Avoiding Additive Powers in Words

Lucas Mol

Coast Combinatorics Conference
March 5, 2023
"The three spheres continued to dance in my dream, a patternless, never-repeating dance. Yet, in the depths of my mind, the dance did possess a rhythm."
-from The Three-Body Problem by Cixin Liu

Plan

Squares and Square-Free Words

Abelian and Additive SQuares

Alphabets and words

- An alphabet is a finite set of letters, treated simply as symbols, e.g.,
- $\{a, b, c, \ldots, z\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)

Alphabets and words

- An alphabet is a finite set of letters, treated simply as symbols, e.g.,
- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)
- A word is a sequence of letters taken from some alphabet, e.g.,
- apple, banana, clementine (English words)
- 0110100110010110 (a binary word)
- AAGATGCCGT (a DNA string)

Alphabets and words

- An alphabet is a finite set of letters, treated simply as symbols, e.g.,
- $\{a, b, c, \ldots, z\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)
- A word is a sequence of letters taken from some alphabet, e.g.,
- apple, banana, clementine (English words)
- 0110100110010110 (a binary word)
- AAGATGCCGT (a DNA string)
- We are mostly interested in long words over small alphabets.

Alphabets and words

- An alphabet is a finite set of letters, treated simply as symbols, e.g.,
- $\{a, b, c, \ldots, z\}$ (the English alphabet)
- $\{0,1\}$ (the binary alphabet)
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (the alphabet of DNA strings)
- A word is a sequence of letters taken from some alphabet, e.g.,
- apple, banana, clementine (English words)
- 0110100110010110 (a binary word)
- AAGATGCCGT (a DNA string)
- We are mostly interested in long words over small alphabets.
- Which patterns can be avoided, and which patterns must inevitably occur?

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

0 ,

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,011,
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,011,110
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,011,110 \text {, and } 0110
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,011,110, \text { and } 0110, \text { but NOT } 00 .
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,011,110, \text { and } 0110, \text { but NOT } 00 .
$$

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,011,110 \text {, and } 0110, \text { but NOT } 00 .
$$

- A word is square-free if it contains no squares as factors.
- apple

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:

$$
0,1,01,11,10,011,110 \text {, and } 0110 \text {, but NOT } 00 .
$$

- A word is square-free if it contains no squares as factors.
- apple - not square-free

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:
$0,1,01,11,10,011,110$, and 0110 , but NOT 00.
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:
$0,1,01,11,10,011,110$, and 0110, but NOT 00.
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:
$0,1,01,11,10,011,110$, and 0110, but NOT 00.
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:
$0,1,01,11,10,011,110$, and 0110, but NOT 00.
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine - square-free

SQUARES AND SQUARE-FREE WORDS

- A square is a word of the form $x x$, e.g.,
- murmur, hotshots, caracara
- 00,010212010212
- The factors of a word are its contiguous subwords.
- e.g. The word 0110 has factors:
$0,1,01,11,10,011,110$, and 0110 , but NOT 00.
- A word is square-free if it contains no squares as factors.
- apple - not square-free
- banana - not square-free
- clementine - square-free
- One can define cubes, 4th powers, etc. in a similar manner.

Are squares Avoidable?

Q: Are there arbitrarily long square-free words over a finite alphabet?

Are squares Avoidable?

Q: Are there arbitrarily long square-free words over a finite alphabet?
A: Hmmmmm...

Are squares Avoidable?

Q: Are there arbitrarily long square-free words over a finite alphabet?
A: Hmmmmm...

- Over an alphabet of size one, say $\{0\}$?

Are squares Avoidable?

Q: Are there arbitrarily long square-free words over a finite alphabet?
A: Hmmmmm...

- Over an alphabet of size one, say $\{0\}$? No.

Are squares avoidable?

Q: Are there arbitrarily long square-free words over a finite alphabet?
A: Hmmmmm...

- Over an alphabet of size one, say $\{0\}$? No.
- Over an alphabet of size two, say $\{0,1\}$?

Are squares avoidable?

Q: Are there arbitrarily long square-free words over a finite alphabet?
A: Hmmmmm...

- Over an alphabet of size one, say $\{0\}$? No.
- Over an alphabet of size two, say $\{0,1\}$? No.

Are squares avoidable?

Q: Are there arbitrarily long square-free words over a finite alphabet?
A: Hmmmmm...

- Over an alphabet of size one, say $\{0\}$? No.
- Over an alphabet of size two, say $\{0,1\}$? No.
- Over an alphabet of size three, say $\{0,1,2\}$?
letters
"The three spheres continued to dance in my dream, a patternless, never-repeating dance. Yet, in the depths of my mind, the dance did possess a rhythm."
-from The Three-Body Problem by Cixin Liu

A CONSTRUCTION

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
$-h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
h(0)=012
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021
\end{aligned}
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
$-h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021 \\
h^{3}(0) & =012021012102
\end{aligned}
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
$-h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021 \\
h^{3}(0) & =012021012102 \\
h^{4}(0) & =012021012102012021020121
\end{aligned}
$$

A CONSTRUCTION

- Define a map h by
- $h(0)=012$,
- $h(1)=02$, and
- $h(2)=1$.
- Extend h to all words over $\{0,1,2\}$ in the obvious way:

$$
h(0120)=h(0) h(1) h(2) h(0)=012021012
$$

- We start with 0 , and repeatedly apply h.

$$
\begin{aligned}
h(0) & =012 \\
h^{2}(0) & =012021 \\
h^{3}(0) & =012021012102 \\
h^{4}(0) & =012021012102012021020121 \\
\vdots & \\
h^{\omega}(0) & =012021012102012021020121 \ldots
\end{aligned}
$$

The Origin of combinatorics on words

Theorem: $h^{\omega}(0)=012021012102012021020121 \ldots$ is square-free.

Squares and Square-Free Words

Abelian and Additive SQuares

Abelian Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines

Abelian Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?

Abelian Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?
- Unlike regular squares, they are NOT avoidable over three letters.

Abelian Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?
- Unlike regular squares, they are NOT avoidable over three letters.
- Theorem (Keränen 1992): Abelian squares are avoidable over four letters.

Abelian Squares

An abelian square is a word of the form $x \tilde{x}$, where \tilde{x} is an anagram of x.

- Examples: mesosome, reappear, intestines
- Question (Erdős 1961): Are abelian squares avoidable over some finite alphabet?
- Unlike regular squares, they are NOT avoidable over three letters.
- Theorem (Keränen 1992): Abelian squares are avoidable over four letters.
- The word $\sigma^{\omega}(0)$ avoids abelian squares, where

```
\sigma(0) = 0120232123203231301020103101213121021232021013010203212320231210212320232132303132120
\sigma(1) = 1231303230310302012131210212320232132303132120121310323031302321323031303203010203231
\sigma(2) = 2302010301021013123202321323031303203010203231232021030102013032030102010310121310302
\sigma(3) = 3013121012132120230313032030102010310121310302303132101213120103101213121021232021013
```


Additive Squares

An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.

- Examples: 012012,012021,013202

Additive Squares

An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.

- Examples: 012012, 012021,013202
- Question (Justin 1972): Are additive squares avoidable over some finite subset of \mathbb{Z} ?

Additive Squares

An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.

- Examples: 012012, 012021,013202
- Question (Justin 1972): Are additive squares avoidable over some finite subset of \mathbb{Z} ?
- We. Don't. Know.

Additive Squares

An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.

- Examples: 012012,012021,013202
- Question (Justin 1972): Are additive squares avoidable over some finite subset of \mathbb{Z} ?
- We. Don't. Know.
- Theorem (Cassaigne, Currie, Schaeffer and Shallit 2014): Additive cubes are avoidable over $\{0,1,3,4\}$.

Additive Squares

An additive square is a word of the form $x \tilde{x}$, where x and \tilde{x} have the same length and the same sum.

- Examples: 012012, 012021, 013202
- Question (Justin 1972): Are additive squares avoidable over some finite subset of \mathbb{Z} ?
- We. Don't. Know.
- Theorem (Cassaigne, Currie, Schaeffer and Shallit 2014): Additive cubes are avoidable over $\{0,1,3,4\}$.
- The word $h^{\omega}(0)$ avoids additive cubes, where

$$
\begin{aligned}
& h(0)=03 \\
& h(1)=43 \\
& h(3)=1 \\
& h(4)=01
\end{aligned}
$$

Decision Algorithms

- Theorem (Currie and Rampersad 2012): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains abelian squares (cubes, 4th powers, etc.)

Decision Algorithms

- Theorem (Currie and Rampersad 2012): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains abelian squares (cubes, 4th powers, etc.)
- Theorem (Rao and Rosenfeld 2018): Weaker conditions on h, less efficient algorithm. Can be tweaked to handle abelian or additive powers.

Decision Algorithms

- Theorem (Currie and Rampersad 2012): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains abelian squares (cubes, 4th powers, etc.)
- Theorem (Rao and Rosenfeld 2018): Weaker conditions on h, less efficient algorithm. Can be tweaked to handle abelian or additive powers.
- Theorem (Currie, Mol, Rampersad, and Shallit 2021+): Stronger conditions on h, more efficient algorithm for additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares (cubes, 4th powers, etc.)

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares (cubes, 4th powers, etc.)

- In fact, the algorithm is easy to implement.

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares (cubes, 4th powers, etc.)

- In fact, the algorithm is easy to implement.

Here is the main idea:

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares (cubes, 4th powers, etc.)

- In fact, the algorithm is easy to implement.

Here is the main idea:

- Any long additive power in $h^{\omega}(0)$ must have arisen by applying h repeatedly to some short "seed word".

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares (cubes, 4th powers, etc.)

- In fact, the algorithm is easy to implement.

Here is the main idea:

- Any long additive power in $h^{\omega}(0)$ must have arisen by applying h repeatedly to some short "seed word".
- Show that these seed words cannot look "too different" from additive powers - there are only finitely many possible templates for these seed words.

Theorem (Currie, Mol, Rampersad, and Shallit 2021+): There is an algorithm which decides, under certain conditions on h, whether $h^{\omega}(0)$ contains additive squares (cubes, 4th powers, etc.)

- In fact, the algorithm is easy to implement.

Here is the main idea:

- Any long additive power in $h^{\omega}(0)$ must have arisen by applying h repeatedly to some short "seed word".
- Show that these seed words cannot look "too different" from additive powers - there are only finitely many possible templates for these seed words.
- Enumerate all short words in $h^{\omega}(0)$, and check to see if they match any of the templates.

ExAMPLE

Define f by

$$
\begin{aligned}
& f(0)=001 \\
& f(1)=012 \\
& f(2)=212
\end{aligned}
$$

Then

$$
f^{\omega}(0)=001001012001001012001012212 \ldots
$$

is additive 4th power-free.

- Our theorem shows that this fact can be established by a finite computer check.
- This word is also (regular) cube-free.

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!
- The conditions of our theorem are fairly restrictive.

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!
- The conditions of our theorem are fairly restrictive.
- But our algorithm is efficient.

Outlook

We still don't have a construction of additive square-free words over a finite subset of \mathbb{Z}.

- If we find a candidate construction $h^{\omega}(0)$, then we just need to run our algorithm to prove it!
- The conditions of our theorem are fairly restrictive.
- But our algorithm is efficient.

Hopefully this method will prove useful!

Thank you!

Templates

- Let $\vec{\sigma}(w)$ denote the vector $\left[\begin{array}{c}\text { length of } w \\ \text { sum of } w\end{array}\right]$.
- A template (for additive squares) is a 4-tuple
$\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]$
letters or ε vector in \mathbb{Z}^{2}
- A word w is an instance of $\left[a_{0}, a_{1}, a_{2}, d\right]$ if

$$
w=a_{0} w_{0} a_{1} w_{1} a_{2}
$$

and

$$
\vec{\sigma}\left(w_{1}\right)-\vec{\sigma}\left(w_{0}\right)=\vec{d}
$$

- If $w=x \tilde{x}$ is an additive square, then w is an instance of

$$
[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]
$$

Parents

We say that template $T=\left[A_{0}, A_{1}, A_{2}, \vec{D}\right]$ is a parent of template $t=\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]$ if applying h to an instance of T gives an instance of t.
difference \vec{D}

h

The First Two Conditions

- Condition 1: For all letters x, the length and sum of $h(x)$ are linear functions of x, that is
- the length of $h(x)$ is $a x+b$
- the sum of $h(x)$ is $c x+d$
for some $a, b, c, d \in \mathbb{Z}$.
- Record this in the matrix $M_{h}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
- Lemma: $M_{h} \vec{\sigma}(W)=\vec{\sigma}(h(W))$
- Condition 2: M_{h} is invertible, so that

$$
\vec{\sigma}(W)=M_{h}^{-1} \vec{\sigma}(h(W))
$$

Finding Parents

These first two conditions allow us to find all possible parents of a given template $t=\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]$.

Finding Parents

These first two conditions allow us to find all possible parents of a given template $t=\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]$.

Finding Parents

These first two conditions allow us to find all possible parents of a given template $t=\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]$.

Finding Parents

These first two conditions allow us to find all possible parents of a given template $t=\left[a_{0}, a_{1}, a_{2}, \vec{d}\right]$.

$$
h^{-1}
$$

difference \vec{D} determined by \vec{d} and the choice/position of the A_{i} 's

The Third Condition

- Now that we can compute the parents of a given template t, we want to compute the set of all ancestors of t (parents, grandparents, great-grandparents, etc.)
- How do we know that this set is finite?
- We need a condition on h which guarantees that for any ancestor $T=\left[A_{0}, A_{1}, A_{2}, \vec{D}\right]$ of t, the difference \vec{D} is not too large.
- Essentially, applying M_{h}^{-1} repeatedly cannot make the differences larger and larger.
- Condition 3: All eigenvalues of M_{h} are larger than 1 in absolute value.

The Last Condition

- Condition 4: For all letters x, the length of $h(x)$ is at least 2.
- So taking preimages makes words shorter!
- This guarantees that if $h^{\omega}(0)$ contains an instance of a template t, then $h^{\omega}(0)$ contains a short instance of some ancestor of t.

Description of the Algorithm

Suppose that h satisfies these four conditions.

- Consider the template $t=[\varepsilon, \varepsilon, \varepsilon, \overrightarrow{0}]$.
- An instance of t is an additive square.
- We enumerate all ancestors of t.
- This set is finite!
- If $h^{\omega}(0)$ contains an additive square, then it must contain a short instance of one of these ancestors.
- This is our "seed word".
- We enumerate all short factors of $h^{\omega}(0)$, and check to see if any of them is an instance of an ancestor of t.
- If so, then $h^{\omega}(0)$ contains an additive square.
- If not, then $h^{\omega}(0)$ is additive square-free!

