigne, Currie, Schaeffer and Shallit 2014): Additive cubes are avoidable over $\{0,1,3,4\}$.

- The word

$$
h^{\omega}(0)=0314301103434303101101103143 \cdots
$$

avoids additive cubes, where

$$
\begin{aligned}
& h(0)=03 \\
& h(1)=43 \\
& h(3)=1 \\
& h(4)=01
\end{aligned}
$$

Theorem (Rao and Rosenfeld 2018): Additive squares are avoidable over a finite subset of \mathbb{Z}^{2}.

Plan

Power Avoidance

Decision Algorithms

Outlook

Decision Algorithms

Theorem: There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains

Decision Algorithms

Theorem: There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains

- regular powers (Cassaigne 1993)

Decision Algorithms

Theorem: There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains

- regular powers (Cassaigne 1993)
- abelian powers (Currie and Rampersad 2012)

Decision Algorithms

Theorem: There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains

- regular powers (Cassaigne 1993)
- abelian powers (Currie and Rampersad 2012)
- additive powers (Rao and Rosenfeld 2018)

Decision Algorithms

Theorem: There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains

- regular powers (Cassaigne 1993)
- abelian powers (Currie and Rampersad 2012)
- additive powers (Rao and Rosenfeld 2018)

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): A more efficient algorithm for additive powers (with stronger conditions on h).

Decision Algorithms

Theorem: There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains

- regular powers (Cassaigne 1993)
- abelian powers (Currie and Rampersad 2012)
- additive powers (Rao and Rosenfeld 2018)

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): A more efficient algorithm for additive powers (with stronger conditions on h).

- The algorithm is easy to implement.

Decision Algorithms

Theorem: There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains

- regular powers (Cassaigne 1993)
- abelian powers (Currie and Rampersad 2012)
- additive powers (Rao and Rosenfeld 2018)

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): A more efficient algorithm for additive powers (with stronger conditions on h).

- The algorithm is easy to implement.
- It is efficient enough to work in practice, even for "long" substitutions!

ExAMPLE

- Define f by

$$
\begin{aligned}
& f(0)=001 \\
& f(1)=012 \\
& f(2)=212
\end{aligned}
$$

ExAMPLE

- Define f by

$$
\begin{aligned}
& f(0)=001 \\
& f(1)=012 \\
& f(2)=212
\end{aligned}
$$

- Then

$$
f^{\omega}(0)=001001012001001012001012212 \cdots
$$

is additive 4th-power-free.

EXAMPLE

- Define f by

$$
\begin{aligned}
& f(0)=001 \\
& f(1)=012 \\
& f(2)=212
\end{aligned}
$$

- Then

$$
f^{\omega}(0)=001001012001001012001012212 \cdots
$$

is additive 4th-power-free.

- We can establish this fact by simply running our algorithm.

EXAMPLE

- Define f by

$$
\begin{aligned}
& f(0)=001 \\
& f(1)=012 \\
& f(2)=212
\end{aligned}
$$

- Then

$$
f^{\omega}(0)=001001012001001012001012212 \cdots
$$

is additive 4th-power-free.

- We can establish this fact by simply running our algorithm.
- In fact, $g\left(f^{\omega}(0)\right)$ is additive 4th-power-free, where

$$
\begin{aligned}
& g(0)=0001001110010001100011 \\
& g(1)=0001001110011101100011 \\
& g(2)=0111001110011101100011
\end{aligned}
$$

The Main Idea of the Algorithm

The Main Idea of the Algorithm

- Any long additive power in $h^{\omega}(0)$ must have arisen by applying h repeatedly to some short "seed word".

The Main Idea of the Algorithm

- Any long additive power in $h^{\omega}(0)$ must have arisen by applying h repeatedly to some short "seed word".
- Show that these seed words cannot look "too different" from additive powers - there are only finitely many possible templates for these seed words.

The Main Idea of the Algorithm

- Any long additive power in $h^{\omega}(0)$ must have arisen by applying h repeatedly to some short "seed word".
- Show that these seed words cannot look "too different" from additive powers - there are only finitely many possible templates for these seed words.
- Enumerate all short words in $h^{\omega}(0)$, and check to see if they match any of the templates.

The Main Idea of the Algorithm

- Any long additive power in $h^{\omega}(0)$ must have arisen by applying h repeatedly to some short "seed word".
- Show that these seed words cannot look "too different" from additive powers - there are only finitely many possible templates for these seed words.
- Enumerate all short words in $h^{\omega}(0)$, and check to see if they match any of the templates.
- Our stronger conditions on h allow us to greatly reduce the number of templates that need to be checked.

Plan

Power Avoidance

Decision Algorithms

Outlook

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we do find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we do find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!
- The conditions of our theorem are fairly restrictive.

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we do find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!
- The conditions of our theorem are fairly restrictive.
- Our algorithm is (much) more efficient than the earlier one.

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we do find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!
- The conditions of our theorem are fairly restrictive.
- Our algorithm is (much) more efficient than the earlier one.

Hopefully this method will prove useful!

Proof Sketch

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares.

Proof Sketch

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares.

Some questions:

Proof Sketch

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares.

Some questions:

- What are these conditions?

Proof Sketch

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares.

Some questions:

- What are these conditions?
- How do we describe the "seed words" for additive squares?

Proof Sketch

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares.

Some questions:

- What are these conditions?
- How do we describe the "seed words" for additive squares?

Let's find out by sketching the proof.

Templates

Templates

- Let $\vec{\sigma}(w)$ denote the vector $\left[\begin{array}{c}\text { length of } w \\ \text { sum of } w\end{array}\right]$.

Templates

- Let $\vec{\sigma}(w)$ denote the vector $\left[\begin{array}{c}\text { length of } w \\ \text { sum of } w\end{array}\right]$.
- A template is a 4-tuple

$$
\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]
$$

letters or $\varepsilon \quad$ vector in \mathbb{Z}^{2}

Templates

- Let $\vec{\sigma}(w)$ denote the vector $\left[\begin{array}{c}\text { length of } w \\ \text { sum of } w\end{array}\right]$.
- A template is a 4-tuple

$$
\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]
$$

letters or $\varepsilon \quad$ vector in \mathbb{Z}^{2}

- A word w is an instance of this template if

$$
w=a_{0} w_{0} a_{1} w_{1} a_{2} \quad \text { and } \quad \vec{\sigma}\left(w_{1}\right)-\vec{\sigma}\left(w_{0}\right)=\vec{d}
$$

Templates

- Let $\vec{\sigma}(w)$ denote the vector $\left[\begin{array}{c}\text { length of } w \\ \text { sum of } w\end{array}\right]$.
- A template is a 4-tuple

- A word w is an instance of this template if

$$
w=a_{0} w_{0} a_{1} w_{1} a_{2} \quad \text { and } \quad \vec{\sigma}\left(w_{1}\right)-\vec{\sigma}\left(w_{0}\right)=\vec{d}
$$

- An instance of $[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$ is an additive square!

Templates

- Let $\vec{\sigma}(w)$ denote the vector $\left[\begin{array}{c}\text { length of } w \\ \text { sum of } w\end{array}\right]$.
- A template is a 4-tuple

- A word w is an instance of this template if

$$
w=a_{0} w_{0} a_{1} w_{1} a_{2} \quad \text { and } \quad \vec{\sigma}\left(w_{1}\right)-\vec{\sigma}\left(w_{0}\right)=\vec{d}
$$

- An instance of $[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$ is an additive square!
- An instance of $\left[0,1,0,[1,3]^{T}\right]$ is "not too far" from an additive square.

Parents

Every long-enough instance of a template must have come from an instance of another template - a parent.

The First Two Conditions

- Condition 1: For all letters x,
- the length of $h(x)$ is given by $a x+b$ for some $a, b \in \mathbb{Z}$, and
- the sum of $h(x)$ is given by $c x+d$ for some $c, d \in \mathbb{Z}$.

The First Two Conditions

- Condition 1: For all letters x,
- the length of $h(x)$ is given by $a x+b$ for some $a, b \in \mathbb{Z}$, and - the sum of $h(x)$ is given by $c x+d$ for some $c, d \in \mathbb{Z}$.
- Record this in the matrix $M_{h}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

The First Two Conditions

- Condition 1: For all letters x,
- the length of $h(x)$ is given by $a x+b$ for some $a, b \in \mathbb{Z}$, and - the sum of $h(x)$ is given by $c x+d$ for some $c, d \in \mathbb{Z}$.
- Record this in the matrix $M_{h}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
- Then $\vec{\sigma}(h(W))=M_{h} \vec{\sigma}(W)$.

The First Two Conditions

- Condition 1: For all letters x,
- the length of $h(x)$ is given by $a x+b$ for some $a, b \in \mathbb{Z}$, and
- the sum of $h(x)$ is given by $c x+d$ for some $c, d \in \mathbb{Z}$.
- Record this in the matrix $M_{h}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
- Then $\vec{\sigma}(h(W))=M_{h} \vec{\sigma}(W)$.
- Condition 2: M_{h} is invertible, so that

$$
\vec{\sigma}(W)=M_{h}^{-1} \vec{\sigma}(h(W))
$$

Finding Parents

These first two conditions allow us to find all possible parents of a given template.

Finding Parents

These first two conditions allow us to find all possible parents of a given template.

Finding Parents

These first two conditions allow us to find all possible parents of a given template.

Finding Parents

These first two conditions allow us to find all possible parents of a given template.

difference \vec{D} determined by \vec{d} and choice/position of $h\left(A_{i}\right)$'s

The Third Condition

- Now that we can compute the parents of a given template t, we want to compute the set of all ancestors of t (parents, grandparents, great-grandparents, etc.)

The Third Condition

- Now that we can compute the parents of a given template t, we want to compute the set of all ancestors of t (parents, grandparents, great-grandparents, etc.)
- How do we know that this set is finite?

The Third Condition

- Now that we can compute the parents of a given template t, we want to compute the set of all ancestors of t (parents, grandparents, great-grandparents, etc.)
- How do we know that this set is finite?
- We need a condition on h which guarantees that for any ancestor $T=\left[A_{0}, A_{1}, A_{2}, \vec{D}\right]$ of t, the difference \vec{D} is not too large.

The Third Condition

- Now that we can compute the parents of a given template t, we want to compute the set of all ancestors of t (parents, grandparents, great-grandparents, etc.)
- How do we know that this set is finite?
- We need a condition on h which guarantees that for any ancestor $T=\left[A_{0}, A_{1}, A_{2}, \vec{D}\right]$ of t, the difference \vec{D} is not too large.
- Condition 3: All eigenvalues of M_{h} are larger than 1 in absolute value.

The Last Condition

- Condition 4: For all letters x, the length of $h(x)$ is at least 2 .

The Last Condition

- Condition 4: For all letters x, the length of $h(x)$ is at least 2 .
- So taking preimages makes words shorter!

The Last Condition

- Condition 4: For all letters x, the length of $h(x)$ is at least 2.
- So taking preimages makes words shorter!
- So if $h^{\omega}(0)$ contains an instance of a template t, then $h^{\omega}(0)$ contains a short instance of some ancestor of t.

Description of the Algorithm

Suppose that h satisfies these four conditions.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.
- This set is finite!

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.
- This set is finite!
- If $h^{\omega}(0)$ contains an additive square, then it must contain a short instance of one of these ancestors.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.
- This set is finite!
- If $h^{\omega}(0)$ contains an additive square, then it must contain a short instance of one of these ancestors.
- These are our potential "seed words".

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.
- This set is finite!
- If $h^{\omega}(0)$ contains an additive square, then it must contain a short instance of one of these ancestors.
- These are our potential "seed words".
- We enumerate all short factors of $h^{\omega}(0)$, and check to see if any of them is an instance of an ancestor of t.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.
- This set is finite!
- If $h^{\omega}(0)$ contains an additive square, then it must contain a short instance of one of these ancestors.
- These are our potential "seed words".
- We enumerate all short factors of $h^{\omega}(0)$, and check to see if any of them is an instance of an ancestor of t.
- If so, then $h^{\omega}(0)$ contains an additive square.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.
- This set is finite!
- If $h^{\omega}(0)$ contains an additive square, then it must contain a short instance of one of these ancestors.
- These are our potential "seed words".
- We enumerate all short factors of $h^{\omega}(0)$, and check to see if any of them is an instance of an ancestor of t.
- If so, then $h^{\omega}(0)$ contains an additive square.
- If not, then $h^{\omega}(0)$ is additive square-free!

