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Abstract

When fluid motion is induced through a porous medium, the distance travelled depends on the energy
exerted and overall resistance to flow. Ostensibly intuitive, this concept of reach has proven elusive not only
in delineation, but even mathematical definition. In wells surrounded by a homogeneous medium it is a
circle and thus characterised by a single number referred to as the radius of influence. The simple definition
thereof as the locus of zero radial velocity yields an infinite or severely overestimated result, and tempts
custom modifications to reconcile the estimates with reality. In environmental applications such as aquifer
sparging wells, hydraulic and petroleum wells, natural gas and landfill gas wells, the medium is often highly
heterogeneous. The analysis presented herein shows that the zone of collection or dispersal changes shape
dramatically based on the interrelation of resistance to flow posed by subdomains of distinct permeabilities.
In contrast to the isotropic case, the mere presence of heterogeneity suggests a natural and unambiguous
definition of this zone of interest as a set of separatrices connecting stagnation points in the flow field, and
results in realistic estimates. The variability of its shape is remarkable and relates to the structural diversity
of the parameter space underpinning the flow field. The findings help explain the longstanding problem of
a reliable delimitation of these wells’ reach in practice.

1 Background

When fluid flow is induced within a porous medium via injection or suction, the well’s reach might be loosely
defined as the region of motion in the desired direction – outwards in contaminated aquifer sparging wells
and inwards in extraction wells. To this day fundamental aspects of the wells’ operating principles remain
equivocal: theoretical models match laboratory experiments on small scale substrates of idealised particles
(McCray and Falta, 2005), but perform inadequately when applied to large environmental systems, and wells
continue to be designed based on experience rather than accurate modelling (Houben, 2015). The classical
fluid flow visualisation is via velocity or pressure profiles or contours in either longitudinal or cross-sectional
view. Depending on the cut plane and the industrial application, a concept of the well’s reach might be
defined in a variety of ways. Figure 1 depicts typical examples. The profile in the longitudinal view (left
panel) might represent the surface formed by the body of fluid in response to pumping or a profile of pressure
or velocity when moving radially outwards from the well. The contour in the transversal projection (right
panel) might demarcate the area wherefrom fluid is collected, or be an isocontour of pressure or velocity. In
sparging wells it would correspond to area of dispersal or isocontour of detected concentration of the injected
compounds. In practice the decision on the adequate cut-off for a residual pressure gradient, velocity or
concentration depends on the application and experience with the site.

The desire to create easily tractable mathematical models in the case of environmental porous media
flows has historically resulted in oversimplified and thus impractical descriptions. In hydraulic wells the
planar zone of capture is defined as the transversal cross-section area, where all particle pathlines eventuate
in the well. A group of analytical models uses complex potential to obtain streamlines, avoiding medium
properties altogether and predicting an open-ended zone, i.e. the pathlines originate infinitely far away
(Javandel and Tsang, 1986; Kompani-Zare et al., 2005; Asadi-Aghbolaghi et al., 2011). The concept of
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drawdown complements the zone of capture by looking at the vertical profile of the water surface, but
the exact definition thereof is not straightforward (Pechstein et al., 2016). In petroleum wells the more
common term used is the radius of investigation or radius of disturbance, defined as the area where the
head induced at the well is traceable. Unfortunately, the simplest steady state Darcy flow gives a monotonic
pressure profile, rendering the threshold of traceability subjective. In the field different empirical formulae
are used, including ones that specify when to transition from the flow field predicting an infinite reach to a
more sophisticated description resulting in a finite radius (Kuchuk, 2009; Sobbi and Badakhshan, 1996). A
similar concept exists in gas wells, but with possible distinction between the radius of influence and radius of
investigation (Bresciani et al., 2020). The interest in suitable modifications of these tractable, but unrealistic
flow models has not abated in decades (Podgorney, Jr. and Ritzi, 1997; Xu and van Tonder, 2002; Bakr and
Butler, 2004; Ataie-Ashtiani et al., 2012; Frind and Molson, 2018). This is particularly true in applications
with compressible fluids (Al-Hussainy et al., 1966; Nec and Huculak, 2019; Halvorsen et al., 2019), as low
Reynolds numbers render non-linear momentum transfer models, such as Forchheimer (Whitaker, 1996) or
Brinkman (Brinkman, 1947; Durlofsky and Brady, 1987) equations, unavailing. Varying permeability as
a way to alter transport efficiency has only recently come into focus (Awasthi et al., 2023; Benner et al.,
2002; Hyman et al., 2015; Zhang et al., 2022). In unsteady flow the definition and estimation of the zone of
influence are somewhat easier, albeit still far from trivial (Benner et al., 2002; McCray and Falta, 1996).

Figure 1: Schematic of longitudinal (left) and transversal (right) types of well reach definitions: well and
surrounding substrate bounds (inner and outer cylinder / circle, black); profile or contour (green / grey).

Under steady conditions no unambiguous universal framework exists, although it is indisputable that
finite energy input at the well must result in a finite reach. All aforesaid types of zones of interest are
interrelated, since induced pressure gradient must result in fluid flow. The terms zone of capture and zone

of influence are conventionally applied to visualisation via pathlines and pressure profiles respectively. This
study revisits the concept of the well’s reach and proposes a medium heterogeneity based method applicable
to most types of wells with the aim to establish a theoretical framework that is simple to use, provides realistic
estimates and circumvents the ambiguities entailed by empirical approaches. The methodology commingles
the use of an analytically obtained pressure field and numerically integrated pathlines. The initial concept
was motivated by the problem of landfill gas collection, where the well’s reach is referred to as the zone of
influence, and this terminology is adopted throughout. Nevertheless, the model is generic and applicable to
any flow induced within an unidealised porous medium, and the reader should interpret the results regarding
the zone of interest accordingly.
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2 Flow field

A steady mass conservation equation in a porous medium is identical to that of a continuum flow of fluid of
density ρ and velocity u subject to bulk generation rate C (Fulks et al., 1971):

∇ ⋅ (ρu) = C. (1a)

The momentum transfer is governed by Darcy’s law (Whitaker, 1986):

u = − 1
µ

¯̄K∇p, (1b)

where µ and p denote fluid viscosity and pressure respectively, and ¯̄K is the permeability tensor. Measure-
ments in vertical wells indicate the zone of influence is depth dependent (Agarwal et al., 2005; Lundegard
and LaBrecque, 1995). In horizontal wells it similarly varies longitudinally due to head loss upstream from
the outlet (Nec and Huculak, 2019). The mainstay concept of the solution construction to be demonstrated
is reliant on an azimuthal variability of the medium properties. Therefore the analysis focusses on a planar
transversal cross-section, be the well horizontal or vertical, and the gravity potential was not included in
(1b). Since any well’s primary purpose is to induce radial transport, it is convenient to use the polar coor-
dinates (r, θ). This choice does not imply the domain must be circular, and the solutions constructed below
might be extended to a domain of an arbitrary shape. Then u = (u, v)T with u and v denoting the radial
and azimuthal velocity components, and the permeability tensor is given by

¯̄K = ( kr 0
0 kθ

) (1c)

with kr and kθ standing for effective values in the respective directions. The theory introduced infra is
easily generalised to a tridimensional space, but would require setting boundary conditions in the longi-
tudinal direction z, which differ between applications. The associated numerical implementation and flow
visualisation, however, are beyond the ambit of this study.

If the fluid is incompressible, the density ρ is constant. In the case of gas flow an equation of state relates
p and ρ. In most large scale geophysical and environmental systems the thermodynamic conditions allow for
the use of the ideal gas equation of state

p = ρRT, (1d)

where R is the specific gas constant and T – temperature. Combine (1) into a single equation in the fluid
pressure p:

∂

∂r

⎛⎝krr ∂p
γ

∂r

⎞⎠ + 1

r

∂

∂θ

⎛⎝kθ ∂p
γ

∂θ

⎞⎠ = −C̃r, (2a)

C̃ = γ̃C, γ̃ = { γµ/ρ γ = 1
γµRT γ = 2,

(2b)

where γ = 1 and γ = 2 correspond to the incompressible and compressible cases respectively. Introduce
dimensionless quantities by mapping ¯̄K z→ r2x

¯̄K, p z→ psp and C̃ z→ pγs C̃ with rx and ps standing for
characteristic length and pressure scales. Herein rx was taken to be the computational domain radius and
ps – standard atmospheric pressure. Equation (2a) arises in numerous problems in physics and engineering
outside of the field of porous media flows with the non-linearity parameter γ attaining a range of values,
including negative and fractional. For a recent comprehensive review the reader is referred to (Awasthi et al.,
2023). Hereunder the tilde in C̃ is omitted for simplicity.

An axially symmetric solution of (2a) is given by

pγ = − C

4kr
r2 + a ln r + b (3)
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with a and b integration constants. Note that the assumption of axial symmetry automatically implies a
medium that is both homogeneous and isotropic. Solution (3) was derived for γ = 2 in (Wise and Townsend,
2011), but the generalisation to an arbitrary γ is immediate. The point of velocity reversal is the root of
∂rp = 0 and yields the radius of influence as

r⊚ =
√
2kra/C . (4)

In landfill gas wells a > 0 and C > 0 with the pressure increasing monotonically whilst r < r⊚, and thenceforth
the fluid flows outwards and pressure diminishes. In sparging wells a < 0 and C < 0 since the remediating
reaction removes the injected compounds, and flow trends are reversed. In both cases ∣C ∣≪ 1, implying that
r⊚ ≫ 1 and entailing a gross overestimation that renders this simple model unusable in practice (Lundegard
and LaBrecque, 1995; Vigneault et al., 2004). In natural gas wells if the fluid is generated within the medium
it flows through, the situation is identical to that of landfill gas flow. If the fluid traverses a non-generating
substrate on its way to the well, C = 0, the pressure profile is monotonic throughout and r⊚ = ∞. This
also applies to incompressible fluids such as water and petroleum. The technical question is how a varies
as C Ð→ 0. It will be shown hereinafter that the ratio a/C grows infinitely at this limit. The inadequacy
of this description was recognised many decades ago. Attempts to improve the estimates, from early works
targeting a better compressibility description (Al-Hussainy et al., 1966) to amendments to the definition
of the radius of influence itself (Bresciani et al., 2020) are collectively unconvincing in the sense that no
overarching approach was found to be sufficiently robust to encompass all applications governed by (2a). A
common practical method is to define a cut-off threshold of small ∂rp (zone of influence), or one of ∣u∣, ∣∣u∣∣
or ∣u∣/∣∣u∣∣ (zone of capture). Not only is the threshold magnitude a site specific and often subjective choice,
even more telling is the fact that the residual physical quantity itself is not unequivocal.
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Figure 2: Flow domain schematic: indexing of contiguity rays θn and intrinsic porous matrix properties

k(n) = (k(n)r , k
(n)
θ
), C(n), 1 ⩽ n ⩽ N .

Herein an alternative approach is set forth based on the premise of medium heterogeneity and/or
anisotropy. Measurements performed in aquifers and landfills are plagued with inconsistent recorded re-
sults, whose interpretation is further undermined by the ingrained assumption the zone of influence must be
circular (Agarwal et al., 2005; Lee et al., 2016; Lundegard and LaBrecque, 1995; McCray and Falta, 2005;
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Vigneault et al., 2004). A recent analysis shows that the mathematical system governing the flow through
a heterogeneous porous medium is subject to certain structural singularities that in practice translate to
inconsistent behaviour (Nec, 2021). When the medium contains small subdomains of disparate permeability,
the likelihood of stumbling close to such a singularity is tangible, especially when changes in water table
level and ambient conditions occur where the substrate is prone to saturation, or when fissures open pref-
erential directions of flow, be it natural (Gingras et al., 2022; Hyman et al., 2015) or introduced artificially
by methods such as hydraulic fracturing. The current study proposes an unambiguous definition of the zone
of influence that takes into account the spatial variability of the medium properties and provides robust
realistic estimates. The findings comprehensively explain the difficulties encountered in practice to delineate
the zone of influence reliably. With the relaxation of the constraint of axial symmetry its shape ceases being
circular and instead depends on the mosaic of subdomains of distinct permeabilities. The diversity of the
zone’s shape and orientation underscores the crippling limitation harboured by axially symmetric modelling
in the presence of even mild heterogeneity.

In a planar cross-section of the substrate near the well it is possible to designate azimuthally oriented

subdomains with distinct effective permeabilities k(n) = (k(n)r , k
(n)
θ
) and/or generation rates C(n), 1 ⩽ n ⩽ N .

For instance, a preferential direction of flow might be represented by a narrow sector of a higher permeability
(Bradbury and Muldoon, 1994). Figure 2 depicts such a partition. The number of sectors N and their angles
θn are arbitrary, but no attempt should be made to create a continuous variation via either an infinite N

or infinitesimally close θn. The first step is to solve (2a) within each sector via the standard separation of
variables technique:

pγ = A(r)B(θ) − C

4kr
r2, (5a)

resulting in

r2A′′ + rA′ − kr

kθ
α2A = 0, B′′ + α2B = 0, (5b)

where α2 ⩾ 0 is a separation constant. The function B(θ) must be 2π-periodic, yielding α = m, m ∈ N,

and B ∈ span{ sin(mθ), cos(mθ)}, A ∈ span{rm̃, r−m̃} with m̃ = m
√
kr/kθ . The case α = 0 completes the

eigenbasis with B ≡ 1 and A ∈ span{1, ln r}. Then the most general solution within a single sector is given

by

pγn =
C(n)

4k
(n)
r

⎧⎪⎪⎨⎪⎪⎩ − r
2 + b1(n)0 + b2(n)0 ln r+

∞

∑
m=1

⎛⎝rm̃(a1(n)m sin(mθ) + b1(n)m cos(mθ)) + r−m̃(a2(n)m sin(mθ) + b2(n)m cos(mθ))⎞⎠
⎫⎪⎪⎬⎪⎪⎭ (6)

with ai
(n)
m and bi

(n)
m , i = {1,2}, integration constants. The case kr/kθ = 1 was studied in (Nec, 2021). Writing

the factor C(n)/(4k(n)r ) outside of the curly braces is convenient when C(n) ≠ 0. When C(n) = 0, the

generation term vanishes and it is more expedient to drop this factor. Since only the ratio C(n)/k(n)r appears

in (6), define a uniform generation rate C∗ and map k
(n)
r z→ k

(n)
r C∗/C(n). Henceforth C(n) = C∗ and the

asterisk is omitted for simplicity. For p to be a continuous function the equality

pn∣θn= pn+1∣θn , 1 ⩽ n ⩽ N, (7a)

must hold on all contiguity rays θn, where N + 1 maps to 1 due to periodicity. Conservation of mass across
a ray demands that

k
(n)
θ

∂θpn∣
θn
= k
(n+1)
θ

∂θpn+1∣
θn
, 1 ⩽ n ⩽ N, (7b)
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with a similar periodic closure. Equation (7b) is obtained by integrating (2a) in the θ direction along an
infinitesimal arc (θn−ε, θn+ε) straddling a ray θn, taking the limit εÐ→ 0 and using (7a). For m ⩾ 1 arrange

the constants ai
(n)
m and bi

(n)
m (separately for each i) as

c = (ai(1)m bi
(1)
m ⋯ ⋯ ai

(N)
m bi

(N)
m )T. (8a)

Then equations (7) comprise a linear system
Cc = r, (8b)

wherein the matrix C is almost block-bidiagonal

C =

⎛⎜⎜⎜⎜⎜⎝

A1 B1

A2 B2⋱ ⋱
AN−1 BN−1

BN AN

⎞⎟⎟⎟⎟⎟⎠
(8c)

with the block matrices defined by

An = ( sin(mθn) cos(mθn)
cos(mθn) − sin(mθn) ) , (8d)

Bn =
k̃
(n)
r

k̃
(n)
θ

⎛⎜⎝
−k̃(n)

θ
sin(mθn) −k̃(n)

θ
cos(mθn)

− cos(mθn) sin(mθn)
⎞⎟⎠ (8e)

and k̃
(n)
r = k

(n)
r /k(n+1)r , k̃

(n)
θ
= k
(n)
θ
/k(n+1)

θ
.

The right-hand side vector r in (8b) depends on the anisotropy ratio kr/kθ that determines the powers
m̃ in (6). First suppose that kr/kθ = 1. Then for m = 2 the eigenfunction rm̃ matches the generation term
r2, yielding

r = (1 − k̃(1)r 0 ⋯ ⋯ 1 − k̃(N)r 0)T, (9)

but r = 0 for all other m ⩾ 1. The harmonic m = 2 is essential, because if equation (8b) possesses no solution,
the construction of the heterogeneous flow field fails. A necessary and sufficient condition of the solvability of
(8b) is detC ≠ 0. All other harmonics m ⩾ 1 might only be included if and only if detC = 0. These solvability
conditions define sector layouts, where multiple harmonics can be combined (Nec, 2021).

If kr/kθ ≠ 1, it is of import whether m̃ can take the value m̃ = 2 for some m∗ in the series in (6). If such

m∗ exists, i.e. the expression 2
√
kθ/kr gives an integer, m∗ becomes the essential harmonic and identical

solvability conditions apply. If m̃ ≠ 2 ∀m, the right-hand side vector r = 0 for any m, and any harmonic
for which detC = 0 is admissible, however such a flow field will only exist for a non-generating medium, i.e.
C(n) = 0 ∀n and the constants in (6) are redefined to reflect that.

For m = 0 the coefficients bi
(n)
0 satisfy

bi
(n)
0 =

k
(n)
r

k
(1)
r

bi
(1)
0 , 1 ⩽ n ⩽ N − 1, (10)

leaving bi
(1)
0 as a degree of freedom to be determined from boundary conditions. Due to the rotational

invariance of (2a) and periodicity of (6) any sector might be taken to correspond to n = 1. Therefore in fact
the boundary conditions might be set in any one sector n∗. These might be chosen as

pn∗ ∣rw= pw, pn∗ ∣rx= px, (11)
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where rw and rx are the well and computational domain radii, and pw and px are the constant components of
the pressure. Observe that pγw and pγx determine the total mass flux through the circumference of respective
circles. In (Nec and Huculak, 2020) it was shown that in most circumstances the θ-dependent component
of the pressure is small on r = rw, rendering this somewhat unconventional choice of boundary conditions
equivalent to prescribing a constant well head for all practical purposes.

Since 0 < rw ⩽ r ⩽ rx <∞, formally (6) is bounded. However, as often happens in the course of solution of
Sturm-Liouville problems, some eigenfunctions might behave undesirably. Here one must be cautious with
the decaying powers of r: the physical dimension of the well is small relative to the domain, whereby with
rx used for non-dimensionalisation rw ≪ 1. If one does wish to include harmonics corresponding to large
negative powers of r in (6), the magnitude of the constants must be managed accordingly. In most practical
cases one would be interested in the flow in the main part of the domain, i.e. r ∼ O(10) and that part of
the series would decay quickly. As long as the contiguity ray structure is preserved, solution (6) might be
extended to a domain, whose outer perimeter is of an arbitrary shape.

The simplest flow field includes the axially symmetric part and harmonic m = m∗ in (6) with a2
(n)
m∗ =

b2
(n)
m∗
= 0:

pγn =
C

4k
(n)
r

⎧⎪⎪⎨⎪⎪⎩b1
(n)
0 + b2(n)0 ln r + r2(a1(n)m∗ sin(m∗θ) + b1(n)m∗ cos(m∗θ) − 1)

⎫⎪⎪⎬⎪⎪⎭. (12a)

Its candidate stagnation points are given by

θsp =
1

m∗
arctan

a1
(n)
m∗

b1
(n)
m∗

+ πℓ

m∗
, ℓ ∈ Z, (12b)

r2sp = −
b2
(n)
0

2(a1(n)m∗ sin(m∗θsp) + b1(n)m∗ cos(m∗θsp) − 1) . (12c)

Out of the sequence (12b) all points falling within sector n are retained. Then if the right-hand side of
(12c) is positive, the pair (rsp, θsp) is a valid stagnation point. The locations of these points bear on the
set of initial points (ro, θo) for the numerical integration of the velocity field u to obtain particle pathlines(r(t), θ(t)) with t parameterising each curve:

dr

dt
= u = −k

(n)
r

µ

∂pn

∂r
, r(0) = ro, (13a)

dθ

dt
=
v

r
= −k

(n)
θ

µ

1

r2
∂pn

∂θ
, θ(0) = θo. (13b)

The union of pathlines connecting the stagnation points delimits the well’s basin of attraction and thus forms
the zone of influence. Observe that the location of stagnation points is independent of γ, i.e. γ affects the
pathline trajectory, but not its issue or terminus point. Thus all examples below were computed with γ = 2
to avoid uninstructive input variation and allow for a straightforward juxtaposition of flow maps. Upon
adjustment of generation rate and well suction to reasonable values for liquids the observed geometry of
the zone of influence was not visually distinct from the compressible case γ = 2. Field (12a) with kr/kθ = 1
suffices to recreate a wide variety of zone geometries. The anisotropic case kr/kθ ≠ 1 constitutes but a
slight quantitative variation on the main mechanism of the azimuthal heterogeneity – introducing the factor

k̃
(n)
r /k̃(n)θ

in (8e) – and thus is not instructive. Therefore in all examples below kn
def
= k

(n)
r = k

(n)
θ

. The
fields that included higher harmonics were more difficult to integrate accurately, but did not offer additional
qualitative insight.
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3 Zone of influence

In the axially symmetric framework the sole component of the velocity vector u is the radial velocity u,
whose only root defines a stagnation point. In the interpretation of the polar geometry this point comprises
a closed curve and might thus be construed as a zone of influence. Furthermore, u is normal to this
boundary. Thus the loci of zero velocity and zero normal flux coincide. This degeneracy is the source of all
conceptual obstacles associated with the purely radial flow model. When the axial symmetry is broken, this
coincidence is resolved: the set of stagnation points contains only isolated points; and the boundary of the
zone of influence is a locus of zero normal flux, but its tangential component does not vanish thereon. The
curves tracing the boundaries of the attraction / repulsion basins of stagnation points are called separatrices.
Their union delineates the zone of influence. The complexity of its shape is determined by the number of
subdomains and harmonics in (6) with all but m = 0 and m =m∗ being optional. When additional harmonics
are present, locating stagnation points analytically is impossible, whilst their number increases quickly with
m. On the other hand, without the exact location of these points obtaining a well resolved and accurate
field of streamlines is extremely difficult, since the integration of (13) in their vicinity is stiff. Pressure field
isocontours are easier to visualise and in related geometries indicate that stagnation points due to higher
harmonics are located beyond the principal points due to m = 0 and m∗ = 2, and affect the position of the
latter only slightly (Awasthi et al., 2023; Tretiakova and Nec, 2023). In this light, for the purpose of tracing
the zone of influence it is sufficient to limit the discussion to principal harmonics.

Hereinafter a set of examples of the integration of (13) is given for a variety of geometric layouts. The
input parameters are characteristic to medium size landfills (Zeng et al., 2017) and well within the range of
typical values for generic porous media studied (Panda and Lake, 1994).

θ1 = 0

θ2 = 17π/18

✛
✲

C∞

❄

S

✲C∞

✻

S

θ1 = 0

θ2 = π/18

✛ C∞

❄

S

✻

S

Figure 3: Streamlines (thin grey) and zone of influence (thick green / grey) for N = 2 with θ2 − θ1 ≷ π/2.
Permeabilities: k1 = 2k2, k2 = 10−11. Other parameters: γ = 2, m∗ = 2, C = 10−11, pw = −0.1, px = 1,
rw/rx = 7.62×10−4, rx = 100m. Follow streamlines marked by arrows to stagnation points: saddle (S), node
(N) or cusp at infinity (C∞). Streamlines were cut short near the origin for a cleaner exposition.
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3.1 Two sectors

The simplest particular case of (12a) is a two sector layout. Equation (2a) is rotationally invariant, whereby
one might set θ1 = 0 without loss of generality. The zone of influence is always eye-shaped. Figure 3 depicts
the two possible types of flow maps. When θ2 − θ1 > π/2, each sector contains one stagnation point, located
on the symmetry line bisecting both sectors (left panel). When θ2 − θ1 < π/2, the two stagnation points are
located in the larger sector on the line perpendicular to the bisector (right panel). The transition between
the two types occurs at θ2 − θ1 = π/2 regardless of all other problem parameters (Nec, 2021).

The two stagnation points are of the saddle type. Formally the cusp points (marked by C∞) are located
at infinity. All four points have v = 0, and by (12b) are always π/2 apart. However, the cusps are not
stagnation points: albeit the azimuthal velocity vanishes, the radial velocity is finite and computable in
terms of the constants in (12a):

lim
rÐ→∞

u = − lim
rÐ→∞

k
(n)
r

µ

∂p

∂r
=

− 1

2µ

¿ÁÁÁÀCk
(n)
r

⎛⎝ a1
(n)
m∗

sin(m∗θcsp) − 1
⎞⎠ = − 1

2µ

¿ÁÁÁÀCk
(n)
r

⎛⎝
b1
(n)
m∗

cos(m∗θcsp) − 1
⎞⎠ , (14)

where n marks the sector containing the cusp point and θcsp is a root in the set (12b), but not a stagnation
point. One of the fractions in (14) might have a zero denominator, but in that case the numerator also
vanishes and the ratio remains finite if calculated as a limit expression. Alternatively, the counterpart under
the second root would then be well defined, since the sine and cosine functions do not share roots. The
expressions under the square roots are positive, giving u < 0 and thereby showing that fluid will be collected
from that region. Nonetheless, the streamline topology in the vicinity of a cusp closely resembles half a node,
making a visual distinction impossible. The presence of such cusp points at infinity is not limited to the two
sector layout, cf. figure 7 below. Their occurrence might be regarded as a symmetry artefact similar to the
degeneracy observed in purely radial flow. With N > 2 the layout symmetry is a necessary, but not sufficient
condition for their appearance.

The following important properties were endowed by the heterogeneous model and are generic to all
layouts to be discussed hereunder. One, a wide range of reasonable permeability and induced head values
yields realistic distances from the well to the nearest boundary of the zone of influence: the order of magnitude
spans tens to low hundreds of metres, aligning well with the well design practices in the field. The curves
forming the cusps, if present, are virtually closed at only a few multiples of that distance. In that regard
defining a cut-off threshold for the cusp would not be conceptually different from doing the same for residual
pressure or velocity. Two, low generation rate values do not effect overly optimistic predictions for the zone
of collection. Observe that the coefficients corresponding to harmonic m = 0 in (6) and (12a) are identical
to the integration constants in (3), but the drainage (extraction wells) or dispersal (injection wells) area
predicted by the axially symmetric radius of influence (4) might be many orders of magnitude greater. The
reason this happens is that the constant preceding the logarithmic term contains two summands: the first
depends on the head induced at the well, but not generation rate C, whilst the second is proportionate to
C:

a = b2
(n∗)
0 =

⎛⎝pγx − pγw + C

4k
(n∗)
r

(r2x − r2w)⎞⎠/ ln
rx

rw
(15)

with n∗ denoting the sector, wherein the boundary conditions were applied. Therefore as C Ð→ 0, a tends
to a constant independent of C, according an arbitrarily large r⊚ in (4). Taking the data in figure (3) as
an example (the dimensional quantities therein conform to a gas well of modest capacity), a is estimated
as a ∼ O(108), implying r⊚ ∼ O(104), i.e. two orders of magnitude higher than rx, where the boundary
condition px was imposed. By contrast, in the heterogeneous model the azimuthal position of stagnation
points is fully independent of C and the radial distance depends only weakly thereon via the additive term
in (15) with no possibility of infinite growth. This is evident from the formulae given for the particular case
(12) and is immediate for the full solution (6) as well. Since the zone of influence is the union of separatrices
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connecting the stagnation points, the limit C Ð→ 0 is proper and results in a finite zone of influence dictated
solely by the head induced at the well and mosaic of subdomain permeabilities. Three, the perimeter of the
zone of influence is a simple, piecewise smooth contour that encloses a finite area, even in the presence of
cusps at infinity. The total mass flux at the well is given by integrating the radial flux component along a
positively oriented circular contour cw:

ṁ = ∮
cw

ρurw dθ = −rw
γ̃
∮
cw

kr∂rp
γ dθ = C

⎧⎪⎪⎨⎪⎪⎩πr
2
w − 1

4

N

∑
n=1

b2
(n)
0 ∣θn+1 − θn∣

⎫⎪⎪⎬⎪⎪⎭, (16)

to wit, ṁ is finite as long as rx in (15) is fixed. Since the mass collected at the well must come solely
from within the zone of influence, this proves the finiteness of its area. In fact it might be calculated by
Az = ∣ṁ∣/C. In (16) ṁ ≷ 0 in accordance with the sign of the radial velocity u ≷ 0 with the second summand

being dominant by far (b2
(n)
0 ≷ 0 for extraction and injection wells respectively). The physical meaning of

the first summand is exclusion of the well area from the flow field.
The fourth feature regards field observations. One of the common methods to delineate the zone of

influence in situ is to measure fluid pressure (residual head relative to the well), velocity or concentration
(in the case of aquifer sparging wells) at increasing distances from the well. When the desired quantity falls
within a small predefined limit, the corresponding distance is deemed the radius of influence. The flow maps
in figure 3, as well as subsequent examples, reveal the mechanism whereby this concept of a threshold often
fails: on the boundary marked by the thick green / grey curves the tangential velocity is far from small along
most of the curve. The only place where it attenuates is in the vicinity of the two stagnation points. Thus
values recorded by a probe situated close to the boundary would not in any way reveal the divide between
the well’s basin of attraction and repulsion, unless it coincidentally happens to be near one of the stagnation
points. If the zone of influence is strongly oblate or the distances from well centre to stagnation points are
highly non-uniform (an example of the latter is given later in the right panel of figure 7), the assumption of a
circular zone of influence represented by a radius often means data are considered inconsistent and discarded.

The fifth and last feature of note is the break of streamlines’ slope at the contiguity rays. This is
a consequence of an abrupt change in permeability and has been experimentally documented (Sahu and
Flynn, 2015).

θ1 = 0

θ2 = π/9

θ3 = 2π/9

✛
N

❄

S

✲
N

✻

S

Figure 4: Streamlines (thin grey) and zone of influence (thick green / grey) for N = 3 with θn = (n − 1)π/9,
1 ⩽ n ⩽ 3. Permeabilities: k1 = 2k2, k2 = 10

−11, k3 = 3k2. All other parameters as in figure 3.
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3.2 Three or more sectors

When the combination of geometric layout and corresponding permeabilities harbours no undue symmetry,
N > 2 configurations offer a fully finite and realistic in size zone of influence. Figure 4 depicts a flow map for
an input set differing only slightly from the one in the right panel of figure 3, but the cusps at infinity are
replaced by nodes at finite distances. A geometric feature prominent in figure 4 and subsequent examples
is the presence of sharp corners in the zone perimeter. This is not an unphysical trait. Observe that the
perimeter traced in the figures is for expositional purposes only – it does not constitute a single pathline,
but a collection thereof, with no fluid particle’s trajectory ever containing a sharp corner except across
contiguity rays, where the permeability changes (Sahu and Flynn, 2015). When the zone outline is removed,
the behaviour of the pathlines in the vicinity of the apparent sharp corner is smooth.

The shape of the zone of influence might vary quite dramatically. Figures 5–9 give examples of zones
that can be broadly categorised as a circle missing a segment, triangle, pear and square. The shape is deter-
mined by the constellation of stagnation points, which is sensitive to contiguity angles θn and concomitant
permeabilities. For instance, the configurations in figures 4 and 5 differ by just one relatively small sector,
whose permeability is of a magnitude similar to other sectors. Notwithstanding, the result is a disparate
arrangement of stagnation points and a starkly different zone of influence. Figure 7 illustrates sensitivity to
permeability alone for two identical layouts: four stagnation points and two cusps (left panel) are replaced by
a saddle and cusp (right panel) upon a minor change in kn values. This further supports the comprehensive
measurement uncertainty encountered in large environmental systems such as aquifers and fluid extraction
wells, where labile substrate saturation in a part of the domain or its boundary might alter the effective
permeability in that azimuthal direction.

A different source of uncertainty is shown in figures 8–9. Observe that some of the nodes in these flow
fields are endpoints of long protuberances formed by two separatrices. The length of these needle-like regions
roughly equals the distance from well centre to most points on the perimeter of the core zone of influence. In
such a case the reading of a probe placed in the vicinity of the needle tip would be congruent with one situated
by a less needle-like stagnation point nearer the core zone of influence. When labouring under the assumption
of a circular zone of influence, one would be compelled to dismiss at least one of the measurements, since
the apparent error would be near 50%. Such protuberances have been associated with an increased medium
conductivity in the presence of fractures, cf. figure 3 of (Bradbury and Muldoon, 1994).

θ1 = 0

θ2 = π/9

θ3 = 2π/9

θ4 = π/3

✛ S

❄

N

✲

S

✻

N

Figure 5: Streamlines (thin grey) and zone of influence (thick green / grey) for N = 4 with θn = (n − 1)π/9,
1 ⩽ n ⩽ 4. Permeabilities: k1 = 2k2, k2 = k4 = 10

−11, k3 = 3k2. All other parameters as in figure 3.
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θ1 = 0

θ2 = π/4

θ3 = π/2

θ4 = 3π/4

θ5 = π
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Figure 6: Streamlines (thin grey) and zone of influence (thick green / grey) for N = 5 with θn = (n − 1)π/4,
1 ⩽ n ⩽ 5. Permeabilities: k1 = 2k2, k2 = k4 = 10

−11, k3 = k5 = 3k2. All other parameters as in figure 3.

θ1 = 0

θ2 = π/4

θ3 = π/2

θ4 = 3π/4

θ5 = π

θ6 = 5π/4
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θ3 = π/2

θ4 = 3π/4

θ5 = π
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❄
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✻
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Figure 7: Streamlines (thin grey) and zone of influence (thick green / grey) for N = 6 with θn = (n − 1)π/4,
1 ⩽ n ⩽ 6. Permeabilities: k1 = 2k4, k2 = k6 = 5 × 10−12, k3 = k5 = 3k4, k4 = 10−11 (left); k1 = 5 × 10−12,
k2 = k4 = k6 = 10

−11, k3 = k5 = 3k2 (right). Other parameters as in figure 3.
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θ1 = 0

θ2 = π/4

θ3 = π/2

θ4 = 3π/4

θ5 = π

θ6 = 5π/4

θ7 = 3π/2
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Figure 8: Streamlines (thin grey) and zone of influence (thick green / grey) for N = 7 with θn = (n − 1)π/4,
1 ⩽ n ⩽ 7. Permeabilities: k1 = 2k2, k2 = k4 = k6 = 10

−11, k3 = k5 = k7 = 3k2. All other parameters as in figure
3.

θ1 = 0

θ2 = π/4

θ3 = π/2

θ4 = 3π/4

θ5 = π

θ6 = 5π/4

θ7 = 3π/2

θ7 = 7π/4
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Figure 9: Streamlines (thin grey) and zone of influence (thick green / grey) for N = 8 with θn = (n − 1)π/4,
1 ⩽ n ⩽ 8. Permeabilities: k1 = 2k2, k2 = k8 = 5 × 10−12, k3 = k5 = k7 = 3k4, k4 = k6 = 10−11. All other
parameters as in figure 3.

The area of the zone of influence, on the other hand, is not affected as much by either the layout
geometry or the permeability mosaic. This is an important aspect, since the area must be directly related to
the injection / extraction energy and in a realistically sound model should not be strongly sensitive to small
changes in medium resistance.
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4 Conclusion

Historically introducing a representative permeability value when working with a heterogeneous medium
has been taken for granted. For wells pumping fluid out of a substrate or injecting fluid thereinto this is
inherently connected to the assumption of axial symmetry and grounded in the purpose of the well to effect
radial transport. This assumption results in a simple tractable flow model, but is also responsible for a
bafflingly inadequate description of the well’s reach – an infinite or extremely large radius of influence. In
practice not only must the zone of influence be finite, it should not be circular: although ideally a well
would induce solely radial transport, in reality the azimuthal motion of the fluid cannot be prevented. This
additional dimension of the flow field perceptibly diminishes the fraction of kinetic energy associated with
the radial velocity component (Awasthi et al., 2023). Taking this into account remedies the infiniteness of
the zone of influence ensuing by a purely radial model and at the same time renders its shape anything but
circular. The azimuthal heterogeneity with no structural symmetry is the necessary and sufficient condition
to construct a flow solution with a realistic zone of influence.

The separatrix curves connecting the stagnation points form a closed contour that, by the virtue of these
lines being streamlines, forms a locus of zero normal flux and the border of the zone of influence. Its shape is
sensitive to the particular mosaic of subdomains of distinct permeabilities. In practice preferential directions
of flow can open and close swiftly due to fluctuations of water table or more slowly with the settlement of
the porous matrix, altering the zone of influence. The introduction of azimuthal heterogeneity provides a
unified framework that explains the difficulties encountered in the field when sampling the zone of influence
in situ in a variety of applications. Depending on the specific arrangement of permeabilities, one or more
of the following factors might be responsible: a markedly oblate zone of influence, needle-like protuberances
formed by two separatrices meeting at a node stagnation point, or strong tangential velocities. All three are
related, but might not be equally dominant.

One of the model’s notable strengths is the weak dependence of stagnation point locations and thence
zone of influence on the generation rate C. This ensures that the limit C Ð→ 0 is proper and thereat the zone
of influence is determined, as expected, solely by the head induced at the well and porous medium resistance.
Predictions for values typical for wells extracting landfill gas or sparging media surrounding contaminated
aquifers range from a few tens of metres to low hundreds, depending on the azimuthal direction. These
estimates are realistic and agree with the lateral spacing commonly used in sites containing well networks.
To construct an accurate model of a given site one would have to assess effective permeabilities in several
azimuthal orientations and partition the domain accordingly.

In practice the permeability within the domain of large environmental applications is an uncertain quan-
tity. Estimating permeability in general is a difficult task, because it represents the overall resistance to flow
as evinced by the medium, fluid and system boundaries. Early on it was believed to be derivable exactly for
an idealised medium consisting of particles of known shape and size. The original concept due to Kozeny and
Carman (Carman, 1937) has seen numerous conceptual extensions, from using a probability distribution to
describe the possible variation in particle geometry (Panda and Lake, 1994) through fractals and empirically
fit constants (Henderson et al., 2010) and to defining different types of permeability (Sanchez-Villa et al.,
2006) that might even depend on the type of flow (Dagan and Lessoff, 2007). In real environmental appli-
cations the medium heterogeneity is compounded by the temporal evolution of the flux through the system
boundaries due to extraneous factors, affecting the apparent permeability. In particular, a locally sealed
boundary perceptibly diminishes the permeability in that azimuthal direction, creating a markedly oblate
zone of influence (Bradbury and Muldoon, 1994). The school of thought unifying injection and extraction
wells of compressible or incompressible fluid defines an effective apparent permeability as in (1c). In this
approach well designers estimate a range of permeabilities encountered at a site and use a steady model to
test for the extremes thereof. The advantages of this approach are the necessity of fewer field measurements
and a proven conservative design. If measurements with comprehensive azimuthal coverage are available
together with some information on the existence and location of preferential directions of flow, the perme-
abilities might be calibrated to fit these data. However, solving such a reverse engineering problem exceeds
the ambit of this study.
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A more advanced approach is to model the motion as a stochastic process in a random medium, where
the spatial distribution of permeability is a prescribed probability density function, for instance log-Gaussian
(Indelman et al., 2006). Extensive measurements are required to substantiate the choice of the distribution
and its parameters (Cardiff et al., 2013), and solving the stochastic evolution equation is computationally
expensive (Cardiff et al., 2013; Rupert and Miller, 2007). The deviation of the resulting isocontours from the
classical circles is directly related to the standard deviation used and is mainly observed away from the well,
whereas in its vicinity the shape is close to circular (Brunetti et al., 2022). This methodology is well suited
for heterogeneous media without distinctive preferential directions of flow. This situation is more prevalent
in applications with incompressible fluids. Permeability to compressible fluids is much more sensitive to the
presence of fractures or temporary appearance of partially sealed boundaries that effectively channel the flow
in a well defined direction. Such variation cannot be faithfully captured by a probability density function,
since the location of these features is deterministic (Gómez-Hernández and Wen, 1998). Its importance is
well recognised, encouraging the development of advanced imaging and data fitting techniques (Tahmasebi
et al., 2016; Zha et al., 2023). A steady flow with azimuthal variation offers an inexpensive tool to model
such systems. Furthermore, under certain conditions it is possible to draw an equivalence between the log-
Gaussian stochastic process and a steady flow of an appropriately chosen fixed permeability (Brunetti et al.,
2022).

Generalisation of the theory presented herein to other sets of planar curvilinear orthogonal coordinates
as well as tridimensional flows in spherical and ellipsoidal geometries is a topic of future study. For instance,
eye-shaped domains arise naturally in parabolic coordinates. Since the zone of influence is not a hard
boundary of a shape easily described mathematically, setting boundary conditions thereon analytically is
impossible. Isocontours inherent to the coordinate system that resemble closely the true shape of the zone
of influence would be useful in the development of flow control strategies for the well. Partially penetrating
vertical wells with intake at the bottom end (in contrast to continuous intake throughout the well’s length)
induce a flow field that is better described as spherical instead of cylindrical. Horizontal wells with intake
at perforated sections set far apart relative to the pipe radius might be viewed as a sequence of spherical or
ellipsoidal zones of influence (Awasthi et al., 2023). The theory is also applicable to unrelated applications
of diffusive transport in a heterogeneous medium of much smaller scales, such as drug delivery and diffusant
dispersal in polymers upon injection at a source point internal to the domain with the needle acting akin to
a well.
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