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Abstract Collection of landfill gas by horizontal perforated wells is studied. The problem combines flow through porous

media in the landfill and unobstructed pipe flow in the well. Respective analytical solutions to flow equations are used in

an iterative numerical procedure to solve the coupled system. Realistic landfill input parameters confirm the feasibility of

estimates obtained with the model. The study identifies flow control parameters and furnishes tools to evaluate surface flux

and radius of influence for this type of well.
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1 Background

Landfill gas is generated by an anaerobic degradation of compacted waste and comprises a mixture of CH4, CO2, O2 and

N2. Although regimes of flow through a solid matrix can be broadly catalogued for instance by Reynolds number (Fand

et al., 1987), additional complications might arise, consult e.g. Lage et al. (1997) and references therein. For landfill gas the

thermodynamic and flow conditions involve no excessive pressure or temperature, and low Reynolds and Mach numbers.

Hence it is possible to use the ideal gas equation of state

p = ρRT, R = Ro /∑
i

xi Mi, (1)

where p, ρ and T denote static pressure, fluid density and temperature respectively. Ro is the universal gas constant, and xi,

Mi stand for component molar fractions and weights.

Historically landfill construction developed with scarce research in the field of flow theory. The main concerns were

centred around gas generation by various types of waste, efficient extraction, safety of operation and environmental aspects.

Comprehensive literature exists on leachate and contaminants, however surprisingly few studies address the flow of landfill

gas itself. A numerical solution was obtained for a one-dimensional flow to a passive vertical vent (Chen et al., 2003), and

a well with dynamic extraction using two-dimensional geometry (Yu et al., 2009), referencing a small number of analogous

studies. Two recent contributions analysed a configuration of multiple wells, vertical and horizontal (Feng et al., 2015,

2017). All foregoing works use an extensive number of input parameters. In practice the consequence is twofold: one, it is
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difficult to predict what impact a change in one parameter would have on the solution; and two, distinct sets of parameters

might result in very close solutions. In conjunction with the high uncertainty of the physical properties of the waste matrix,

such an underdetermined system can easily fit field data, nevertheless failing to provide a design engineer or operator with

practical means of understanding and controlling gas collection. In the current contribution the flow toward and within a

horizontal well is solved with a minimal number of parameters, explicating several control related phenomena experienced

in the field: (A) poor or no response of the mass collected to variation in the induced sub-atmospheric outlet pressure; (B)

failure to collect the expected mass despite application of sufficient suction strength even for the type of waste generating

large quantities of gas; (C) air infiltration and overextraction.

Horizontal wells collect gas through apertures along their entire length, thereby being conceptually distinct from the

traditional vertical wells. A landfill utilising horizontal well collection is constructed as follows. In the centre, at a selected

depth, a perforated pipe is placed, surrounded by gravel. Gas generating waste extends radially from this core that acts as

a filter, preventing clogging of collection apertures. A low permeability cover layer or a sealing membrane might be added.

The layers around the well form the flow domain with each layer a sub-domain or lamina. Sub-atmospheric pressure is

imposed at the pipe outlet, the other end blocked. Figure 1 shows schematics and notation detail.

Permeability as a characteristic of a porous medium has attracted substantial interest, from experimental estimates and to

the theory of interaction between the fluid and medium geometry. A thorough classification of concepts underpinning fluid

passage through a stationary structure is given in the introductory part of Panda and Lake (1994), and a relation is derived

linking the permeability k to the attributes of porosity 0 < φ < 1 and tortuosity τ > 0, known as the Kozeny-Carman equation:

k =
φ 3r2

?

18τ(1−φ)2 , (2a)

where r? denotes the radius of an equivalent spherical particle, related to the matrix hydraulic radius by

rH = φr?/(3(1−φ)). (2b)

The main part of that work connects the permeability to the probability density function of the particle size in a non-uniform

porous matrix. A conceptually distinct study employs the theory of fractals to arrive at a generalised relation that includes

(2a) as well as numerous variants as special cases (Henderson et al., 2010). References within give an overview of the

numerous modifications the original notion of Carman (Carman, 1937) has seen over time.

Flow through porous media is an actively studied subject. What renders few contributions in this field applicable to

landfill gas flow is the unpredictability of the matrix properties. Thus only the most generic studies can help make adequate

decisions on the choice of governing equations or conditions. Allan et al. (2008) analysed a three layer medium, with

only the middle layer being of finite dimensions. Albeit the equations were more complicated, Forchheimer and Brinkman

equations – Darcy’s law with a non-linear term and a correction for media grains that are porous themselves respectively,

the laminar flow regime, continuity conditions and main non-dimensional parameters, Reynolds and Darcy numbers, are

pertinent. Modelling a fully realistic landfill gas flow is encumbered both by medium anisotropy and a fluid that combines

gas and liquid in the form of leachate. Generic studies on multi-scale permeability and multi-phase flow might furnish a

good starting point for future modelling, cf. Nakshatrala et al. (2018) and Bahloul et al. (2005), as well as references therein.

However before such advanced modelling is attempted, it is imperative to understand the basic flow of gas through a domain

comprising all relevant landfill layers. In light of the above in equation (2a) all parameters are regarded as effective quantities

to be evaluated through experience or reliable sources of industry data within each sub-domain.

2 Governing equations

The continuity equation balances a source C and the mass of fluid flowing through a control volume, whose storage ability

is limited by 0 < φ < 1 (Fulks et al., 1971):

∂

∂ t
(φρ)+∇⋅(ρu) =C, (3a)

∇⋅(ρu) = 1

r

∂

∂ r
(rρu)+ 1

r

∂

∂θ
(ρv)+ ∂

∂ℓ
(ρw), (3b)
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Fig. 1 Flow geometry. Side view (A): perforated pipe imbedded within media of distinct permeability. The perforated cross-sections are indexed
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marks the angle, where tangent B to circle of radius rB intersects circle of radius rS . Dimensions not to scale.
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where u, v and w are the radial, azimuthal and longitudinal fluid velocities respectively, u = (u, v, w)T being the velocity

vector in polar coordinates x = (r,θ ,ℓ) with the angle θ measured positive counter-clockwise from the horizontal through

the pipe centre. C is the volumetric generation rate.

For a flow in a porous medium the conservation of momentum is given by Darcy’s law, in the absence of gravity reading

(Whitaker, 1986):

u = − ¯̄K

µ
∇p. (4a)

Generally the entries ki j in the tensor ¯̄K are permeability values for flow in direction i under pressure gradient imposed in

direction j. The viscosity µ of a mix of ideal gases is computed as in Davidson (1993). In polar coordinates

∇p =
⎛
⎝

∂ p

∂ r
,

1

r

∂ p

∂θ
,

∂ p

∂ℓ

⎞
⎠

T

. (4b)

For an isotropic medium ¯̄K reduces to a scalar permeability k, distinct for each sub-domain and regarded as an effective

value in the presence of anisotropy. Combining (3), (4) and (1) for a steady axisymmetric flow gives

1

r

∂

∂ r

⎛
⎝r

∂

∂ r
p

2⎞⎠+
∂ 2

∂ℓ2
p

2
= −2µ

k
RTC. (5)

All fluid and medium properties, including the generation rate C, are taken constant to allow for a deterministic solution to

be tested with feasible ranges of parameters that otherwise can only be modelled probabilistically. The assumption of axial

symmetry is essential to obtain an analytical solution.

The flow through the landfill’s porous layers is coupled to a weakly compressible flow in the well. Since at each perfo-

rated section gas is coming in, some flow parameters are segment specific. Without loss of generality assign the index i = 0

to the outlet section and let segment i lie between sections i−1 and i for any i = {1, . . . ,N} as in figure 1. Designating the

mass flow rate in segment i by ṁi and the friction coefficient by fi, the well pressure obeys the following equation (Nec and

Huculak, 2017):

d p

dℓ
=

fi p

4rP /⎛⎝1− π2r4
P p2

ṁ2
i RT

⎞
⎠. (6a)

Here rP is the pipe radius, and the Darcy friction coefficient fi is obtained from the Colebrook equation (Colebrook, 1939)

1√
fi

= −2log10( ε

3.7
+ 2.51

Rei

√
fi

) , (6b)

where Rei is the Reynolds number in segment i and ε stands for the non-dimensional roughness of the pipe inner surface,

both based on the pipe diameter. Integration of (6a) over segment i delimited by the points ℓi−1 and ℓi gives

4rP

fi

ln
pi−1

pi

− 2π2r5
P

fiṁ
2
i RT
(p

2
i−1− p

2
i ) = ℓi−ℓi−1. (6c)

Additional technical detail may be found in Nec and Huculak (2017).

2.1 Combined system

The partial differential equation (5) is coupled with the system of n non-linear transcendental equations (6c) through both

the influx ∆ ṁi and pressure pi at the perforated sections. The open domain for the landfill flow in the (r,ℓ) plane is

Ω = (rP , rX )× (0, L), where L is the total length of the well. The outer radius rX equals either rB or rS , depending on

whether the cover is impervious, constituting a boundary, or permeable, forming a third porous lamina. Equation (5) must

be solved in Ω , comprising hollow contiguous cylinders with concomitant permeabilities k. The generation rate C vanishes

in the gravel and cover laminae PA and BS, {(r,ℓ)∣rP ⩽ r ⩽ rA, rB ⩽ r ⩽ rS}. The boundary conditions on the closure ∂Ω

are set hereinafter for the different cases. On all inner surfaces of contiguity between media of distinct properties continuity

of pressure and velocity must hold.
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2.1.1 Quasi-one-dimensional formulation

One possibility is to construct a quasi-one-dimensional solution based on a purely radial flow within each plane correspond-

ing to a perforated cross-section. The validity of this approach requires a twofold substantiation. The first point is to show

that a planar description is a good approximation, representing the apertures as axisymmetric slits of equivalent area and

sufficiently narrow width. Taking nh holes of radius rh sufficiently small relative to rP for the hole to be assumed circular,

the width of the required slit δ satisfies

δ

rP
=

nh

2

⎛
⎝

rh

rP

⎞
⎠

2

≪ 1, (7)

so indeed the representation is planar. The second point is to show that changes in the longitudinal direction within the

landfill are small. The mapping rz→ rPr′, ℓz→ Lℓ′, r′ and ℓ′ being non-dimensional radius and length, casts equation (5)

into the form

1

r′
∂

∂ r′

⎛
⎝r
′ ∂

∂ r′
p

2⎞⎠+
⎛
⎝

rP

L

⎞
⎠

2

∂ 2

∂ℓ′2
p

2
= −2µ

k
RTCr

2
P . (8)

The ratio rP/L is extremely small. Even if the representative radial dimension was chosen as the depth rX rather than

rP , this quantity would still be very small. Therefore the longitudinal term in equation (5) is much smaller than the radial

term, longitudinal changes are small, and a quasi-one-dimensional representation is reasonable. As regards the numerical

implementation, estimates (7) and (8) allow to reduce the landfill to a set of thin generating slices of width δ/rP located at

longitudinal coordinates ℓi, i = {1, . . . ,N}. The slice aligned with the perforated section ℓi is responsible for collection of gas

generated in the segment ℓi−1 < ℓ < ℓi.

With longitudinal variation neglected, (5) takes the form

1

r

d

dr

⎛
⎝r

d

dr
p

2⎞⎠ = −
2µ

k(r)RTC(r), (9a)

k(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ka rP < r < rA
kb rA < r < rB
ks rB < r < rS

, C(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 rP < r < rA
Cb rA < r < rB
0 rB < r < rS

. (9b)

Here ka, kb and ks are permeabilities of laminae PA, AB and BS respectively, and Cb denotes the effective generation rate

within AB. At the contiguity surface r = rA and if applicable also at r = rB continuity of pressure and velocity must hold.

Denoting the relevant radii by rI and permeabilities of respective laminae below and above by k− and k+,

p(r−I) = p(r+I), k− p
′(r−I) = k+ p

′(r+I). (9c)

Equation (9a) must be solved for each plane aligned with a perforated section with the following boundary conditions. At

the outer boundary rX , rX ∈ {rB,rS},
p(rX ) = pX or u(rX ) = 0. (9d)

In the case p(rX )= pX the prescribed value pX is either the barometric pressure or a slightly sub-atmospheric value expected

under the cover. The case u(rX ) = 0 represents a situation where an impervious membrane is installed. At the well boundary

p(rP) = pi, i = {0, . . . ,N}, (9e)

where p0 is a given outlet pressure. The values pi for 1 ⩽ i ⩽ N are related through (6c) and can only be computed consecu-

tively from the well outlet. Conservation of mass must hold at each perforated section. Denoting by ∆ ṁi the mass incoming

at section i,

ṁi−1 = ṁi+∆ ṁi−1, i = {2, . . . ,N}. (9f)

Thus an initial guess for the mass flow m1 must be made and system (9) solved iteratively, so at the last flowing segment

ṁN = ∆ ṁN . (9g)

System (9) forms the closed mathematical problem for the quasi-one-dimensional case.



6 Yana Nec, Greg Huculak

2.1.2 Two-dimensional formulation

Retaining the longitudinal variation, equation

1

r

∂

∂ r

⎛
⎝r

∂

∂ r
p

2⎞⎠+
∂ 2

∂ℓ2
p

2
= − 2µ

k(r)RTC(r), (r,ℓ) ∈Ω (10a)

must be solved with k(r) and C(r) as in (9b). Conditions (9c) and (9d) remain, formally written for all ℓ ∈ [0,L] as

p(r−I ,ℓ) = p(r+I ,ℓ), k−
∂ p

∂ r

RRRRRRRRRRR(r−
I
,ℓ)

= k+
∂ p

∂ r

RRRRRRRRRRR(r+
I
,ℓ)

, (10b)

p(rX ,ℓ) = pX or u(rX ,ℓ) = 0. (10c)

Condition (9e) becomes

p(rP ,ℓ) = pin(ℓ), (10d)

where pin(ℓ) is the pressure within the well, varying continuously in accord with (6a). Thus conceptually this formulation

does not require a reduction of the landfill domain into thin slices. Notwithstanding, due to the inevitable discretisation

of the function pin(ℓ) in the numerical implementation, the two-dimensional and quasi-one-dimensional formulations are

equivalent in this respect. Additional conditions for this case are

w(r,L) = 0, r ∈ [rP ,rX ], (10e)

i.e. no horizontal flux across the plane ℓ = L, corresponding to the end of the well, and finally at the outlet

p(r,0) = pout(r), r ∈ [rP ,rX ], (10f)

where pout(r) must be consistent with the other boundary conditions, namely satisfy pout(rP) = pin(0) = p0 and either

pout(rX ) = pX or p′out(rX ) = 0 by (10c). Relations (9f) and (9g) complete the system for the two-dimensional case.

System (10) must be solved iteratively, however in contrast to (9) the initial guess must encompass the entire well length,

e.g. mass flow rates ṁi within all segments to yield pin(ℓ) by (6a). With this as a tentative boundary condition, (10a) is solved

for p(r,ℓ), whose radial derivative is then evaluated at (rP ,ℓi), giving influx ∆ ṁi and thence ṁi by (9f) and (9g), serving to

adjust the initial guess until convergence.

In summary, (9) and (10) are non-linear differential-algebraic systems, qualitatively modelling a multi-layer landfill coupled

to a horizontal well. Conservation of mass and continuity of pressure across the perforated pipe surface underpin the coupling

mechanism between the two flow fields in the implementation of the iterative scheme. For consistence with the assumption

of axial symmetry the apertures are regarded as thin slits of equivalent area. Head losses due to ingress into the pipe are not

modelled, but might be represented through the effective permeability of the gravel layer.

Hereinafter systems (9) and (10) are solved subject to boundary conditions reflecting possible operational configura-

tions with the aim to formulate flow control strategies. Fitting field data, accuracy of prediction and full parameter space

investigation are outside of the scope of this study.

3 Analytical solution for landfill flow

The iterative solution of the landfill-well coupled systems (9) and (10) requires the pressure profiles within a single landfill

cross-section by equations (9a) and (10a) respectively. These are obtained analytically as follows.



Landfill gas flow: collection by horizontal wells 7

3.1 Radial flow

The mathematical problem (9a) – (9d) comprises four cases: the outermost domain radius is rX ∈ {rB,rS}, where either

pressure value or zero velocity is imposed. Within any one lamina, i.e. with constant k and C, (9a) is solved as

p
2
= − µ

2k
RTCr

2+a
(0)

lnr+b
(0)

, (11)

where a(0) and b(0) are integration constants, determined from (9b) – (9d) by a linear system, whose size is twice the number

of laminae in Ω , here either four (rX = rB) or six (rX = rS ). The solutions are instructive from the aspects detailed below,

whilst the expressions for a(0) and b(0) are given in appendix B due to cumbersomeness.

The boundary condition p(rB) = pB is pertinent to two situations. One, the landfill is uncovered and pB equals the

barometric pressure. Two, a permeable cover is in place, but the desired solution domain excludes it. Then pB is chosen

slightly sub-atmospheric. At first glance such an arrangement might appear peculiar, however it is not without merit. It

allows the operator to test the response to variation in outlet pressure p0 over a range of medium permeabilities and ensuing

head loss across each lamina and along the well. All this is possible even if the generation rate Cb is set to zero, which

permits faster convergence of the quasi-one-dimensional iterative solution, as well as spares the need to supply one more

input parameter.

If Cb = 0, the case p(rB) = pB yields a reasonable approximation to the situation of moderate to low generation. The

radial pressure profile is then square root logarithmic. If Cb > 0, the profile involves a parabola as an additive term to the

logarithm, no longer monotonic for a combination of high generation and insufficient outlet suction, with pressure mounting

to above atmospheric within the landfill.

Cases u(rB) = 0 and u(rS) = 0 can be unified, since the pressure is uniform within the cover lamina and equals the

pressure attained at the point r = rB, where the radial velocity vanishes. Both cases result in a stagnant landfill if Cb = 0.

Purely radial flow is the only setting, where mass is conserved across confocal circles. With longitudinal coupling no

such conservation holds, axial symmetry notwithstanding.

3.2 Radial-longitudinal flow

System (10) is solved by separation of variables in conjunction with a non-homogeneous term

p
2
= − µ

2k
RTCr

2+P(r)A(ℓ), (12)

the functions P(r) and A(ℓ) to be found from (10a). Condition (10e) implies A′(L) = 0, and from (10f) follows that A(0) = 1.

The generalisation of (11) is then

p
2
= − µ

2k
RTCr

2+a
(0)

lnr+b
(0)+ ∞∑

n=1

cos ℓ̃ (a(n)I0(r̃)+b
(n)

K0(r̃)), (13a)

wherein Iν and Kν are modified Bessel functions of order ν of first and second kinds respectively, and

ℓ̃ = λnℓ, r̃ = λnr, λn = πn/L. (13b)

The coefficients a(n) and b(n) are determined by (10b) – (10d) for each lamina with concomitant k and C given by (9b). The

solutions to the linear system ensuing require identities satisfied by Bessel functions (Gradshteyn and Ryzhik, 2007) and

are given in appendix C for n ⩾ 1. For n = 0 they are identical to those in the quasi-one-dimensional solution upon mapping

p2
i z→

1

L
∫ L

0
p

2
in(ℓ)dℓ, arising when imposing (10d) instead of the discrete (9e), and thus need not be restated.

The terms preceding the sum in (13a) coincide in form with the one-dimensional solution (11). Since the sequences a(n)

and b(n) must diminish in magnitude with sufficient rapidity as nÐ→∞ for the series to be convergent, the foregoing terms

are also expected to give the leading order in magnitude. This was ascertained with realistic data (appendix A). Thus the

importance of the quasi-one-dimensional solution reaches beyond a mere simplification. Moreover, it constitutes a valuable

initial guess for a proper convergence of the iterative solution of the two-dimensional problem.
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For the cases p(rX ,ℓ) = pX the infinite series manifests a rapid convergence. As few as 15 terms suffice for all practical

purposes. For the solutions presented in §4 a verification of convergence was performed with the number of terms doubled,

always yielding graphically indistinguishable results. For the cases u(rX ) = 0 the series convergence is sensitive to input

parameters, albeit each term satisfies the vanishing velocity boundary condition independently. Using this solution is prac-

ticable only if Cb is large enough. With the value used throughout in §4 convergence was attained with the same number of

terms as for the pressure boundary condition.

4 Numerical solution

The devised iterative scheme combined the analytical solutions in §3 with the non-linear pressure dependence within the

well (6c) and the closure equation (9g) to solve the coupled systems (9) and (10). This section illustrates the flow field in the

landfill and well interior. A set of parameters common to all examples is listed in appendix A. All quantities are characteristic

of medium sized landfills and have been verified to give robust results, to wit moderate deviations in these values effect no

qualitative change in the solution. Pressure values shown without a reference point are relative to atmospheric. In the iterative

solution of system (9) the convergence tolerance was 10−7 for the relative error (∆ ṁN − ṁN)/∆ ṁN , cf. equation (9g). For

system (10) same tolerance was used for the relative error on the second norm of the function pin(ℓ) computed at successive

iterations j and j+1: ∣∣p( j+1)
in
(ℓ)− p

( j)
in
(ℓ)∣∣/∣∣p( j)

in
(ℓ)∣∣.

4.1 Effect of boundary conditions

Figure 2 gives a typical solution of the combined flow field for a condition of the type p(rB) = pB, applicable when a

permeable cover was excluded from the formal solution domain. The outlet suction was chosen so as to span the entire

physical range of qualitatively distinct solutions: with pout = −1.25kPa landfill gas will accumulate if a cover is in place

or escape in the absence thereof, whereas with pout = −2.5kPa overextraction will occur or air will be drawn in. At both

extremities the quasi-one-dimensional and two-dimensional solutions are visually indistinguishable. The Reynolds number

(equivalent to flow rate) varies virtually linearly along the well, as confirmed by an almost uniform intake of fluid throughout

its length. Observe the response to variation in outlet pressure: a suction of a double magnitude resulted in a close to double

gas collection. The response of the pressure gradient along the well is non-linear, of course. The pressure profile in the

landfill domain shows that most of the head present at each perforation dissipates within the gravel layer. For r > rA the

solution is virtually constant and thus not shown.

Figure 3 depicts the solution for a condition of the type u(rB) = 0, suitable for a sealed cover. The radial variation

of pressure in the landfill is more gradual, cf. the gradients over the gravel layer with those in figure 2. The quasi-one-

dimensional and two-dimensional solutions are close, but not fully in agreement. Outlet suction has virtually no impact on

the head loss and flow rate within the well. Therefore with an impervious cover the amount of gas collected is determined

solely by the effective permeability properties. The inability to control the flow rate by induction of a stronger suction at the

outlet has baffled field operators, and this phenomenon is predicted here. Nevertheless an adequate suction will be required

to maintain a slightly sub-atmospheric pressure throughout in order to prevent landfill gas accumulation or escape around

the cover edges, even if the same amount of gas might be collected with a much weaker outlet suction.

In light of the above, the outermost surface boundary condition is related to the controllability of flow rate and collected

mass of gas. Albeit the uppermost part of the waste lamina is virtually stagnant for both p(rB,ℓ) = pB and u(rB,ℓ) = 0, the

conceptual distinction remains: when pressure is prescribed, the radial velocity, howsoever small, mathematically does not

vanish, whilst with zero velocity imposed, the pressure varies longitudinally and thus cannot be tuned to match barometric.

Varying the suction strength permits to control the amount of gas collected in the former case, but proves ineffectual in the

latter. The quasi-one-dimensional and two-dimensional solutions give nearly identical results. When a minor difference is

visible in flow properties local to the perforated sections, the impact on cumulative quantities is negligible. In all results

discussed hereunder solutions to (9) and (10) were indistinguishable with only the former shown.

4.2 Effects of permeability ratio

The nominal set of parameters (appendix A) corresponds to a loosely packed refuse, i.e. the permeability of the waste

lamina exceeds that of the gravel. Figure 4 compares that solution, kb/ka ≈ 30, with the case of closely compacted waste,
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Fig. 2 Quasi-one-dimensional and two-dimensional solutions (systems (9) and (10) respectively): pressure variation in the well (A); respective

Reynolds number (B); aperture influx (C); radial pressure profiles in the landfill (D) for outlet and last flowing cross-sections (rightmost, ℓ = 0, and

leftmost, ℓ = L, curves of identical style respectively). Boundary condition p(rB) = −0.125kPa. All other parameters listed in appendix A.

so that kb/ka ≈ 0.3. It is evident a more compact packing would require the exertion of a stronger outlet suction to extract

the same amount of gas. In this unequivocal setting this is an intuitive result. In practice, however, a medium of a smaller

permeability often consists of waste such as organic matter, expected to generate more gas, and notwithstanding, the mass

collected appears unreasonably low. The salient physical reason is seen in the landfill pressure profile: because the ratio

kb/ka is small, the head available at the well apertures dissipates more gradually, attaining a super-atmospheric pressure

before attenuation towards the prescribed boundary value. This is an indication of gas accumulation that needs to be resolved

either by a stronger outlet suction, or as is shown below, by a higher perforation density. Here quasi-one-dimensional and

two-dimensional solutions were identical. The solution with u(rB) = 0 is qualitatively similar and not shown.

4.3 Cover lamina

Condition p(rS) = pS incorporates a third lamina as part of the formal solution domain. Most often the cover consists of

fine particle soil with permeability ks smaller than that of both inner laminae. Figure 5 confirms that the presence of a cover

will require a stronger outlet suction to maintain sub-atmospheric pressure throughout the landfill, since an additional lamina

always entails further flow resistance, definitely so if ks < ka,kb.

When solving without a cover, the condition is prescribed at the outermost surface of the waste lamina r = rB, where it is

desirable that p(rB) be slightly below the barometric pressure pbar. With the cover an integral part of the solution domain,

pbar is set at the surface r = rS . If it was possible to guess p(rB) rather than estimate it, the two solutions would coincide

for all r ⩽ rB. Moreover, it will be possible to obtain the solution in rB < r ⩽ rS by extension as in §5. However in practice

landfill covers are at times removed to add more refuse or allow for pipework repair, the landfill in fact operating without a
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Fig. 3 Quasi-one-dimensional and two-dimensional solutions (systems (9) and (10) respectively; where indistinguishable, dominant style shown):

pressure variation in the well (A); respective Reynolds number (B); aperture influx (C); radial pressure profiles in the landfill (D) for outlet and

last flowing cross-sections (rightmost, ℓ = 0, and leftmost, ℓ = L, curves of identical style respectively). Boundary condition u(rB) = 0. All other

parameters listed in appendix A.

cover for a fair span of time. Therefore it is useful to compare flow controllability in these two situations, whose solutions

are not a mathematical extension of one another.

4.4 Perforation distribution

Figure 6 depicts the solution for the nominal and double number of perforated sections, with and without halving the number

of holes in each. Within the framework of the current analysis losses due to ingress mixing are not modelled. Hence when

the total intake area remains constant, the differences are small in the interior well flow (dashed and dotted curves) and

stem from changes in the length of uninterrupted pipe flow between apertures due to the non-linearity of (6c). By contrast,

simply doubling the number of perforated sections markedly increases the amount of gas collected, in this instance by a

factor of about 1.75, but as expected, at the expense of some head losses, more than a twofold total head loss in the well, cf.

pressure and Reynolds number. From the solid and dotted curves in the aperture influx panel, figure 6(C), the mass drawn

in is notably smaller throughout the well’s length, albeit the intake area at each cross-section remains fixed. The respective

effect in the landfill is minor, however an interesting phenomenon emerges near the uppermost boundary: a higher value of N

is conducive of diminution of the radial velocity, figure 6(E). Thus if the outlet suction required to maintain sub-atmospheric

pressure and hence negative radial velocity in the landfill cannot be attained, increasing the number of perforated sections is

a viable alternative mechanism to control surface flux.
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Fig. 4 Solution of system (9) for closely and loosely compacted waste: pressure variation in the well (A); respective Reynolds number (B); aperture

influx (C); radial pressure profiles in the landfill (D) for outlet and last flowing cross-sections (rightmost, ℓ= 0, and leftmost, ℓ= L, curves of identical

style respectively). Outlet pressure pout = −1.25kPa. Boundary condition p(rB) = −0.125kPa. All other parameters listed in appendix A.

5 Surface flux

The solutions in §3, valid within the axisymmetric domain considered, can be extended to estimate flux across the horizontal

surface above the landfill. Such an extension requires caution, as the geometry is no longer axisymmetric. Parameter regimes,

where the extension applicability deteriorates, are identified hereunder.

The flux through a superficial rectangle [−ℓx,ℓx]× [0,L] (consult figure 1) is given by the integral

ṁs =∫ L

0
∫ ℓx

−ℓx

ρucosϑ dxdℓ = 2∫ L

0
∫ rx

rX

ρu
rX drdℓ√

r2− r2
X

, (14a)

where ucosϑ is the vertical component of the radial velocity u, the angle ϑ measured from the vertical, cosϑ = rX /r and

r2
x = r2

X + ℓ2
x . Combining with (1), (4a) and (13a), wherein C vanishes, as all gas must be collected from the formal domain

Ω (albeit Cb does figure in expressions for various coefficients), yields

ṁs = −∫ L

0

k

µRT ∫
rx

rX

⎧⎪⎪⎨⎪⎪⎩
a(0)

r
+ ∞∑

n=1

λn(a(n)I1(r̃)−b
(n)

K1(r̃))cos ℓ̃

⎫⎪⎪⎬⎪⎪⎭
rX drdℓ√

r2− r2
X

. (14b)

For Darcy’s law to be conceptually applicable, ṁs is interpreted as flux immediately beneath the surface. The constants a(0),

a(n) and b(n), as well as k, must conform to the respective laminae as the radial integration path crosses the domain. To

evaluate the integral one must know what fluid traverses the surface and in which direction. When the pressure at the pipe

outlet is not low enough, landfill gas will escape to the atmosphere. When the suction is too strong, air will permeate the
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Fig. 5 Solution of system (9) for two and three lamina domains: pressure variation in the well (A); respective Reynolds number (B); aperture influx

(C); radial pressure profiles in the landfill (D) for outlet and last flowing cross-sections (rightmost, ℓ = 0, and leftmost, ℓ = L, curves of identical

style respectively, visually coincident for two laminae). Respective boundary conditions p(rS) = pbar and p(rB) = −0.125kPa. Outlet pressure

pout = −1.25kPa. All other parameters listed in appendix A.

uppermost lamina. Between these extremities air ingress will be observed close to the outlet, whilst landfill gas will escape

further upstream, thereby rendering the fluid properties µ , R and T dependent on the integration variable ℓ, to be determined

by the sign of the radial velocity at the top surface: (+) for gas escaping and (−) for air drawn in. If no change of sign

occurs, computing the integral dℓ first reveals the sum contributes no flux. Then the remaining integral dr is computed by

changing the integration variable to ϕ via cosϕ = rX /r, yielding

ṁs = −kx ax L

µRT
arctan

ℓx

rX
, (15)

where kx and ax are the permeability of the outermost lamina in the extended domain and respective logarithmic constant

a(0). The parameters µ , R and T must match the fluid actually traversing the surface.

If the radial velocity does change sign, the length ℓ∗ such that u(r,ℓ∗) = 0 must be found, and the integration interval

[0,L] divided into [0,ℓ∗] and [ℓ∗,L], wherein the fluid properties are fixed. No practical simplification ensues in these

circumstances, as the integrals

∫ rx/rX

1

I1(λnrX r)√
r2−1

dr and ∫ rx/rX

1

K1(λnrX r)√
r2−1

dr

cannot be expressed in terms of standard mathematical functions, and ṁs was computed numerically by (14b).
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Fig. 6 Solution of system (9) for different perforation configurations: pressure variation in the well (A); respective Reynolds number (B); aperture

influx (C); radial pressure profiles in the landfill (D) for outlet and last flowing cross-sections (rightmost, ℓ = 0, and leftmost, ℓ = L, curves of

identical style respectively, coincident for invariant intake area N nh = 56); radial velocity at the uppermost landfill surface (E). Outlet pressure

pout = −1.25kPa. Boundary condition p(rB) = −0.125kPa. All other parameters listed in appendix A.

5.1 Solution extension

In order to extend (13a) for r > rX , C is set to zero, and continuity of both pressure and velocity across the surface r = rX

is imposed, yielding a system of linear equations for coefficients a
(n)
x and b

(n)
x , n ⩾ 0. The system doubles in size if the

radial path intersects a second discontinuity surface (compare cases ϑ ≷ ϑcr in figure 1). Closed form expressions, given in

appendix D, are instructive from the aspect of qualitative prediction of the parameter regime, where the extension becomes
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Fig. 7 Impact of outlet suction strength: line flux (A) and respective radial pressure profiles in the landfill (B) for two lamina domain. Boundary

condition p(rB) = −0.125kPa. The set of curves with the gap in the centre was obtained when the cover was incorporated for flux computation only

(see text). All other parameters listed in appendix A.



Landfill gas flow: collection by horizontal wells 15

inapplicable. One case concerns geometry: ℓx/rB≫ 1 or ℓx/rS ≫ 1, emphasising that with a solution valid in a finite domain

one cannot attain an accurate extrapolation very far from that domain. The second case is related to medium properties:

ks/kb≪ 1, implying that a nearly impervious cover is better modelled as sealed.

Boundary conditions p(rB) = pB or p(rS) = pS with ϑ < ϑcr require one seam point. For expositional purposes it is

convenient to define line flux, cf. equation (14a), as an integral over the i−th well segment (in the longitudinal direction

only):

ṁ
(i)
line
(x) =

ℓi

∫
ℓi−1

ρucosϑ dℓ, 1 ⩽ i ⩽ N. (16)

Figure 7 depicts the flux and pressure profiles for the cases of adequate, threshold and insufficient extraction pressure,

comparing the outlet and last flowing well segments. The flux was computed to the horizontal distance of 5 times the landfill

depth, i.e. ℓx = 5rB, showing only the central part x ∈ (−rB,rB) for clarity. With an adequate outlet suction (solid black

and green/grey curves) the flux is negative for all well segments (figure 7(A)), the pressure profiles ascend monotonically

for 0 < r < rB (figure 7(B)), and if continued, indicate sub-atmospheric pressure over a fivefold distance away (not shown).

Observe that the rate of head loss is always more rapid close to the well outlet, therefore for r < rB the pressure at the outlet

is always lower, whereas for r > rB the opposite holds. The profiles for all well segments 1 < i < N lie between the curves

shown in their respective order with no intersections. At some distance r/rB > 1 the pressure profiles will cross the barometric

pressure line p = 0. These intersections will be monotonically ordered by well segment. The shortest distance will belong

to the outlet profile and define the radius of influence for this configuration. The line flux curves are ordered similarly and

never intersect. Thus this figure allows to define the well radius of influence rI as the distance, where either radial velocity

or line flux exceeds a small negative threshold: rI =min{r ∣ −u(r;ℓ) < uth} or rI =min{x ∣ − ṁline(x;ℓ) < ṁth}, with uth > 0

and ṁth > 0 being the desired thresholds, the minimum taken over all perforated cross-sections.

The dashed curves illustrate a borderline case, where as head is lost upstream from the pipe outlet, the flux becomes

positive, i.e. landfill gas flows outwards. The radial pressure profile of the last flowing segment (dashed green/grey curve)

manifests a shallow maximum and at the distance r/rB ≈ 1.5 is just under the boundary value p(rB). Between the two dashed

flux curves there exists a point along the well, past which the radial velocity crosses into the positive region, to wit landfill

gas will flow outwards. Thus to obtain a valid radius of influence the definitions above must be supplemented by a caveat the

radial velocity remain negative along the well length: whilst rI must be estimated at the outlet, the estimate is valid only if at

all upstream sections gas flows inwards (normally the end of the well will give the upper bound).

The dotted curves correspond to a dysfunctional configuration, where proper extraction fails even at the outlet. The

pressure profiles have two intersection points with the line p = pB, one conforming to the boundary r = rB as imposed, the

other occurring within the waste lamina. In between the pressure exceeds the prescribed boundary value, attesting to gas

accumulation. At the maximum of the pressure profile the radial velocity changes sign and all fluid beyond that point moves

outwards, as evidenced by the flux curves.

For all three cases a second set of curves is given, where the cover was incorporated for flux computation only. Math-

ematically this is possible only for ϑ > ϑcr (the radial ray to the surface cannot be shorter than the outermost cover radius,

limiting the horizontal distance to a positive value), hence the small gaps in the centre. Since these are easily interpolated,

their existence is not detrimental in any way. Such an extension supplies an estimate of the mass expected to escape when

a landfill cover is frequently removed and replaced. The case of a full solution for three sub-domains with the condition

p(rS) = pS and ϑ ≶ ϑcr lends itself to a qualitatively similar analysis, cf. figure 11 in appendix E.

The extrema of all flux curves are located above the well. With an adequate suction it seems obvious the negative mini-

mum would be located at the smallest possible distance to the well. Counter-intuitively, the location of the positive maximum

is identical. Both extrema concur because within the framework of the axisymmetric model the velocity is proportional to

the radial pressure gradient (cf. equation (4a)), highest where the suction is strongest. When no suction is applied, the sur-

face flux would be uniform throughout. Therefore it stands to reason that in the proximity of the well even with deficient

collection no localised gas escape at a rate in excess of the observed further away should ensue. The shape of the flux curves

obtained with the axisymmetric solution is generic, and as shown hereinafter, can be reproduced numerically in other types

of domains, as long as an adequate suction is exerted. Past the critical value thereof the shape of the flux curve is unphysical,

however the area underneath might be used as an estimate of the total mass escaping.

As head is lost upstream along the well, the minimum becomes shallower, juxtapose, for instance, solid black and

green/grey flux curves. Negative flux of landfill gas entails undesirable air ingress into the landfill and is strongest near

the outlet. This is not a trivial result due to two conflicting influences. The mass drawn in is proportional to the product
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Fig. 8 Flow geometry for finite element solution: pipe and annular gravel lamina imbedded within a rectangular waste layer.

p∣∇p∣. Air flow in the porous laminae obeys the same momentum equation (4a), whereby the velocity magnitude diminishes

monotonically away from the outlet, whilst the pressure increases. The dominance of the imposed pressure gradient over

head loss along the well is confirmed below for domains with no axial symmetry. Therefore only a reduction of suction

strength will diminish the influx of air, possibly at the expense of smaller well radius of influence.

5.2 Comparison to finite elements solution

To compare the foregoing results with a setting unencumbered by the assumption of axial symmetry, equation (3) with (4a)

was solved in one cross-section on an unstructured triangular, dynamically refined mesh in the finite element solver FlexPDE

(PDE Solutions Inc., 2016) with a prescribed relative error in p (non-dimensionalised by pB) of 10−5. Figure 8 shows the

domain considered – the pipe and annular gravel lamina imbedded within a rectangular waste layer. The origin is at the

centre of the pipe. Define the components of the velocity vector (u,v)T to be the horizontal and vertical fluid velocities. The

function p(x,y) denotes the pressure. The boundary conditions simulated a landfill with an impermeable membrane lining

three sides (standard practice to prevent leachate outflow) and a surface open to the atmosphere:

u(x,y) = 0 on ∣x∣ = ℓx, ∣y∣ ⩽ rB,

v(x,y) = 0 on y = −rB, ∣x∣ ⩽ ℓx,

p(x,y) = pB on y = rB, ∣x∣ ⩽ ℓx.

(17)

For compatibility with the axisymmetric solution the generation rate Cb must be scaled by the domain area ratio. Furthermore,

the planarity of the finite element solution implies the flux is per unit length in the longitudinal direction, hence requiring

a scaling by δ , equation (7). These adjustments render the flux order of magnitude comparable, however no quantitative

agreement should be expected.

The first example is a square circumscribing the circle of radius rB

{(x,y) ∣ − rB ⩽ x,y ⩽ rB and x
2+y

2
⩾ r

2
P}, (18a)

geometrically the closest setting to the axisymmetric one. The pressure on the surface immediately above the well, p(0,rB),
coincides with the value p(rB) in the axisymmetric solution. The variation of pressure on the vertical sides and flux across

the top surface are shown in figure 9 for the three values of suction found to be adequate, borderline and insufficient with the
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Fig. 9 Impact of outlet suction strength in a square domain (18a): pressure profiles along vertical sides ∣x∣ = rB (A) and line flux (B). Boundary

condition on the surface p(x,rB) = pB = −0.125kPa. For compatibility with the axisymmetric solution Cb was scaled by generating lamina area

ratio (4r2
B −πr2

A)/(π(r2
B − r2

A)), and flux ṁline was scaled by δ , equation (7). All other parameters listed in appendix A.
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axisymmetric model (figure 7). The flux curves’ sign confirms those findings, albeit the pressure profiles are quite dissimilar

(cf. figure 7) due to the no flux condition. The minima become shallower with diminution of the suction strength, but at no

time morph into maxima.

The second example is a rectangular domain of the width taken for the extension of the axisymmetric solution

{(x,y) ∣ −5rB ⩽ x ⩽ 5rB, −rB ⩽ y ⩽ rB and x
2+y

2
⩾ r

2
P}, (18b)

and boundary conditions as in (17). Figure 10 depicts the pressure profiles at the same horizontal distance ∣x∣ = rB. Because

the no flux boundaries ∣x∣ = 5rB are fairly far away, the profiles are redolent of the axisymmetric ones (figure 7). The flux

curves’ sign indicates air infiltration near the well and landfill gas escape at a certain distance for all three suction values.

The root location bears on the quality of prediction to be anticipated from the axisymmetric model: the dotted and solid

curves, corresponding to the weakest and strongest suction values, just become positive at ∣x∣ ≈ rB and ∣x∣ ≈ 2rB respectively,

i.e. in this case the extension of the axisymmetric solution likely grows unreliable for ℓx ⪆ 2rX . Observe that the escape

rate predicted with the axisymmetric model should be regarded as a low bound for two reasons. One, in a domain with

no axial symmetry the fluid need not traverse an additional expanse of hydrodynamically resistant medium. Two, with the

underground sides impermeable any fluid leaving the domain must do so through the surface, whilst in an axisymmetric

domain the fluid leaves through the entire circumference, some never reaching the surface.

In summary, albeit no realistic landfill flow is faithfully described by an axisymmetric flow field, the model reproduces

basic features of qualitative import: pressure profiles in the porous media under comparable conditions and surface flux for

adequate suction values.

6 Discussion

Collection of landfill gas by a horizontal well was analysed as an axisymmetric flow through a porous medium coupled

to a weakly compressible pipe flow within the well. The study successfully reconstructed realistic extraction, offered an

analytical explanation to three control associated phenomena observed in the field and identified parameter combinations

conducive of their occurrence.

(A) At times the operator is able to control the well flow rate through the outlet suction, whilst at others it proved impos-

sible. The analysis showed that these situations could be expected for partly permeable and sealed cover layers respectively.

More generally, a cover permeability many orders of magnitude smaller than that of the waste lamina will result in a diffi-

culty to use the outlet sub-atmospheric pressure as a control mechanism. Then the aperture spacing becomes the main means

of control available. It is conjectured that the number and azimuthal distribution of apertures within the same perforated

cross-section will not provide effective flow control, since the main head losses occur in the porous medium. Albeit losses

due to entry into the well and mixing exist, they are expected to be secondary by comparison.

(B) For certain types of refuse a high production is expected owing to the abundance of carbon, e.g. when a significant

fraction of the waste is household garbage or organic matter. However at times this expectation was not vindicated in the

field despite a seemingly adequate suction strength. The source of this difficulty lies in a low waste to gravel permeability

ratio due to the ease of initial compacting. The generation rate is indeed high and the gas accumulates in the landfill. The

effective resistance of the landfill must be reduced for proper collection, an end most effectively attained through an increase

in perforation density.

(C) Air infiltration is detrimental to the population of bacteria responsible for waste degradation. The mass drawn in

is proportional to p∣∇p∣, with the pressure and its radial gradient growing monotonically toward opposite ends of the well.

The gradient was shown to be dominant, implying maximal infiltration at the outlet and diminution of suction strength as its

control mechanism. Aperture spacing or area can be used to compensate for lesser landfill gas collection.

For a fixed outlet suction strength the radius of influence of a well is defined as the largest horizontal distance, where

landfill gas will be collected. The current solution framework allows to obtain the radius of influence as the maximal well

depth such that no gas escapes to the atmosphere; obtain the horizontal distance where the efflux of landfill gas and/or influx

of air are within prescribed regulation limits; estimate the required permeability of a cover to prevent interchange of gas with

the atmosphere.

The purpose herein was to model the system with basic flow equations, employing relatively few parameters that a design

engineer can readily estimate. High precision in the values thereof is not imperative and in fact would be meaningless. When

a parameter value is not accessible with certainty, the correct approach would be to obtain solutions for a range of values and

examine the sensitivity ensuing.
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Fig. 10 Impact of outlet suction strength in a rectangular domain (18b): pressure profiles along vertical sides ∣x∣ = rB (A) and line flux (B). Boundary

condition on the surface p(x,rB) = pB = −0.125kPa. For compatibility with the axisymmetric solution Cb was scaled by generating lamina area

ratio (20r2
B −πr2

A)/(π(r2
B − r2

A)), and flux ṁline was scaled by δ , equation (7). All other parameters listed in appendix A.
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In summary, effective resistance to fluid flow in this system stems from two unrelated sources: permeability ratios be-

tween the various medium layers and spacing between perforated cross-sections. A no flux boundary condition is equivalent

to an additional layer of zero permeability and thus infinite ratios for all other layers. In practice layers of very low per-

meability will give rise to phenomena observed with no flux conditions. Educated manipulation of permeability ratios and

aperture density are two reliable control mechanisms, whereas the more intuitive suction strength at times fails to attain the

desired efficacy of collection. In the control of air infiltration a non-uniform perforation density is a feature of interest to be

explored.

The head losses within the landfill were found to be quite small, especially if the waste to gravel layer permeability ratio

is on the characteristic scale of 10. Therefore gravity might be a non-negligible factor in the vertical balance of momentum.

Since breaking the axial symmetry renders the flow equations analytically intractable, a numerical solution of a gravity

inclusive system is a topic of future research.
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Appendix A. Nominal parameters

Table 1 lists the nominal set of parameters used in computations throughout unless noted specifically in pertinent figure captions. All geometric

quantities are from an existing demolition, land clearing and construction (DLC) landfill. Gas composition and temperature are typical directly

measured values. Pipe roughness ε is in accord with the installed pipe material. Equivalent particle radius r? and porosity were derived from

estimated waste fragment size. Gas generation rate Cb was inferred from production values and landfill dimensions. The rightmost column in table

1 gives the ranges for which the iterative schemes’ performance and in particular the convergence of series (13a) satisfied the uniform criteria set

respectively in §4 and §3.2.

parameter symbol value test range

pipe radius rP 0.0762m (3rP/4,2rP)
tortuosity τ 125 (τ/5,10τ)
temperature T 15oC (0,1000)oC

pipe roughness ε 1.5×10−6m (ε/100,1000ε)
hole radius rh 0.00476m (rh/2,2rh)
generation rate Cb 0.004kg/(m3hr) (0,20Cb)
CH4 molar fraction xCH4

0.5 (0,1)

O2 molar fraction xO2
0.01 (0,1)

CO2 molar fraction xCO2
0.4 (0,1)

# of perforated sections N 28 (N/2,2N)
total well length L 420m (L/15,2L)
# of holes per section nh 2 (1,5)

parameter gravel waste cover test

lamina PA laminaAB lamina BS range

thickness h 1m 8m 3m (h/2,3h/2)
porosity φ 0.4 0.6 0.5 (0.2,0.9)

particle radius r? 0.025m 0.05m 0.005m (r?/10,5r?)
Table 1 Parameters common to all examples solved numerically, courtesy of GNH Consulting Ltd. The rightmost column gives the ranges for

which sound numerical solutions were obtained (consult §4 and §3.2 for criteria).

Appendix B. Coefficients for radial flow

For any section i ∈ {0, . . . ,N} (index 0 conforms to the outlet plane and 1 ⩽ i ⩽ N to perforated sections)

case p(rB) = pB ∶
p2 =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p2
i +a
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a ln
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2kb
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ln
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(B1)
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case p(rS) = pS ∶
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cases u(rX ) = 0 ∶
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(B3)

In all foregoing equations subscripts ( ⋅)a, ( ⋅)b and ( ⋅)s correspond to laminae PA, AB and BS respectively (consult figure 1). Cases u(rB) = 0

and u(rS) = 0 were unified in (B3), as by (11) within BS, a lamina with no gas generation, a condition of zero velocity at u(rS) = 0 implies constant

pressure and no flow, so that in fact u = 0 ∀ rB ⩽ r ⩽ rS .

Appendix C. Coefficients for radial-longitudinal flow

For any n ⩾ 1 the coefficients in (13a) are given below. The stretched coordinates (r̃, ℓ̃) defined in (13b) are used with subscripts identical to the

plain coordinates (r, ℓ). For two laminae

a
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b
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With three laminae the solution is given in matrix form, as there is little to be gained by writing out the explicit quite cumbersome formulae:

( a
(n)
a b

(n)
a a

(n)
b

b
(n)
b

a
(n)
s b

(n)
s )T =M−1⎛

⎝ 2

L ∫ L

0

p2
in(ℓ)cos ℓ̃dℓ 0 0 0 0 0

⎞
⎠

T

, (C2)

M= (M1 Z

Z M2
) ,

M1 =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

I0(r̃P) K0(r̃P) 0 0

I0(r̃A) K0(r̃A) −I0(r̃A) −K0(r̃A)

I1(r̃A) ka

kb

−K1(r̃A) ka

kb

−I1(r̃A) K1(r̃A)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

M2 =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 I0(r̃S) K0(r̃S)
−I0(r̃B) −K0(r̃B) I0(r̃B) K0(r̃B)

−I1(r̃B) K1(r̃B) I1(r̃B) ks

kb

−K1(r̃B) ks

kb

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and Z is a 3×2 zero matrix. For the case of vanishing velocity
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the vanishing coefficients applicable if rX = rS .

Appendix D. Coefficients for solution extension

Denoting the external domain with the subscript ( ⋅ )x and demanding continuity of both pressure and velocity across the radius r = rX
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(D1)

yields a system of linear equations, whose solution is
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Since detMX = −1/r̃X ≠ 0, solution (D3) always exists. If k(r−X ) = k(r+X ) and with the generation rate in the outermost lamina of the solution

domain vanishing, i.e. C = 0, the extension coefficients satisfy a
(n)
X = a(n), b

(n)
X = b(n) for any n ⩾ 0. The closed form extension coefficients in two

dimensions ensue by (D1) and are cumbersome, whilst not being particularly instructive. Therefore they are omitted here, notwithstanding being

fully implemented in the computations for all presented examples. Expressions for the quasi-one-dimensional solution, being the leading order

terms, are given for all considered boundary conditions.

Denoting the external domain with the subscript ( ⋅ )x. for the boundary condition p(rB) = pB

p2 = p2
B +ax ln

r

rB
, ax = −2µu(rB)pBrB/kb rB ⩽ r ⩽ rx∣B, (D4)

rB being the sole seam point. With a permeable cover included post-solution two seam points are required. One, when crossing the formal domain at

rB: the generation rate becomes C = 0. Two, when moving along a radial ray, one arrives at the horizontal line B in figure 1, where the permeability

changes. Then

p2 =
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(D5)

The radii rx∣B and rx∣S are the points, where a radial ray intersects the horizontal lines B and S and thus vary with ℓx.

The case p(rS) = pS is conceptually disparate from the extension case (D5) in that the boundary pressure pS is not inferred, but dictated. Here

two possibilities arise. One, ℓx is relatively small, so that the angle created by drawing a radial ray from the pipe centre to the end of the segment ℓx

falls within ϑcr in figure 1. Within that sector one seam point is required. Outside of ϑcr two seam points are necessary:

ϑ < ϑcr p2 = p2
S +ax ln

r

rS
, ax = −2µu(rS)pS rS/ks rS ⩽ r ⩽ rx∣S , (D6)

ϑ ⩾ ϑcr
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(D7)

If the radial velocity at rB vanishes, the surface flux is zero since p = p(rB) when r ⩾ rB .
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Appendix E. Surface flux: three sub-domains
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Fig. 11 Impact of outlet suction strength: line flux for three lamina domain. Centred thick curves correspond to ∣ϑ ∣ < ϑcr. Boundary condition

p(rS) = pbar. All other parameters listed in appendix A.


