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“The three spheres continued to dance in my dream, a
patternless, never-repeating dance. Yet, in the depths
of my mind, the dance did possess a rhythm.”

–from The Three-Body Problem by Cixin Liu



PLAN

SQUARES AND SQUARE-FREE WORDS

ABELIAN AND ADDITIVE SQUARES



ALPHABETS AND WORDS

I An alphabet is a finite set of letters, treated simply as
symbols, e.g.,
I {a,b,c, . . . ,z} (the English alphabet)
I {0,1} (the binary alphabet)
I {A,C,G,T} (the alphabet of DNA strings)

I A word is a sequence of letters taken from some alphabet,
e.g.,
I apple, banana, clementine (English words)
I 0110100110010110 (a binary word)
I AAGATGCCGT (a DNA string)

I We are mostly interested in long words over small
alphabets.

I Which patterns can be avoided, and which patterns must
inevitably occur?
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I A square is a word of the form xx , e.g.,
I murmur, hotshots, caracara
I 00, 010212010212

I The factors of a word are its contiguous subwords.
I e.g. The word 0110 has factors:

I A word is square-free if it contains no squares as factors.
I apple
I banana
I clementine

I One can define cubes, 4th powers, etc. in a similar manner.
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A CONSTRUCTION

I Define a map h by
I h(0) = 012,
I h(1) = 02, and
I h(2) = 1.

I Extend h to all words over {0,1,2} in the obvious way:

h(0120) = h(0)h(1)h(2)h(0) = 012021012

I We start with 0, and repeatedly apply h.

h(0) = 012

h2(0) = 012021

h3(0) = 012021012102

h4(0) = 012021012102012021020121

...
hω(0) = 012021012102012021020121 . . .
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THE ORIGIN OF COMBINATORICS ON WORDS

Theorem: hω(0) = 012021012102012021020121 . . . is
square-free.

Axel Thue (1863-1922)
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ABELIAN SQUARES

An abelian square is a word of the form xx̃ , where x̃ is an
anagram of x .
I Examples: mesosome, reappear, intestines

I Question (Erdős 1961): Are abelian squares avoidable
over some finite alphabet?

I Unlike regular squares, they are NOT avoidable over three
letters.

I Theorem (Keränen 1992): Abelian squares are avoidable
over four letters.

I The word σω(0) avoids abelian squares, where
σ(0) = 0120232123203231301020103101213121021232021013010203212320231210212320232132303132120

σ(1) = 1231303230310302012131210212320232132303132120121310323031302321323031303203010203231

σ(2) = 2302010301021013123202321323031303203010203231232021030102013032030102010310121310302

σ(3) = 3013121012132120230313032030102010310121310302303132101213120103101213121021232021013
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I Question (Erdős 1961): Are abelian squares avoidable

over some finite alphabet?
I Unlike regular squares, they are NOT avoidable over three

letters.
I Theorem (Keränen 1992): Abelian squares are avoidable

over four letters.
I The word σω(0) avoids abelian squares, where

σ(0) = 0120232123203231301020103101213121021232021013010203212320231210212320232132303132120

σ(1) = 1231303230310302012131210212320232132303132120121310323031302321323031303203010203231

σ(2) = 2302010301021013123202321323031303203010203231232021030102013032030102010310121310302

σ(3) = 3013121012132120230313032030102010310121310302303132101213120103101213121021232021013



ADDITIVE SQUARES

An additive square is a word of the form xx̃ , where x and x̃
have the same length and the same sum.
I Examples: 012012, 012021, 013202

I Question (Justin 1972): Are additive squares avoidable
over some finite subset of Z?
I We. Don’t. Know.

I Theorem (Cassaigne, Currie, Schaeffer and Shallit 2014):
Additive cubes are avoidable over {0,1,3,4}.

I The word hω(0) avoids additive cubes, where

h(0) = 03

h(1) = 43

h(3) = 1

h(4) = 01
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DECISION ALGORITHMS

I Theorem (Currie and Rampersad 2012): There is an
algorithm which decides, under certain conditions on h,
whether hω(0) contains abelian squares (cubes, 4th
powers, etc.)

I Theorem (Rao and Rosenfeld 2018): Weaker conditions
on h, less efficient algorithm. Can be tweaked to handle
abelian or additive powers.

I Theorem (Currie, Mol, Rampersad, and Shallit 2021+):
Stronger conditions on h, more efficient algorithm for
additive powers.
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Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is
an algorithm which decides, under certain conditions on h,
whether hω(0) contains additive squares (cubes, 4th powers,
etc.)

I In fact, the algorithm is easy to implement.

Here is the main idea:
I Any long additive power in hω(0) must have arisen by

applying h repeatedly to some short “seed word”.
I Show that these seed words cannot look “too different”

from additive powers – there are only finitely many possible
templates for these seed words.

I Enumerate all short words in hω(0), and check to see if
they match any of the templates.
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EXAMPLE

Define f by

f (0) = 001

f (1) = 012

f (2) = 212

Then

fω(0) = 001001012001001012001012212 · · ·

is additive 4th power-free.
I Our theorem shows that this fact can be established by a

finite computer check.
I This word is also (regular) cube-free.



OUTLOOK

We still don’t have a construction of additive square-free words
over a finite subset of Z.

I If we find a candidate construction hω(0), then we just
need to run our algorithm to prove it!

I The conditions of our theorem are fairly restrictive.
I But our algorithm is efficient.

Hopefully this method will prove useful!
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Thank you!



TEMPLATES

I Let ~σ(w) denote the vector
[
length of w
sum of w

]
.

I A template (for additive squares) is a 4-tuple

[a0,a1,a2, ~d ]

letters or ε vector in Z2

I A word w is an instance of [a0,a1,a2,d ] if

w = a0w0a1w1a2

and
~σ(w1)− ~σ(w0) = ~d .

I If w = xx̃ is an additive square, then w is an instance of

[ε, ε, ε,~0]



PARENTS
We say that template T = [A0,A1,A2, ~D] is a parent of template
t = [a0,a1,a2, ~d ] if applying h to an instance of T gives an
instance of t .

difference ~D

A0 W0 A1 W1 A2

h

h(A0) h(W0) h(A1) h(W1) h(A2)

a0 w0 a1 w1 a2

difference ~d



THE FIRST TWO CONDITIONS

I Condition 1: For all letters x , the length and sum of h(x)
are linear functions of x , that is
I the length of h(x) is ax + b
I the sum of h(x) is cx + d

for some a,b, c,d ∈ Z.

I Record this in the matrix Mh =

[
a b
c d

]
.

I Lemma: Mh~σ(W ) = ~σ(h(W ))

I Condition 2: Mh is invertible, so that

~σ(W ) = M−1
h ~σ(h(W )).



FINDING PARENTS
These first two conditions allow us to find all possible parents of
a given template t = [a0,a1,a2, ~d ].

difference ~d

a0 w0 a1 w1 a2



FINDING PARENTS
These first two conditions allow us to find all possible parents of
a given template t = [a0,a1,a2, ~d ].

difference ~d

a0 w0 a1 w1 a2

h(A0) h(A1) h(A2)



FINDING PARENTS
These first two conditions allow us to find all possible parents of
a given template t = [a0,a1,a2, ~d ].

difference ~d

a0 w0 a1 w1 a2

h(A0) h(W0) h(A1) h(W1) h(A2)



FINDING PARENTS
These first two conditions allow us to find all possible parents of
a given template t = [a0,a1,a2, ~d ].

difference ~d

a0 w0 a1 w1 a2

h(A0) h(W0) h(A1) h(W1) h(A2)

h−1

A0 W0 A1 W1 A2

difference ~D determined by ~d and the choice/position of the Ai ’s



THE THIRD CONDITION

I Now that we can compute the parents of a given template
t , we want to compute the set of all ancestors of t (parents,
grandparents, great-grandparents, etc.)

I How do we know that this set is finite?
I We need a condition on h which guarantees that for any

ancestor T = [A0,A1,A2, ~D] of t , the difference ~D is not too
large.

I Essentially, applying M−1
h repeatedly cannot make the

differences larger and larger.
I Condition 3: All eigenvalues of Mh are larger than 1 in

absolute value.



THE LAST CONDITION

I Condition 4: For all letters x , the length of h(x) is at least 2.
I So taking preimages makes words shorter!
I This guarantees that if hω(0) contains an instance of a

template t , then hω(0) contains a short instance of some
ancestor of t .



DESCRIPTION OF THE ALGORITHM

Suppose that h satisfies these four conditions.
I Consider the template t = [ε, ε, ε,~0].

I An instance of t is an additive square.
I We enumerate all ancestors of t .

I This set is finite!
I If hω(0) contains an additive square, then it must contain a

short instance of one of these ancestors.
I This is our “seed word”.

I We enumerate all short factors of hω(0), and check to see
if any of them is an instance of an ancestor of t .
I If so, then hω(0) contains an additive square.
I If not, then hω(0) is additive square-free!
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