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Asymptotic analysis of unsteady ideal gas flow through layered porous media

Seth Keenan ⋅ Yana Nec

Abstract Temporal variability of boundary conditions is a common feature of certain fluid flows through
a porous matrix, encountered, for instance, in landfill gas or natural gas collection, and sparging wells.
Darcy’s law subject to the weak compressibility of the fluid results in a non-linear partial differential
equation for the pressure field. Slow variation admits asymptotic solutions for generic time dependence
of the boundary forcing function, both as Dirichlet and Neumann conditions. Flow control strategies are
suggested based on the asymptotic theory. A sealed outer domain boundary is identified as the configuration
best amenable to full control of the pressure distribution via the induced well suction. Fast variation leads
to a novel application of the classical compact support similarity solution in a domain with discontinuous
parameters.
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flow, flow control, asymptotic expansions
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Article highlights

† In most realistic cases the slow asymptotic regime governs the flow response to time dependent boundary
conditions.

† With a sealed outer boundary the spatio-temporal variation is decoupled, enabling full control of the
pressure field.

† Pressure time dependence obeys a similarity law throughout the domain with generic unsteady boundary
conditions.

1 Background

Gas flow through a porous matrix of large dimensions is encountered in applications such as contaminated
aquifer remediation, natural gas extraction and landfill gas collection. The purpose of a sparging well is to
inject a fluid that will percolate through the matrix, binding to and neutralising detrimental compounds.
By contrast, gas extraction wells induce suction to draw fluid out of the porous medium. In all three
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systems the flow field is difficult to control in practice. Ideally the pressure distribution and flow rates
in the system would depend monotonically on the pressure gradient exerted at the well. In reality the
response to a variation of conditions at the well is often difficult to predict. In sparging wells this is evident
via the erratic behaviour recorded by pressure probes (Lundegard and LaBrecque, 1995), in natural gas
development basic flow models appear inadequate (Hyman et al., 2015), and in landfill gas collection the
outlet suction is found to be an effective direct control mechanism in some settings (Kutsyi, 2015) and
quite the opposite in others, cf. figure 3 of Nec and Huculak (2019).

Time dependent investigations in this area are scarce for two reasons. Mathematically the simplest
description of a gas flow through a porous medium is via continuity of mass in conjunction with Darcy’s
law as the momentum transfer mechanism and the ideal gas equation of state accounting for weak com-
pressibility effects. The governing equation ensuing is a non-linear partial differential equation in the fluid
pressure p, but the steady version can be written as a linear ordinary differential equation in p

2. Con-
sequently a predisposition toward analysing steady flow solutions developed. These were obtained for a
one-dimensional framework (Wise and Townsend, 2011) and other simple geometries (Young, 1989), used
in quasi-one-dimensional flow fields (Nec and Huculak, 2019; Feng et al., 2017), as well as constituted the
end result of full numerical simulations in multiple spatial dimensions (Feng et al., 2015; Halvorsen et al.,
2018; Keenan et al., 2021). From the vantage point of applications, the steady state is often the result of
interest in the sparging process as well as natural or landfill gas collection. Furthermore, in the landfill
application the porous matrix undergoes degradation, entailing significant permeability and gas generation
rate changes. Consequently the service lifetime of quantitative models fit to site-specific measured data is
brief, rendering their construction for the purpose of predicting future behaviour rarely worthwhile.

Therefore the prevailing approach towards the response to control parameters as well as sensitivity with
respect to various physical conditions has revolved around scrutiny of steady state solutions at different
regions of the relevant parameter space. Even when parameters are easily adjusted over the landfill’s lifes-
pan, each modelled state nonetheless corresponds to a steady flow (Keenan et al., 2021). The steady state
modelling suffices to construe the impact of variability of intrinsic properties such as matrix permeability
or fluid temperature, however there are situations when one is interested in the transient behaviour most
often connected to changes induced or occurring on the boundary. Some examples, where this might be
critical, are pump failure – full or partial – or water table fluctuation. If the system geometry is thought
of as either a horizontal or vertical cylinder with a hollow core (the well), these correspond to changes
in pressure and/or flux at the inner and outer boundaries of the domain respectively. Another example is
possible changes in the atmospheric conditions for a horizontal landfill well that is temporarily uncovered
or has a partly permeable cover. Whilst malfunctioning pumps are fixed within a given amount of time,
eventuating in a return to steady conditions, water table and atmospheric pressure fluctuations are not
controllable and might be seasonal or ongoing. Thus the changes in the boundary conditions might be fast
or slow, periodically recurring or permanent. One essential aspect unifying them all is that the system
operator would need a means to control the flow field in the face of the temporal variation to conform to
certain regulations, for instance a maximal allowed pressure threshold or a minimal fraction of collected
relative to generated mass in the landfill application (Conestoga-Rovers, 2010). To date there exists no
theoretical basis for effective decision making in this regard.

In this study a new unsteady flow solution is derived for generic boundary conditions varying in time.
Unsteady modelling is instrumental in providing insight into the response of the coupled well-matrix system
and means of flow control in situations, where the transient is of more importance than the steady state,
e.g. if regulation thresholds are exceeded, or where the transient is the reality over prolonged periods of
time, i.e. no convergence to a steady state can be reasonably expected.

Landfill gas flow is used as the main example with the associated terminology adopted throughout,
however all characteristics discussed as well as results and conclusions are equally applicable to any ideal
gas flow through a porous medium of large spatial dimensions.
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2 Governing equations

The continuity of mass for a fluid of density ρ flowing through a porous medium of porosity ϕ and generation
rate C is given by (Fulks et al., 1971)

∂

∂t
(ϕρ) + ∇ ⋅ (ρu) = C, (1a)

wherein u is the velocity vector. Pressure gradients in gas flow through the waste matrix, and natural gas
or remediation fluid flow through the ground are small, rendering the assumption of ideal gas behaviour
well tenable. Thus the relation between density ρ and pressure p is given by

p = ρRT, (1b)

where R and T are the gas constant and temperature respectively. By equation (1b) the density varies in
proportion with the pressure. The quantitative range spanned by p is typically less than one tenth of its
absolute value, implying that ρ varies little and designating this flow as weakly compressible. Furthermore,
thermal equilibrium can be assumed (Young, 1989). The transfer of momentum is governed by Darcy’s law
(Whitaker, 1986)

u = −K
µ
∇p, (1c)

where K is the permeability tensor and the fluid dynamic viscosity µ is computed for the gas mixture
according to Davidson (1993). Albeit gravity is not readily negligible in these settings (Halvorsen et al.,
2018), this study’s salient focus is the response to time dependent boundary conditions and flow control
strategies. The exclusion of gravity enables symmetric analytical solutions (Wise and Townsend, 2011;
Young, 1989) as well as planar flow approximation within the cross-section of both horizontal and vertical
wells as part of a semi-analytical model (Nec and Huculak, 2019; Feng et al., 2015, 2017). Horizontal landfill
wells are typically hundreds of metres in length and collect gas at designated equidistant cross-sections,
set a few tens of metres apart. The gas enters through either a cluster of apertures or a circumferential
opening created by slightly overlapping telescopic pipes. Analysis of relative length scales shows that the
longitudinal variation is small, justifying a planar description (Nec and Huculak, 2019). Vertical wells are a
few tens of metres deep with continuously distributed perforations. Natural gas wells of either orientation
similarly collect fluid along the entire length of the pipe with slow longitudinal variation. In a sparging
well fluid is injected along the relevant length of the well within the aquifer. In all cases the intake area
might be converted to an axisymmetric slit to obtain a planar approximation. All three applications involve
anisotropic porous media of large physical dimensions with both directional and bulk variability of intrinsic
properties. Without an extensive, site specific investigation the only practical approach is to divide the
entire relevant matrix volume into sub-domains that, upon assigning a constant permeability, will give rise
to a flow field having equivalent global characteristics, e.g. ranges of fluid pressure and velocity. Thus seeking
axisymmetric planar flow solutions, combine (1c) and (1b) with (1a), express the differential operators in
cylindrical coordinates and reduce K to an effective value k to read

∂

∂t
(ϕp) − 1

r

∂

∂r

⎛⎝kµrp
∂p

∂r

⎞⎠ = RTC. (2a)

To non-dimensionalise the problem, introduce the mappings p z→ pnp
′, r z→ rnr

′, t z→ tnt
′, k z→ r

2
nk
′,

µ z→ pntnµ
′ and C z→ C

′
pn/(tnRT), where the subscript n defines normalisation scales and the prime

denotes respective non-dimensional quantities. Omitting the primes, equation (2a) becomes

∂

∂t
(ϕp) − 1

r

∂

∂r

⎛⎝kµrp
∂p

∂r

⎞⎠ = C. (2b)

Nec and Huculak (2019) proved the existence of a steady solution to (2b) in a domain comprising any
number of contiguous rings with distinct permeability values. The methodology developed here is easily
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Fig. 1 Domain schematic and notation; dimensions not to scale

extended to that framework, but the exposition is highly technical and not instructive. To illustrate the
construction of the unsteady asymptotic solution, the derivation hereunder is limited to two rings as in
figure 1, with only the outer one generating gas. This corresponds to a common situation, where the bore
is surrounded by a supporting lamina such as gravel or simply a depleted layer due to the well’s proximity.
The pipe radius is rP . The inner circle {r ∣ 0 ⩽ r < rP} must be excluded, as upon ingress into the pipe
equation (2b) no longer holds, and the flow changes direction normal to the cross-section plane. The radius
of the support lamina is rA. The outermost radius is rX . The respective permeabilities of the two annuli
are ka and kx. Then the generation rate C, permeability k and porosity ϕ are given by

C = { 0 rP < r < rA
Cb rA < r < rX

, k = { ka rP < r < rA
kx rA < r < rX

, ϕ = {ϕa rP < r < rA
ϕx rA < r < rX

. (2c)

In the landfill application C is the mass of gas per unit volume and time generated within the medium.
In a sparging well C vanishes throughout, as the fluid containing the remediation compounds of interest
is injected at the boundary and propagates through the medium. In a natural gas well C should be set to
zero where the fluid is only traversing the medium upon collection, or given a non-zero source term if the
gas is known to be generated within the domain considered.

The boundary conditions accompanying (2b) are stated below for each solution setting. The initial
condition is always the steady state solution conforming to t = 0 in the time dependent boundary conditions.
On the contiguity circle r = rA between domains of distinct matrix properties continuity of pressure and
velocity (equivalently mass) is enforced:

p (r−A, t) = p (r+A, t) . (3a)

To obtain the condition for the velocity integrate (2b) with respect to r over an infinitesimally thin ring(rA − ǫ, rA + ǫ) and take the limit ǫ Ð→ 0. The discontinuities in ϕ and C entail no contribution, but the
discontinuity in k yields

ka
∂p

∂r

RRRRRRRRRRR(r−
A
, t)

= kx
∂p

∂r

RRRRRRRRRRR(r+
A
, t)

, (3b)

wherein condition (3a) was used.
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Fig. 2 Time dependent boundary condition p (rP , t) as given by equations (4).

Suppose the well operates under a sub-atmospheric pressure pbase at steady state. Three time dependent
scenarios were considered. At t = 0 the vacuum blower loses power over the time tfail until the outlet is at
atmospheric pressure:

p (rP , t) = pbase + (patm − pbase) t

tfail
, 0 ⩽ t ⩽ tfail. (4a)

At tfail an emergency blower engages and builds the vacuum back to its operational value:

p (rP , t) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pbase + (patm − pbase) t

tfail
0 ⩽ t ⩽ tfail

patm + (pbase − patm) t − tfail
tfail

tfail ⩽ t ⩽ 2tfail.

(4b)

The emergency blower engages when the maximal pressure in the landfill exceeds a predetermined threshold
at tfail with the well pressure then equalling pth:

p (rP , t) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pbase + (pth − pbase) t

tfail
0 ⩽ t ⩽ tfail

pth + (pbase − pth) t − tfail
tfail

tfail ⩽ t ⩽ 2tfail.

(4c)

The conceptual difference of (4c) is that tfail is not known in advance. The respective plots are given in
figure 2. As part of the asymptotic theory developed below, a linearisation of the governing equation (2b)
was performed. For some combinations of asymptotic parameters and boundary conditions it was important
to understand whether an ensuing linear pressure distribution was the result of the linearised equation or
linear forcing. To that end a non-linear smooth variation sin(πt/(2tfail)) with an appropriate amplitude
replacing the linear ramp was tested.

In order to verify the asymptotic theory the FlexPDE solver (PDE Solutions Inc., 2016) was used to
obtain a finite element solution of (2b) subject to (4) on an unstructured triangular, dynamically refined
mesh with a prescribed relative error in p (non-dimensionalised by patm) of 10−6. Table 1 lists the nominal
set of parameters used in computations throughout unless noted specifically in pertinent figure captions.
Negative pressure values are relative to the atmosphere.
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parameter symbol value

pipe radius rP 0.0762m (3 in)
temperature T 15oC
steady state suction pressure pbase −3.75kPa
steady state surface pressure pX 1atm
layer b generation rate Cb 0.004kg/(m3hr)
CH4 molar fraction 0.5
O2 molar fraction 0.01
CO2 molar fraction 0.4
layer a thickness rA − rP 1m
layer b thickness rX − rA 8m
layer a porosity ϕa 0.35
layer b porosity ϕx 0.2

Table 1 Parameters of a single landfill cell common to all examples solved numerically

3 Slow variation regime

A quasi-steady variation occurs when tfail ≫ 1. Define a small asymptotic parameter ǫ = 1/tfail ≪ 1 and a
slow time scale τ = ǫt. Then any stage in (4) can be generalised as p (rP , τ) = pinit +mfailτ , where both the
pressure pinit and slope mfail are ǫ-independent. More generally this boundary condition might be set as

p (rP , τ) = pwell(τ), (5a)

such that pwell(τ) ∼ O(1) and ǫ-independent. For this initial example of the asymptotic construction a
zero normal flux condition is taken on the outermost domain boundary. In practice this pertains to three
situations. One possibility is that the modelled flow field indeed has an impervious boundary, such as
an impermeable membrane lining a landfill, or a natural gas well surrounded by a wall of solid rock or
clay. The second option is that there is no physical boundary, but one is interested in the well’s zone of
influence, i.e. the domain extending from the well to the point, where it can no longer collect fluid. At that
point the fluid’s radial velocity reverses and normal flux equals zero. Landfill wells are often installed in a
lattice-like formation inducing a tessellation of zones of influence. On the boundaries of neighbouring zones
the normal flux must vanish. In both square and hexagonal arrangements the zones can be approximated
by an inscribed circle. In reality the lattice is likely to be somewhat irregular. Nonetheless each well draws
fluid radially, and therefore the zone’s main shape can be represented by a circle. At its tangency points
with the true contour the flux will indeed vanish. On the arcs in between it will be small. It is to be shown
below that the condition of vanishing radial flux effectively decouples the temporal and radial variation,
endowing the operator with a useful control strategy.

A no flux condition on the outermost boundary implies

∂p

∂r

RRRRRRRRRRR(rX , τ)

= 0. (5b)

Introduce the asymptotic series

p = p0(r, τ) + ǫ p1(r, τ) + ǫ2p2(r, τ) +⋯ . (6)

Substituting (6) into (2b), applying the chain rule whereby ∂t = ǫ∂τ , and collecting terms of equal orders,
yields at O(1)

1

r

∂

∂r

⎛⎝rp0 ∂p0∂r

⎞⎠ = −µCk , (7a)
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and at O(ǫ)
1

r

∂

∂r

⎛⎝r ∂

∂r
(p0p1)⎞⎠ = µϕ

k

∂p0

∂τ
. (7b)

The general solution of (7a) is

p
2

0 = −µC
2k

r
2 +A0(τ) ln r +B0(τ), (8a)

where the functions A0(τ) and B0(τ) are to be determined from boundary conditions (5) and continuity
conditions (3). When these are constant, (8a) is the steady state solution (Nec and Huculak, 2019). For
τ = 0 it is also the initial condition for (2b). The general solution to (7b) is given by

p0p1 =
µϕ

2k ∫
1

r∫
r

r̃

p0(r̃, τ)(A′0 ln r̃ +B′0)dr̃ dr +A1(τ) ln r +B1(τ), (8b)

where both integrals are indefinite, and A1(τ) and B1(τ) need to be similarly determined from (5) and
(3). The boundary conditions on p must be expressed in terms of the slow time scale τ , so as to provide
boundary conditions for all terms pi in the asymptotic expansion (6). Therefore

p0 (rP , τ) = pwell(τ), pi (rP , τ) = 0 ∀ i ⩾ 1, (9a)

∂pi

∂r

RRRRRRRRRRR(rX , τ)

= 0 ∀ i ⩾ 0. (9b)

The continuity equations (3) must hold at every order, i.e. for all pi, and for more elegant implementation
might be written at orders O(1) and O(ǫ) respectively as

p
2

0 (r−A, τ) = p20 (r+A, τ) , ka
∂p

2

0

∂r

RRRRRRRRRRR(r−
A
, τ)

= kx
∂p

2

0

∂r

RRRRRRRRRRR(r+
A
, τ)

, (10a)

and (p0p1)∣
(r−
A
, τ)
= (p0p1)∣

(r+
A
, τ)

, ka
∂

∂r
(p0p1)∣

(r−
A
, τ)
= kx

∂

∂r
(p0p1)∣

(r+
A
, τ)

. (10b)

Writing (8a) separately for each layer with superscripts ( ⋅ )(a) and ( ⋅ )(b) referring to the first (non-
generating) and second (potentially generating) annuli

p
(a)
0

2

= A
(a)
0
(τ) ln r +B(a)

0
(τ), (11a)

p
(b)
0

2

= −µCb

2kx
r
2 +A(b)

0
(τ) ln r +B(b)

0
(τ), (11b)

and enforcing (9) and (10a) yields

A
(b)
0
=
µCb

kx
r
2

X , (12a)

A
(a)
0
=
kx

ka

⎛⎝A(b)0
− µCb

kx
r
2

A
⎞⎠, (12b)

B
(a)
0
= p

2

well(τ) −A(a)0
ln rP , (12c)

B
(b)
0
= (A(a)

0
−A(b)

0
) ln rA +B(a)0

+ µCb

2kx
r
2

A. (12d)

From (12a) and (12b) A
′
0(τ) in (8b) vanishes. By (12c) and (12d) B

′
0 = 2pwell(τ)p′well(τ) in both layers. It

is now possible to choose convenient bounds for the indefinite integrals in (8b):

(p0p1)(a) = µϕa

2ka
B
′
0∫

r

rP

1

r̃∫
r̃

rA

̺d̺

p
(a)
0
(̺, τ) dr̃ +A(a)1

(τ) ln r +B(a)
1
(τ), (13a)
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Fig. 3 Example of direct dependence of the pressure field p(r, τ) on the well boundary function pwell(τ) (solid black)
under a slow variation regime with a sealed outer boundary: r = rA (dashed green/grey, edge of layer a), r = (rA + rX )/2
(solid green/grey, centre of layer b) and r = rX (dashed black, edge of layer b) for linear (left) and sinusoidal (right) forcing.
ǫ = 0.1, ka = 1e − 06m2, kx = 1e − 08m2, all other parameters listed in table 1.

(p0p1)(b) = µϕx

2kx
B
′
0∫

r

rA

1

r̃∫
r̃

rX

̺d̺

p
(b)
0
(̺, τ) dr̃ +A(b)1

(τ) ln r +B(b)
1
(τ). (13b)

Enforcing (9) and (10b) yields

A
(b)
1
= 0, (14a)

A
(a)
1
=
µϕx

2ka
B
′
0∫

rA

rX

̺d̺

p
(b)
0
(̺, τ) , (14b)

B
(a)
1
= −A(a)

1
ln rP , (14c)

B
(b)
1
=
µϕa

2ka
B
′
0∫

rA

rP

1

r̃∫
r̃

rA

̺d̺

p
(a)
0
(̺, τ) dr̃ +A(a)1

ln
rA

rP
. (14d)

With (11)–(14) the combined solution (6) can be written as

p(r, τ) ∼ pwell(τ)
¿ÁÁÀ1 + f0(r)

p2
well
(τ) + ǫ p′well(τ)f1(r, τ)/

¿ÁÁÀ1 + f0(r)
p2
well
(τ) +O (ǫ2) , (15)

demonstrating that to leading order the boundary forcing function pwell(τ) unequivocally dictates the
temporal evolution throughout the domain: at any chosen value of r the pressure p

2(r, τ) will be a mere
shift of p2well(τ). Figure 3 exemplifies this result for both a linear ramp and sinusoidal well pressure variation.
This behaviour is solely a consequence of the no flux condition (9b) that renders a cascade of potentially
τ -dependent functions constant. When (15) holds, the well operator has full control over the pressure
distribution in the system via the suction imposed.

More complicated circumstances, for instance, a Neumann condition with a non-zero flux or a Dirichlet
condition on p, constant or otherwise, begets a non-trivial coupling that results in a replacement of the
function f0(r) in (15) by a function of both r and τ similar to f1(r, τ). Both problems are solved in appendix
A with generic time dependent boundary conditions p(rP , τ) = pwell(τ) and p(rX , τ) = pX (τ). The latter is
useful, for instance, when the barometric pressure fluctuates.
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pwell

pmax

r

p

Fig. 4 Example of similarity effect in the pressure profile p(r, τ) under a slow variation regime with linear forcing pwell(τ)
for flux (left) and pressure (right) condition on the outer boundary for τ = 0.75: ǫ = 0.1, t = 7.5 (green/grey); ǫ = 0.005,
t = 150 (dashed black). ka = 1e − 04m2, kx = 1e − 08m2, all other parameters listed in table 1.

3.1 Similarity with respect to τ

At times in asymptotic analysis the small parameter ǫ might have a physical meaning without the necessity
to specify an explicit value for it. A prominent example is the derivation of weakly non-linear amplitude
equations near a bifurcation point of a dynamical system, such as the Ginzburg-Landau equation. The
proximity to the bifurcation point is cast into a small asymptotic scale, but the exact measure whereby
the bifurcation point is exceeded, is immaterial. By contrast, in this problem ǫ corresponds to a parameter,
whose value has an immediate bearing on the solution. The definitions of the asymptotically small parameter
ǫ = 1/tfail and slow time scale τ = ǫt imply that if both ǫ and t were to be mapped ǫ z→ ǫ/α and t z→ αt

for any positive constant α ∼ O(1), τ would remain the same. Therefore at the limit ǫÐ→ 0+ the solutions
p(r, τ) corresponding to the choices {ǫ, t} and {ǫ/α,αt} must be identical for arbitrary functions pwell(τ)
and pX (τ). Such an ability to unify distinct solutions via an invariant compound containing one or more
independent variables is known as similarity or affinity.1 When ǫ is small, but finite, the quantitative
accuracy of this identity is an indication of the robustness of the asymptotic solution akin to the rapidity
of convergence of the asymptotic expansion. Figure 4 illustrates this phenomenon for basic boundary
conditions and a premeditated extreme choice of parameters: a difference of four orders of magnitude in
layer permeability and at least one in t and ǫ. Observe that when pressure is prescribed on the outer circle
(Dirichlet condition), the curves are indistinguishable, whilst for a prescribed velocity (vanishing or not,
Neumann condition) a minor discrepancy is evident. Lesser disparity in any of the foregoing parameters
improves the agreement. Non-linear forcing yielded a match of a comparable quality and is not shown.

The soundness of the similarity effect with arbitrary pX (τ) was confirmed in a simulation of a possible
fluctuation of the barometric pressure in conjunction with (4b). For instance, if during a passing weather
front the pressure drops from patm +∆pbar to patm −∆pbar over a period of time equal to tfail/2, pX (τ)

1 In geometry and especially fractal geometry different definitions of dimensional measures for the geometric object in
question led to a conceptual distinction between the two (Mandelbrot, 1985; Lakhtakia et al., 1986), however in the context
of dynamical systems similarity is only one instance in a whole family of affine transformations. In this study two separate
similarity mechanisms arise: one involves the slow time scale τ and pertains to the robustness of the asymptotic solution;
the other appears as part of the reduction of the partial differential equation to an ordinary one in §4 and will be referred
to as an affinity transformation to avoid confusion.
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τfail

τfail 2τfail

pbase

1

patm +∆pbar

patm −∆pbar

τ

p

Fig. 5 Pressure history p(r, τ) under a slow variation regime with asynchronous linear variation on both boundaries:
pwell(τ) (solid black), r = rA (dashed green/grey, edge of layer a, visually indistinguishable from pwell(τ)), r = (rA +rX )/2
(solid green/grey, centre of layer b) and r = rX (dashed black, edge of layer b). ǫ = 0.05, ka = 1e − 04m2, kx = 1e − 08m2, all
other parameters listed in table 1.

might be expressed as

pX (τ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
patm +∆pbar − 4∆pbar

t

tfail
0 ⩽ t ⩽ tfail/2

patm −∆pbar t ⩾ tfail/2.
(16)

Figure 5 depicts the resulting temporal dependence of pressure at the points of import in the domain: due to
the asynchronous variation imposed on the boundaries the progression of profiles from the well outwards is
no longer monotonic, cf. figure 3. Nevertheless the quality of agreement of the pressure profiles throughout
the domain for a fixed τ comprising distinct pairs of t and ǫ, is as outstanding as shown in the right panel
of figure 4 for constant pX . The agreement is equally good for a sinusoidal non-linearity sin(πt/(4tfail))
with an appropriate amplitude. The connection with the convergence of the asymptotic series is explored
below.

3.2 Asymptotic solution: error analysis

The quality of the foregoing asymptotic solution is underpinned by two unrelated elements. One is directly
related to the asymptotic construction: for series (6) to hold and converge sufficiently quickly, the appli-
cation must indeed comply with the assumption of a slowly varying boundary condition. Whilst (4) easily
conforms to this requirement throughout most of the specified time intervals, very close to the initial point
t = 0 and the reversal point t = tfail in (4b) and (4c), the following problem arises. Before t = τ = 0 the
system is at a steady state, i.e. ∂tp ≡ ∂τp ≡ 0. Immediately after t = 0 the linear slope ∂τp is finite for
any value of ǫ > 0 (including at the limit ǫ Ð→ 0+). As a result ∂τp has the form of the Heaviside step
function. In (4b) and (4c) the same abrupt change of slope occurs when the emergency blower engages. In a
numerical solution this discontinuity would require a non-uniform adjustment of the time step to maintain
a prescribed accuracy. In the asymptotic solution the non-uniformity appears in the error, since ǫ is fixed.

The second element impacting the asymptotic solution’s ability to capture the true solution correctly is
the permeability disparity between the two porous laminae. Gravel to waste permeability ratio is known to
span one to four orders of magnitude. Similar disparity characterises pervious to semi-impervious ground
types. The higher the ratio, the steeper the pressure gradient and slope jump at the contiguity circle, as is
gleaned from (12b) and (3b).
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Fig. 6 Asymptotic solution maximal error as defined by (6) under a slow variation regime with a sealed outer boundary:
δ1 = p−p0 ∼ O(ǫ) and δ2 = p−p0 − ǫ p1 ∼ O (ǫ2) (green/grey and black respectively) with linear (left) and sinusoidal (right)

forcing. ǫ = 0.005, ka = 1e − 04m2, kx = 1e − 08m2, all other parameters listed in table 1.
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Fig. 7 Asymptotic solution maximal log error as defined by (6) under a slow variation regime with a sealed outer boundary:
δ1 = p−p0 ∼ O(ǫ) and δ2 = p−p0 − ǫ p1 ∼ O (ǫ2) (green/grey and black respectively) with linear (left) and sinusoidal (right)

forcing. ǫ = 0.005, ka = 1e − 04m2, kx = 1e − 08m2 (diamonds) and kx = 1e − 06m2 (crosses), all other parameters listed in
table 1.

The two effects are closely interwoven. With a sufficiently small ǫ and moderate permeability ratio,
the error that the abrupt change in the derivative ∂τp is responsible for decays quickly in time. With an
impervious outer boundary and the time variation imposed on the well boundary, the maximal error is
obtained at the outer circumference of the domain. Figure 6 depicts a typical maximal error with ǫ = 0.005
and ka/kx = 104 for linear and sinusoidal pwell(τ). Whilst both have a Heaviside step-like shape near t = 0,
with the latter both the first and second order errors are smooth at tfail. Consistent with the phenomenon
of similarity discussed above, the error diminishes whenever similarity improves, and under favourable
conditions (such as moderate permeability disparity) reduces to the numerical solution scheme error.

The error magnitude increases with ǫ: up to ǫ = 0.1 it grows proportionately in absolute value, uniformly
in time, and maintains the qualitative behaviour shown in figure 6, however for ǫ > 0.1 the convergence
of (6) might require additional terms for proper error control. The error diminishes when the disparity
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in ka/kx is reduced, approximately one order of magnitude per one order of magnitude of the ratio. An
example is shown in figure 7 on a logarithmic scale. For extreme (and rarely encountered in real landfills)
ratios ka/kx > 104 the error deteriorates without the use of higher order terms. In most practical situations
with tfail ⩾ 1sec two terms of the asymptotic expansion will give a maximal error on the order of O (10−5)
or better, i.e. the dimensional pressure variable will be determined to the accuracy of 1Pa or less, never
exceeding the tolerance attained by digital instrumentation of professional grade.

4 Fast variation regime

When the temporal variation of the induced outlet vacuum is abrupt, the response throughout the domain
becomes strongly non-linear and can no longer be captured via an asymptotic solution. Realistic scenarios
might include a power failure (4a) as well as power spikes (4b) and (4c). Mathematically the parameter
tfail in (4) is taken very small, i.e. tfail = ǫ ≪ 1. The corresponding fast time scale is τ = t/ǫ, rendering the
integration of equation (2b) formally stiff.

The left-hand side of equation (2b) is the polar version of the classical non-linear diffusion operator
∂t −∆( ⋅ )γ that is fundamental in porous media flow (Barenblatt et al., 1990). Within each landfill layer
appropriate scaling of the independent variables t and r in (2b) results in a parameter free form

∂p

∂τ
− 1

̺

∂

∂̺

⎛⎝̺p∂p∂̺⎞⎠ = 0, τ =
t

ϕ
, ̺ =

r√
µ/k , C = 0 (17a)

or

∂p

∂τ
− 1

̺

∂

∂̺

⎛⎝̺p∂p∂̺⎞⎠ = 1, τ =
t

ϕC
, ̺ =

r√
µC/k , C ≠ 0. (17b)

The homogeneous part of (17) is the one-dimensional polar form of what is known as the porous medium
equation or non-linear diffusion equation employed in numerous dispersion problems in a variety of appli-
cations involving fluids other than a weakly compressible ideal gas and going as far back as the early 1960s
(King, 1988, and references therein). The Cartesian form of (17a) has seen extensive theoretical work in the
context of renormalisation group and affinity transformation specifically for porous media flow (Barenblatt,
1996). Simplistic dimensional analysis implies the existence of an affinity solution p(ξ) with ξ = r

2/t. The
classical framework interweaves two assumptions: the sought solution is a function of compact support,
and the boundary conditions are chosen so as to allow the usage of the affinity variable ξ (Volpert et al.,
2018). Equation (17a) has a number of easily constructed exact solutions:

pex(̺, τ) = ̺
2

8(τo − τ) , pex(̺, τ) = (τo
τ
)1/2 − ̺

2

8τ
. (18)

Both are reminiscent of an affinity solution (the former is equivalent to one due to the translational
invariance in τ , whereas the latter does not qualify), and neither satisfies the required boundary conditions,
the degree of freedom τo notwithstanding. The Cartesian version ∂τp − 1

2
∂
2
̺p

2
= 0 possesses closely related

solutions with slightly adjusted constants and additional two wave-like solutions pex(̺, τ) = τ ±̺. Equation
(17b) does not admit affinity solutions of this kind due to the inhomogeneous right-hand side or possess
any exact solutions to the authors’ knowledge. The purpose of this section is to outline when the reduction
to an ordinary differential equation via an affinity variable might be attained in the current problem, and
discuss the reasons that the corresponding parametric space is limited.

Lamina a is narrow relative to the main matrix layer b and is in place to support the well. Therefore even
when the boundary condition on the well varies abruptly (yet continuously), the pressure within lamina
a responds in the same way as in the slow regime. In other words, to disrupt the asymptotic solution in
lamina a alone the temporal variation must for all intents and purposes be a step discontinuity. By contrast,
the response within layer b is characterised by significant reaction time that increases with the permeability
ratio ka/kx. Figure 8 illustrates the expected delay in pressure adjustment at r = (rA + rX ) /2 (centre of
layer b) for ka/kx = 104.
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kx = 1e − 08m2, all other parameters listed in table 1.

In the current problem (17a) holds within lamina a. Albeit formally (17b) is qualitatively distinct from
(17a), the contribution of the inhomogeneity to the pressure profile induced by a properly functioning well
is small (Nec and Huculak, 2019). Realistic situations, where this is not so, are usually a result of incorrect
design in conjunction with little control over the content or structure of the porous medium, and can be
classified as follows in the order of ascending rarity: impervious outer boundary; strong outward (positive)
flux on the outer boundary; layer b permeability significantly exceeding that of layer a (several orders of
magnitude). Therefore one might expect that the inherent affinity variable of (17a) would be useful upon
setting C = 0 throughout as an approximation to a realistic landfill with a partly permeable boundary
and moderate negative flux thereon. In sparging wells the generation rate is by definition zero. In natural
gas extraction the approximation is relevant where no significant active generation takes place, i.e. the
well only induces fluid flow similarly to the sparging well, but in the reverse direction. Such a reduction
of the partial differential equation (2b) could be potentially valuable, as the resulting ordinary differential
equation must be solved only once, therefore its solution could be stored and evaluated as needed at any
desired r and t values. In other words, neglecting the contribution of a non-zero generation rate for the sake
of a pre-computed solution readily available to designers and field operators unequipped to solve partial
differential equations might be well justified.

The qualitative disparity between (2b) and the ostensibly similar dispersion problems of the type solved
in Volpert et al. (2018) is trifold. One, herein the domain is fixed and r > 0, whereas conventionally the fluid
concentration is non-zero over an ever growing domain encompassing the origin, albeit the support of the
radial profile function remains compact at all times. Two, in the well problem the physical interpretation
of the sought pressure distribution function p is such that it can never approach zero. And three, (2b)
comes with a discontinuity in the permeability parameter k and porosity ϕ that must remain even if one
is willing to neglect the generation rate in layer b, thereby eliminating the discontinuity in C. From a
technical vantage point, it is necessary to solve (17a) in two adjacent domains and match the solutions so
as to create a C

0 function over the combined domain subject to the continuity conditions (3). This can
only be accomplished with an iterative procedure as detailed below.

Observe that the classical affinity variable ξ = r
2/t might fail to support a boundary condition with

r > 0 at t = 0. Thus the derivation hereinafter was done for ζ = (r2/t)β , where the arbitrary power β might
be negative. Of course, the final solution must be identical for all viable values of β, and this feature was
used to confirm the correctness of the implemented algorithm. Moreover, in certain instances using β ≠ 1
aided with the implicit integration stiffness described in §3.2. As long as ǫ is not taken extremely small
and the instant of the discontinuity in ∂τp is avoided, the stiffness is manageable, permitting the use of the
built-in Octave function ode45 with an absolute tolerance of 10−6 and an adaptive time step (GNU Octave,
2021). Setting C = 0 in (2b) and converting to an ordinary differential equation in ζ in any of the domain
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regime with linear forcing pwell(τ) for low (left, ka/kx = 10) and moderate (right, ka/kx = 100) lamina permeability ratio.
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parameters listed in table 1.

annuli with fixed values of k and ϕ yields

αp
′ + β

ζ1/β
(ζpp′)′ = 0, α =

ϕµ

4k
, (19)

wherein primes denote differentiation with respect to ζ. The exact solution pex(ζ) = −α
2
ζ
1/β is not physical

(since p cannot be negative) and due to the non-linearity of (19) is not helpful in the reduction of order.
Defining y1 = p and y2 = ζp

′,

( y1
y2
)′ = ⎛⎜⎜⎝

y2/ζ
− 1

y1

⎛⎝αβ y2ζ
1/β−1 + y

2

2

ζ

⎞⎠
⎞⎟⎟⎠ . (20a)

This first order non-linear ordinary differential system was solved iteratively in Octave in the domain[ζP , ζX ] created via the definition of ζ from the two-dimensional domain [rP , rX ]×[tfail/40, 10tfail], where
the partial differential equation was solved. This interval was chosen so as to avoid undue proximity to t = 0,
where the solution coincides with the steady state – a lesson learnt from the slow variation regime, and to
cover the extent where the non-linearity effect was fully visible before the new steady state was attained.
At each iteration an integration was performed over the segment [ζP , ζA] with the initial condition

y1 (ζP) = p (rP , τ) (20b)

conforming to (4a) and y2 (ζP) given an initial guess, followed by a second integration over the segment[ζA, ζX ] with the initial conditions

y1 (ζ+A) = y1 (ζ−A) , y2 (ζ+A) = ka

kx
y2 (ζ−A) (20c)

that convert (3) to the ζ domain for any fixed value of t. The ensuing value y1 (ζX ) was used to modify
y2 (ζP) until convergence, i.e. y1 (ζX ) = p (rX , τ) up to a predefined tolerance of 10−6. Octave built-in
function fsolve was used to implement the iterative procedure.

Figure 9 compares the resulting pressure profiles to a full numerical solution. The deviation exemplified
for moderate permeability disparity between the two laminae deteriorates further for higher ratios ka/kx.
Therefore the reduction of the partial differential equation (2b) to the affinity equation (19) is not valid in
that part of the parameter space.
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5 Conclusion

The weakly compressible flow through a porous medium is governed by a unique partial differential equation
solvable as linear in p

2 when the flow is steady, but becoming non-linear when a temporal dependence is
involved. Applications such as landfill gas, natural gas or sparging wells might have their steady operation
disrupted by a pump failure or influenced by recurring fluctuations of the atmospheric pressure and water
table. The response might be a one way transition to a new equilibrium or an ongoing evolution, where
the steady state is never approached. Both types of response might be quasi-equilibrial or fast varying.

In the quasi-steady regime the pressure distribution throughout the domain has sufficient time to adjust
to the temporal variation at a boundary, endowing the system with an asymptotic solution. Whilst any time
dependent system will possess such a regime, the non-trivial question is how extensive a parameter space
supports it. Juxtaposition of the results of a full numerical simulation and the asymptotics revealed that in
this problem the relevant parameter space encompasses all feasible values of both the intrinsic porous matrix
properties and the well’s functional specifications controlled by the operators. The associated error is well
beneath the desirable threshold set by the resolution of commonly available instrumentation for a wide range
of imposed suction strength values as well as four orders of magnitude in lamina permeability disparity.
Furthermore, the formally small parameter ǫ in practice can approach unity before the accuracy of the
asymptotic solution with only a single correction term deteriorates. The variation induced on the boundary
might be any non-linear generic function of time and prescribe either pressure (Dirichlet condition) or flux
(Neumann condition). Such a wide domain of validity is rare in practical problems, rendering the value
of the asymptotic solution very high: without advanced algorithms solving partial differential equations
well designers and field operators can predict the pressure distribution in the porous matrix in response to
various disruptions or fluctuations in the conditions reigning in the surroundings of the well facility.

In light of the above, although formally this regime must be referred to as slow or quasi-steady, in
reality ǫ ∼ O(1) implies a reaction time of 1 second and should be thought of as adequately spanning the
slow to fast realistic time scale. By comparison, the fast regime is extremely fast: the boundary condition
must attain order of unity change within 0.01 seconds or less, and the response lasts only 0.1 seconds before
the new equilibrium is approached.

The fast response might be obtained by reduction of the partial differential equation to an ordinary
equation via an affinity variable. The ensuing accuracy is adequate for practical usage over a limited part of
the parameter space. Although the affinity reduction itself has been known for many decades in the context
of the partial differential equation in question, the domain, boundary conditions and discontinuous intrinsic
matrix properties of the current problem required a completely new iterative approach. The solution is valid
for low and moderate permeability ratios 1 ⪅ ka/kx ⪅ 100. For higher ratios no simplification of the partial
differential equation is forthcoming.

The asymptotic and affinity solutions are valuable well design and control tools, enabling investigation
of the flow field for a variety of time dependent boundary conditions with the view to determine compliance
with regulations specifying permissible pressure threshold, extracted gas quantity and boundary flux. The
ability to access time dependent pressure profiles within the landfill mass is essential to estimate the
resultant zone of influence and when optimising the energy required to operate the collection system.

Acknowledgement

The authors are grateful to Prof. A.A. Nepomnyashchy for helpful discussions on the evolution of similarity
and affinity concepts.



16 Seth Keenan, Yana Nec

References

Barenblatt GI (1996) Scaling, self-similarity and intermediate asymptotics. Cambridge University Press
Barenblatt GI, Entov VM, Ryzhik VM (1990) Theory of fluid flow through natural rock. Kluwer, Dodrecht
Conestoga-Rovers A (2010) Landfill gas management facilities design guidelines. Tech. rep., British

Columbia Ministry of Environment
Davidson TA (1993) A simple and accurate method for calculating viscosity of gaseous mixtures. Report

of investigations, US Department of the Interior, Bureau of Mines.
Feng SJ, Zheng QT, Xie HJ (2015) A model for gas pressure in layered landfills with horizontal gas collection

systems. Comput Geotech 68:117–127
Feng SJ, Zheng QT, Xie HJ (2017) A gas flow model for layered landfills with vertical extraction wells.

Waste Management 66:101–113
Fulks WB, Guenther RB, Roetman EL (1971) Equations of motion and continuity for fluid flow in a porous

medium. Acta Mechanica 12:121–129
GNU Octave (2021) 6.2.0. https://www.gnu.org/software/octave/index
Halvorsen D, Nec Y, Huculak G (2018) Horizontal landfill gas wells: geometry, physics of flow and connection

with the atmosphere. Phys Chem Earth 113:50–62
Hyman JD, Karra S, Makedonska N, Gable CW, Painter SL, Viswanathan HS (2015) dfnworks: a discrete

fracture network framework for modeling subsurface flow and transport. Comp Geosci 84:10–19
Keenan S, Nec Y, Huculak G (2021) Landfill gas flow: effects of asymmetry. J Solid Waste Tech Management

47(1):188–203
King JR (1988) Approximate solutions to a nonlinear diffusion equation. J Eng Math 22:53–72
Kutsyi DV (2015) Numerical modeling of landfill gas and heat transport in the deformable MSW landfill

body. Part 2. Verification and application of the model. Thermal Engineering 62(7):495–502
Lakhtakia A, Messier R, Varadan VV, Varadan VK (1986) Self-similarity versus self-affinity: the sierpinski

gasket revisited. J Phys A: Math Gen 19:L985
Lundegard PD, LaBrecque D (1995) Air sparging in a sandy aquifer (Florence,Oregon, U.S.A.): actual and

apparent radius of influence. J Contaminant Hydrology 19:1–27
Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Phys Scr 32:257
Nec Y, Huculak G (2019) Landfill gas flow: collection by horizontal wells. Transport in Porous Media

130(3):769–797
PDE Solutions Inc. (2016) Flexpde 7. http://www.pdesolutions.com
Volpert VA, Nepomnyashchy AA, Kanevsky Y (2018) Drug diffusion in a swollen polymer. SIAM J Appl

Math 78(1):124–144
Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transport in Porous

Media 1:3–25
Wise WR, Townsend TG (2011) One-dimensional gas flow models for municipal solid waste landfills:

cylindrical and spherical symmetries. J Environ Eng 137(6):514–516
Young A (1989) Mathematical modeling of landfill gas extraction. J Environ Eng 115(6):1073–1087

Declarations

Funding The support of Canada Foundation for Innovation grant # 35174 as well as Thompson Rivers
University Undergraduate Research Apprenticeship programme is gratefully acknowledged.

Conflict of interest The authors declare no conflict of interest.

Availability of data and material Not applicable.

Code availability Not applicable.



Asymptotic analysis of unsteady ideal gas flow through layered porous media 17

Appendix A. Slow variation regime: permeable outermost boundary

Replacing (5b) by a Dirichlet condition with a pressure function pX (τ) ∼ O(1) on the outermost circumference, (9b)
becomes

p0(rX , τ) = pX (τ), pi(rX , τ) = 0 ∀ i ⩾ 1. (A1a)
Combining this with (9a) and (10a), the leading order solutions are given by (11) with

A
(a)
0
(τ) =

⎧⎪⎪⎨⎪⎪⎩
p2X (τ) − p2well

(τ) + µCb

kx

⎛
⎝
1

2
(r2X − r2A) + r2A ln

rA

rX

⎞
⎠
⎫⎪⎪⎬⎪⎪⎭ / ⎧⎪⎪⎨⎪⎪⎩ ln rA

rP
− ka

kx
ln

rA

rB

⎫⎪⎪⎬⎪⎪⎭
,

A
(b)
0
(τ) = ka

kx
A
(a)
0
+ µCb

kx
r2A,

B
(a)
0
(τ) = p2

well
(τ) −A(a)

0
(τ) ln rP ,

B
(b)
0
(τ) = p2X (τ) −A(b)0

(τ) ln rX + µCb

2kx
r2X . (A1b)

These coefficients are identical to those obtained for the steady state bar the notation for the boundary conditions that
herein are time dependent functions, cf. equation (B1) in Appendix B of Nec and Huculak (2019). Note that even if pX
is taken constant, all four coefficients will nonetheless be τ -dependent, thereby precluding the uncoupling attained with a
sealed boundary (15). The underpinning physical reason is the finite permeability of the boundary r = rX , be it due to a
pressure condition or a prescribed flux function, as is seen hereunder. The correction is given by

(p0p1)(a) = µϕa

2ka
∫

r

rP

1

r̃∫
r̃

rA

̺

p
(a)
0
(̺, τ)

⎛
⎝
dA
(a)
0

dτ
lnρ + dB

(a)
0

dτ

⎞
⎠d̺dr̃ +A

(a)
1
(τ) ln r +B(a)

1
(τ),

(p0p1)(b) = µϕx

2kx
∫

r

rX

1

r̃∫
r̃

rA

̺

p
(b)
0
(̺, τ)

⎛
⎝
dA
(b)
0

dτ
lnρ + dB

(b)
0

dτ

⎞
⎠d̺dr̃ +A

(b)
1
(τ) ln r +B(b)

1
(τ) (A1c)

with the coefficients satisfying the following linear system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ka 0 −kx 0

ln rP 1 0 0

0 0 ln rX 1

ln rA 1 − ln rA −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
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⎝
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(b)
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⎞
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⎝
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, (A1d)

where

I = µϕx
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̺
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⎝
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(A1e)

When wishing to prescribe a non-zero velocity value on the outermost boundary uX (τ) = −kx
µ

∂p

∂r

RRRRRRRRRRR(rX ,τ)

instead of (5b),

(9b) becomes

−kx
µ

∂p0

∂r

RRRRRRRRRRR(rX ,τ)

= uX (τ), ∂pi

∂r

RRRRRRRRRRR(rX ,τ)

= 0 ∀ i ⩾ 1. (A2a)

Applying the first condition above and (9a) to (11b) and (11a) respectively, in conjunction with (10a) yields

⎛
⎝
A
(b)
0

rX
− µCb

kx
rX
⎞
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= 4⎛⎝
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⎝ ln
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⎞
⎠ + p

2
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kx

⎛
⎝
1

2
(r2A − r2X ) − kx

ka
r2A ln

rA

rP

⎞
⎠
⎫⎪⎪⎬⎪⎪⎭
. (A2b)

This is a quadratics in A
(b)
0
(τ), whose two solutions correspond to ∣uX (τ)∣, with one to be chosen based on the desired

sign of uX (τ). With that

A
(a)
0
(τ) = kx

ka
A
(b)
0
(τ) − µCb

ka
r2A, (A2c)

B
(a)
0
(τ) = p2

well
(τ) −A(a)

0
(τ) ln rP , (A2d)
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allowing to construct (11a). Then

B
(b)
0
(τ) = p(a)

0

2(rA, τ) −A(b)0
(τ) ln rA + µCb

2kx
r2A. (A2e)

The correction equations will follow (13) and (14):

(p0p1)(a) = µϕa

2ka
∫

r

rP

1

r̃∫
r̃

rA

̺

p
(a)
0
(̺, τ)

⎛
⎝
dA
(a)
0

dτ
lnρ + dB

(a)
0

dτ

⎞
⎠d̺dr̃ +A

(a)
1
(τ) ln r +B(a)

1
(τ),

(p0p1)(b) = µϕx

2kx
∫

r

rA

1

r̃∫
r̃

rX

̺

p
(b)
0
(̺, τ)

⎛
⎝
dA
(b)
0

dτ
lnρ + dB

(b)
0

dτ

⎞
⎠d̺dr̃ +A

(b)
1
(τ) ln r +B(b)

1
(τ) (A2f)

with
A
(b)
1
= 0,

A
(a)
1
= µϕx

2ka
∫

rA

rX

̺

p
(b)
0
(̺, τ)

⎛
⎝
dA
(b)
0

dτ
lnρ + dB

(b)
0

dτ

⎞
⎠d̺,

B
(a)
1
= −A(a)

1
ln rP ,

B
(b)
1
= µϕa

2ka
∫

rA

rP

1

r̃∫
r̃

rA

̺

p
(a)
0
(̺, τ)

⎛
⎝
dA
(a)
0

dτ
lnρ + dB

(a)
0

dτ

⎞
⎠d̺dr̃ +A

(a)
1

ln
rA

rP
. (A2g)

In (A2f) the time derivatives of A
(a)
0
(τ), B(a)

0
(τ) and B

(b)
0
(τ) are obtained directly from (A2c)–(A2e). The time derivative

of A
(b)
0
(τ) follows by the differentiation of (A2b).


