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Abstract. The flow of weakly compressible fluid in an annular domain filled with a porous medium admits a wide class

of solutions, whose axial symmetry is broken by azimuthally varying permeability. The structural parameters governing

the underpinning dynamical system are the angles of sectors containing media of distinct permeability and values of the

permeabilities themselves. Albeit from the vantage point of physics there is no apparent reason that certain configurations be

singled out, mathematical analysis reveals an intriguingly complex pattern of singularities. The singular manifolds are loci,

in whose vicinity saddle points of the underlying pressure field shift abruptly or appear / disappear. Stunningly the shift angle

is independent of all configuration parameters, equalling π/2. When the system represents an injection or extraction well,

the distance of the saddle points therefrom assumes the physical interpretation of the well’s reach, also known as the radius

of influence. Therefore two infinitesimally close configurations might have disparate flow fields and in particular zones of

influence. This analysis casts in a new light the baffling difficulties encountered in the construction of aquifer sparging wells

and landfill or natural gas collection wells, whose reach is known to be poorly predictable, and the failure or success of the

injection / suction to induce the motion of adequate amounts of fluid proved moot. The traditional concept of the radius of

influence is shown to be ill-posed and its unpredictability in practice intimately connected to the structural singularities of the

anisotropic porous medium.
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1. Introduction

The system studied herein is inspired by the problem of a weakly compressible flow through a porous medium filling

an annular domain. The fluid is an ideal gas generated within the medium and obeying Darcy’s law (Whitaker, 1986).

Under steady conditions conservation of mass (Fulks et al., 1971) in conjunction with the ideal gas equation of state

entails the following partial differential equation in polar coordinates (r,θ) with all quantities non-dimensional:
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The parameters C and K stand for fluid generation rate and effective resistance due to matrix-fluid interaction

respectively. rin and rout are the inner and outer radii of the annulus. The unknown p is the fluid pressure and

thus must be a positive periodic function satisfying p(r,θ) = p(r,θ +2π).
The domain is divided into N sectors of arbitrary angles. The contiguity rays θn, n = {1, . . . N}, are counted

counter-clockwise and indexed so that θ1 is the first one satisfying θ1 ⩾ 0. Sector n+1 is bounded by rays θn and θn+1

(consult figure 1). Both K and C are piecewise constant functions of θ , so that sector n is assigned values Kn and Cn

such that Kn ≠ Kn+1 and/or Cn ≠Cn+1 for any 1 ⩽ n < N, as well as KN ≠ K1 and/or CN ≠C1. This final requirement of

periodicity in a relationship of the type ( ⋅ )n = ( ⋅ )n+1 will be abbreviated hereinafter by indices 1 ⩽ n ⩽ N, tacitly

implying the last index wraps back to 1.

It is desired to obtain a family of bounded solutions to (1), periodic in θ and in the C0 continuity class with respect

to the azimuthal derivative. Following the domain division, the solution p(r,θ) is a combination of N solutions pn(r,θ)
that are 2π-periodic and satisfy
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Equation (2b) ascertains that p ∈C0 and is obtained by integrating (1) over the domain (θn − ε ,θn + ε) and taking

the limit ε Ð→ 0. In the physical world this condition conforms to continuity of azimuthal fluid velocity across the

contiguity rays. The continuity of radial velocity follows from the smoothness of the pressure function in r. To

complete the mathematical formulation of the problem, boundary conditions of either Dirichlet or Neumann-like type

are set on the inner and outer circumference of the annulus:

p(θ ,rin) = pin(θ) or
∂ p2

∂ r

RRRRRRRRRRR(rin,θ)

= fin(θ); and

p(θ ,rout) = pout(θ) or
∂ p2

∂ r

RRRRRRRRRRR(rout,θ)

= fout(θ). (2c)

The form of the Neumann condition is somewhat unconventional, however quite natural for this system, since the

functions fin and fout are directly convertible to fluid flux normal to the boundary.

As is shown hereunder, this system is mathematically unique due to a plethora of singularities harboured by (2)

and the concomitant structural discontinuities within this family of solutions bearing on the physical interpretation

of (2) as a flow field and in particular its stagnation points. In several environmental engineering applications this

translates to the ability of a well to inject fluid into a porous medium or draw it therefrom. Conventionally the zone

of influence is assumed to be axially symmetric despite evidence to the contrary, and characterised by a single scalar,

referred to as the radius of influence. The inadequacy of this description for a compressible fluid was recognised as
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Figure 1. Flow domain schematic: indexing of contiguity rays θn and intrinsic matrix properties Kn, Cn, 1 ⩽ n ⩽ N

early as 1960s, e.g. Al-Hussainy et al. (1966) proposed a sophisticated compressibility modelling in an axisymmetric

geometry via a pseudo-pressure variable. Studies without the assumption of axial symmetry exist, but are rare and do

not focus on the zone of influence. Some examples are Young (1989), where isobars within a cross-section plane of

an arbitrary set of vertical landfill wells demonstrate the asymmetric flow field; and Freedman et al. (2013), where

the fluid is incompressible and hydraulic pressure contours are shown to break azimuthal symmetry. A distinct

type of work pursues the identification of preferential flow directions based on the structure of the porous matrix

(Mauran et al., 2001; Li, Lu, Luo, Sun, Shen, Hu, Liu, Qi, Guan and Guo, 2019). The relation between the local

morphology of the porous matrix and its global resistance to flow is often explored in artificially generated media

with no immediate connexion to wells (Germanou et al., 2018; Li, Ki, Jing, Xiao and Cui, 2019). A well’s zone

of influence embodies the conceptual intersection between the functionality of the localised engineering facility and

response of its geographically extensive natural surroundings, both vying for control. Wheresoever the structure of

the circumambient matrix is uncertain, operators face baffling phenomena and moot success. Advanced techniques in

geological imaging usually improve the outcome, and are a topic of active research (Mair et al., 1999), but are often

expensive and not universally applicable.

In contaminated aquifer remediation via air injection into the surrounding medium the sparging well radius of

influence is difficult to estimate in part due to differences in the permeability of saturated and unsaturated zones

(Lundegard and LaBrecque, 1995). Field studies traditionally report concentration of oxygen, helium, carbon dioxide

and contaminants versus radial distance and depth of monitoring points (Agarwal et al., 2005; Lundegard and

LaBrecque, 1995), omitting their azimuthal location. Nevertheless the argument applies equally thereto, as it stands to

reason the soil is unlikely to be azimuthally isotropic whilst manifesting conspicuous anisotropy in other directions.

In natural gas development advanced modelling of fluid propagation in selected directions evinces the need to

seek descriptions beyond axial symmetry (Hyman et al., 2015). The landfill gas industry also struggles to define

the radius of influence, the evidence ranging from inventions targeting the modification of permeability properties

of subsurface strata at selected spots in the vicinity of landfills, yet outside their nominal perimeter (Stenborg and

Williams, 1994); and to contention of estimates via disparate approaches in order to improve the long-standing poor

predictability of this quantity (Vigneault et al., 2004). The exerted suction might have a significant (Kutsyi, 2015) or

minimal (figure 3 of Nec and Huculak (2019)) impact on the radius of influence, or equivalently the mass extracted.

Thus it is not surprising that the apparent radius of influence cannot be used as a basis for illative parameters (Walter,
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2003). All foregoing types of wells have been constructed and operated for many decades. Accumulated experience

notwithstanding, each new site seems to defy quondam models, qualitative and quantitative alike.

In essence any well’s reach depends on the effective matrix resistance to flow. The abundance of evidence of the

medium heterogeneity in conjunction with the paucity of literature examining azimuthal variation suggests dearth of

means rather than lack of interest. A recent study reported a wide closed form class of flow solutions with azimuthally

varying permeability (Nec and Huculak, 2020). A comprehensive chronological survey of analytical flow solutions in

anisotropic porous media can be found therein. The classical notion of the radius of influence becomes a generalised

entity in the form of a set of stagnation points and separatrix contours joining them. Whist this class of flow fields opens

the possibility of modelling unencumbered by axial symmetry and more realistic estimates of the radius of influence,

it harbours a dismayingly extensive pattern of structural singularities. The current contribution provides a complete

analysis substantiating the difficulties encountered in effective operation of the aforementioned engineering facilities

and in experimental studies documenting the zones of influence thereof. This is the first analytical demonstration that

reconciles decades of inconsistent measurements and numerous approaches attempting to model deterministically a

quantity so elusive as to behave almost as a random variable. Given that it is not in fact random, the only sound

explanation of such sensitivity is in the existence of strong underlying singularities occurring frequently enough to

throw out of kilter any individual attempt to obtain a reliable description.

This study constructs a mathematical argument that conclusively proves the apparent labile dependence of the

zone of influence on local matrix properties is intrinsic to the weakly compressible flow through anisotropic porous

media and thus inevitable. Two interlaced points pertain to the engineering applications employing this type of

flow. One, the notion that the zone of influence of a gas well is circular, adopted from the traditional hydraulic

well modelling, is ill grounded. A revised concept natural in the context of compressible fluids is suggested instead.

Two, the erratic data recordings of fluid pressure and velocity, or solute concentration around a gas well are not to

be ascribed to the instrumentation used. The analysis herein implies the fluctuations are a physical attribute of the

flow field and sets the framework to fathom the flow behaviour in a specific site. Collection of data on the azimuthal

variation of permeability around the well and accurate tracking of ranges thereof over periods of time relevant to the

lifetime of the facility, for instance seasonal or in the case of a landfill related to the characteristic waste degradation

time, are essential steps. Such data will allow to predict the respective variability in the well’s reach along with regions

of fluid circulation or escape, and thus optimise the efficiency of operation. Most importantly, when the problematic

locales are identified, the suggested theory further allows to predict where possible efforts to modify the medium

permeability (such as hydraulic fracturing or landfill waste compacting) should be focussed in order to attain adequate

flow in all azimuthal directions.

§2 contains the mathematical analysis and is structured as follows. Theorem 1 derives the solution to system (2),

proves it is singular on a certain manifold within the parameter space, and calculates the dimension of the manifold.

§2.1 shows that in the case of two sectors the manifold is a straight line, whereupon lemma 1 proves that any stagnation

point in the flow must be a saddle point and establishes the abrupt shift by an angle of π/2 observed in infinitesimally

close configurations on two sides of the line. Figure 2 depicts an example of such an occurrence. Observe the two

flow fields are starkly different despite nearly identical geometry. §2.2 determines that the singular manifold for the

case of three sectors comprises a set of petal-shaped orbits replicated periodically in the {θ1,θ2} space. Proposition 1

characterises the regularity corridors, i.e. the parts of the parameter space, where no such orbit is encountered. These

are crucial in estimating the likelihood an arbitrarily chosen configuration is proximate to a singular one and thus prone

to manifest strong changes in the flow pattern in response to small changes in the geometry. Whilst the probability that

any one given configuration happens to be singular is minuscule, the narrowness of the corridors means the probability

to fall near a singularity is quite high, especially when the matrix is characterised by permeabilities spanning several

orders of magnitude or a large number of sectors, both implying the existence of preferential flow directions. §2.3

obtains the explicit expression for the singular manifold in the case of four sectors – the highest number that is feasible

to solve analytically, and shows that the periodic structure of petal-shaped surfaces persists, whilst the part of the space

free therefrom becomes much more difficult to delineate, implying that as the number of sectors increases, so does

the likelihood of proximity to a singular configuration and concomitant sensitivity to geometry changes. Theorem

2 in §2.4 extends lemma 1 to a configuration comprising any number of sectors and thus conclusively explains the

inconsistent well flow behaviour observed in the field.
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Figure 2. Example of near singular configurations: close geometry, yet disparate velocity fields. (a) θ1 = π/4 + ε ,

θ2 = 3π/4−ε . (b) θ1 = π/4−ε , θ2 = 3π/4+ε . Common parameters: ε = 0.01π and K1/K2 = 0.5.

2. Steady flow singularity

Herein a minor formal restriction on the division of the annulus into sectors is required. Suppose that there exists an

angle θo = π/no for some integer no ∈N, such that each contiguity ray θn satisfies θn = ñnθo for some integer ñn ∈N. In

other words, all sectors are rational multiples ñn/no of π and
N

∑
n=1
(ñn+1− ñn)/no = 2, where ñN+1 corresponds to the ray

θ1+2π . Since the set of rational numbers Q is dense within the set of real numbers R, this restriction, albeit possibly

inconvenient, is but a formality. Such a division of the annulus will be referred to as a rational division. The following

theorem delineates the existence of a steady flow solution and attendant structural singularity.

Theorem 1. Suppose the contiguity rays θn conform to a rational division with a base sector θo =π/no, and Kn ≠Kn+1,

1 ⩽ n ⩽ N. Let pbc(θ) and/or fbc(θ) be integrable functions containing at least one of sin(2θn), cos(2θn) harmonics

and possibly other harmonics of frequencies m̃no, m̃ ⩾ 0 integer, and the subscript ( ⋅ )bc standing for both ( ⋅ )in and( ⋅ )out, prescribing boundary conditions (2c) on the inner and outer arcs of one given sector. Then system (2) possesses

a unique solution bar on a singular manifold independent of the harmonics m̃no ≠ 2 and of dimension 2(N−1) at most

within the parameter space {θn,Kn,Cn}N
n=1.

Proof. System (2) is solvable by the separation of variables technique. Define functions Pn via

p2
n = Pn(r,θ)− Cn

2Kn

r2 (3)

and separate Pn = An(r)Bn(θ) to obtain

r(rA′)′−α2A = 0, B′′+α2B = 0, (4)

where α is a suitable constant, generally complex. Since Pn must be periodic in θ and bounded, α ∈R. The space of

solutions to (4) is

A(r) = span{rα
, r−α}, B(θ) = span{sin(αθ), cos(αθ)}, α > 0 (5a)
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A(r) = span{1, lnr}, B(θ) = span{1,θ}, α = 0. (5b)

The case α < 0 introduces a dependent basis and thus requires no more attention. The periodicity requirement yields

the set {α =m ∣ m ∈N}. Discarding the solution B(θ) = θ , the most general acceptable solution is of the form

p2
n = Cn

2Kn

⎧⎪⎪⎨⎪⎪⎩− r2
+b1

(n)
0 +b2

(n)
0 lnr+

∞

∑
m=1

⎛
⎝(a1

(n)
m rm

+a2
(n)
m r−m)sin(mθ)+(b1

(n)
m rm

+b2
(n)
m r−m)cos(mθ)⎞⎠

⎫⎪⎪⎬⎪⎪⎭. (6)

Subject to a rational division, equations (2b) lead to the following distinction. There exists a subset m = m̃no, m̃ ⩾ 0 an

integer, such that sin(mθn) = 0 for all 1 ⩽ n ⩽N, whereas cos(mθn) ≠ 0. If this subset contains m = 2, it is to be excluded

and treated separately. For m ≠ m̃no neither sin(mθn) nor cos(mθn) vanishes. Thus for m ⩾ 1, m ≠ m̃no, equation (2b)

yields

⎛
⎝

Cn/Kn −Cn+1/Kn+1

Cn −Cn+1

⎞
⎠ c = ( 0

0
) , i = {1,2}, (7a)

where the vector c equals

( bi
(n)
m

bi
(n+1)
m

) or
⎛
⎝

ai
(n)
m

ai
(n+1)
m

⎞
⎠ , i = {1,2}.

Since Kn ≠ Kn+1, a trivial solution follows. For m = m̃no one of the equations in (2b) is satisfied automatically by the

construction of the rational division, whence

Cn

Kn

bi
(n)
m = Cn+1

Kn+1

bi
(n+1)
m , Cnai

(n)
m =Cn+1ai

(n+1)
m , (7b)

both of which are degenerate N ×N systems with a single degree of freedom. In the case of the coefficients bi
(n)
m , the

above also holds for m = 0 and thus completes the treatment of the terms corresponding to the pair {1, lnr}. For m = 2

and i = 2 the foregoing analysis stands. For m = 2 and i = 1 equations (2b) give the linear system

Cc = r, (7c)

wherein the matrix C is almost block bi-diagonal

C =
⎛⎜⎜⎜⎜⎜⎝

A1 B1

A2 B2

⋱ ⋱

AN−1 BN−1

BN AN

⎞⎟⎟⎟⎟⎟⎠
,

comprising the blocks

An = ( sin(2θn) cos(2θn)
cos(2θn) −sin(2θn) ) , Bn = ( −kn sin(2θn) −kn cos(2θn)

−cn cos(2θn) cn sin(2θn) )

with cn =Cn+1/Cn and kn = cnKn/Kn+1. The unknown vector c and right-hand side vector r equal respectively

c = (a1
(1)
2 b1

(1)
2 ⋯ ⋯ a1

(N)
2 b1

(N)
2 )T

and r = (1−k1 0 ⋯ ⋯ 1−kN 0)T

.

The non-zero right-hand side vector r implies that the m = 2 harmonics are essential for the existence of the steady

state solution.
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The degrees of freedom endowed by (7b) allow for boundary conditions of any combination from (2c) to be

imposed on the inner and outer arcs of one sector. Let its index be n∗. The boundary conditions on the complementary

arcs follow by the solution of (7b). Consider the inner product

< f1, f2 >=∫
I

f1(θ) f2(θ)dθ , (8)

where fi(θ) are integrable functions, i = {1,2}. The interval I might be the standard choice [−π, π], or if it is

preferable to begin the integration from the contiguity ray of the sector n∗, I should be taken as [θn∗ , θn∗ +4π]. In

the latter case due to the arbitrary starting point θn∗ it is necessary to double the interval length in order to ensure

orthogonality within the basis {cos(mθ), sin(mθ)}. The conventional product over the interval [−π, π] relies on

the π-periodicity of the sine function roots, but the fact that sin(πm) = 0 for all integer m ceases being useful when

θn∗ ≠ −π . Instead one must invoke the full 2π period of the sine and cosine functions. Note that albeit pn corresponds

to the physical flow field within one sector only, mathematically the function is defined in the entire annulus, enabling

the use of (8) identically for all n. The boundary conditions for the chosen sector n∗ must be similarly extended. With

this product for any m̃ ⩾ 1, m = m̃no, the following equation ensues for the coefficients bi
(n∗)
m :

rm
bcb1

(n∗)
m + r−m

bc b2
(n∗)
m = Kn∗

πCn∗

θn∗+4π

∫
θn∗

p2
bc(θ)cos(mθ)dθ (9a)

if the desired condition is of the Dirichlet type, and

rm−1
bc b1

(n∗)
m − r−m−1

bc b2
(n∗)
m = Kn∗

πmCn∗

θn∗+4π

∫
θn∗

fbc(θ)cos(mθ)dθ (9b)

for the Neumann-like condition. The subscript ( ⋅ )bc stands for ( ⋅ )in or ( ⋅ )out as needed. Thus for all four

combinations of Dirichlet and Neumann-like conditions a 2×2 linear non-degenerate system yields bi
(n∗)
m , i = {1,2}.

A simple replacement of cos(mθ) by sin(mθ) gives the respective ai
(n∗)
m . For m = 0

b1
(n∗)
0 + lnrbc b2

(n∗)
0 = Kn∗

2πCn∗

θn∗+4π

∫
θn∗

p2
bc(θ)dθ + r2

bc (9c)

or

b2
(n∗)
0

rbc

= Kn∗

2πCn∗

θn∗+4π

∫
θn∗

fbc(θ)dθ +2rbc. (9d)

Again, for any of the four possible Dirichlet and Neumann-like combinations the system is non-degenerate. Therefore

by (9) no boundary condition can introduce a singularity into the flow field (2), and the sole source thereof is detC.

Thus if detC ≠ 0, the existence of the steady state is established. It must be unique by the linearity of system (2) in p2
n.

To establish the dimension of the singular manifold defined by detC = 0, observe that in (7b) it is possible to map

( ai
(n)
m

bi
(n)
m

)z→Cn( ai
(n)
m

bi
(n)
m

) ,
whereby C no longer depends on cn. Thus its determinant involves at most 2N arguments: {θn,kn}N

n=1. Hence for the

current purpose it is possible to set cn = 1 ∀1 ⩽ n ⩽N. Since

k1 ⋅ ⋯ ⋅kN = K1

K2

⋯
KN−1

KN

KN

K1

= 1,

out of N ratios only N − 1 are independent parameters. Therefore detC is a function of 2N − 1 arguments, and the

manifold detC = 0 is of dimension 2(N −1) at most.
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Corollary 1. The singular manifold detC = 0 is π/2 periodic in θn, 1 ⩽ n ⩽N.

Proof. The entries of the matrix C contain sin(2θn) and cos(2θn). Inspect how a shift of πτ/2 with 0 < τ ⩽ 1 affects

these terms:

sin(2(θn+πτ/2)) = sin(2θn)cos(πτ)+cos(2θn)sin(πτ),
cos(2(θn+πτ/2)) = cos(2θn)cos(πτ)− sin(2θn)sin(πτ).

Therefore the minimal value of τ is τ = 1, whereby the mapping θnz→ θn+π/2 causes all entries of C to reverse their

sign. Since the size of the matrix is 2N ×2N, detC is invariant under this mapping.

The main part of this study is dedicated to gleaning the properties of the singular manifold detC = 0, as they

determine the extent of encumbrance imposed upon the flow field (2), or from a different point of view, the robustness

and controllability of (2) as a dynamical system. The fact that the dimension of this manifold is N-dependent, is a

harbinger of a singularity that is easy to encounter in a practical setting. Since the manifold is given in an implicit

form, begin by the illustration of particular cases with low N.

2.1. N = 2

For two sectors C is a full 4×4 matrix. Appealing to the technique of Schur complement, C is multiplied on the right

by ( I2×2 02×2

−A−1
2 B2 I2×2

), whereby the computation of detC reduces to that of a 2×2 matrix, since the determinant of

the foregoing auxiliary matrix equals unity. Upon simplification detC = 0 results in

cos(4(θ2−θ1)) = 1, (10)

and thence the candidate manifolds are θ2−θ1 = π/2 and θ2−θ1 = π . Upon a closer scrutiny it becomes apparent that

the latter is not a true singularity: equations (2b) on the ray θ2 enforce nought but periodicity and so are superfluous.

The remaining two equations on the ray θ1 do possess a unique solution. By contrast, the manifold θ2−θ1 =π/2 is truly

singular. Its dimension is only 1. In this case of the minimal number of sectors the ratios kn do not figure altogether.

This degeneracy does not occur for N > 2. The π/2 periodicity by corollary 1 is also degenerate in this case. Therefore

any configuration with a sector of a right angle and arbitrary permeabilities possesses no steady state solution. Since

physical systems do not support mathematical singularities, the dynamics in the proximity of the singular manifold

might evince abrupt transitions and possibly chaotic behaviour. The analysis below establishes that herein the nature

of the singularity begets a sudden shift of the flow field’s stagnation points. From the fluid dynamics perspective such

a shift means that exactly at the singular configuration no steady state exists, whilst in its vicinity the pressure contours

and hence streamlines must rearrange abruptly upon an infinitesimal change in the sector angles. This explains the

high uncertainty of the flow behaviour experienced in the field. The example for N = 2 allows to trace this mechanism

with relative ease before generalising the proof to an arbitrary configuration.

Since N = 2, a symmetry line bisects both sectors. As (1) is invariant with respect to translation in θ , it suffices

to consider just one orientation of this symmetry line, for instance the vertical. Then a1
(n)
2 = 0, n = {1,2}. The

singular configuration is θ1 = π/4 and θ2 = 3π/4. The following lemma delineates the dynamics in the vicinity thereof.

Arbitrary respective deviations ε1 and ε2 require centring, whereupon the configuration must be rotated to keep the

symmetry line vertical, resulting in anti-symmetric deviations ε1 = −ε2
def= ε .

Lemma 1. Let N = 2 and without loss of generality

p2
n = Cn

2Kn

⎧⎪⎪⎨⎪⎪⎩b1
(n)
0 +b2

(n)
0 lnr+ r2(−1+a1

(n)
2 sin(2θ)+b1

(n)
2 cos(2θ))⎫⎪⎪⎬⎪⎪⎭

be the solution (6) containing no harmonics with m > 2. Further let θ1 = π/4+ε and θ2 = 3π/4−ε , ∣ε ∣≪ 1. Then

(i) if critical points exist, they are saddle points located on the horizontal or vertical;

(ii) when ε changes sign, said saddle points abruptly shift from the horizontal to vertical or vice versa.
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Proof. System (7c) yields

a1
(n)
2 = 0, b1

(n)
2 = −sec(2ε), n = {1,2}. (11)

The derivative
∂ p

∂θ
is discontinuous on the contiguity rays. Therefore the critical points can only lie in a sector interior,

and henceforth in this proof the sector index is omitted to avoid notation cumbersomeness. Seeking possible critical

points (r∗,θ∗) in either sector by solving ∇p = 0 yields

b20

r∗
+2r∗(−1+b12 cos(2θ∗)) = 0, (12a)

b12 sin(2θ∗) = 0. (12b)

As b12 ≠ 0, by (12b) it follows that θ∗ assumes the values θ∗ = {0,π} or θ∗ = {π/2,3π/2}, bearing in mind that

symmetry across the vertical must be maintained. Thus if critical points exist, they must lie either on the horizontal or

vertical. Equation (12a) gives

2r2
∗ = b20

1+cos(2θ∗)sec(2ε) ∼ b20

sin(2ε)
cos(2θ∗) ,

where the asymptotic relation follows by ∣ε ∣≪ 1. The right-hand side must be positive. The coefficient b20 is fixed

given specific boundary conditions. Therefore if ε changes sign, cos(2θ∗) must follow suit. This is accorded by θ∗
“skipping” from the horizontal to vertical or vice versa.

It remains only to show that (r∗,θ∗) are indeed saddle points. To this end it is easier to write the solution in

Cartesian coordinates (the points’ location or type is not affected by the choice of coordinates) and temporarily set

C/(2K) = 1, since a positive scalar factor cannot affect the nature of the critical point. Thus

p2 = b10+
b20

2
ln(x2

+y2)+2a12xy+(b12−1)x2
−(b12+1)y2

.

It is necessary to show that the determinant of the Hessian matrix pxx pyy− p2
xy < 0, and in particular pxx pyy < 0 suffices.

Evaluation of these second order derivatives for θ∗ on the horizontal, using b20/r2
∗ = 2(1−b12), gives

pxx = 2

p
(b12−1), pyy = − 2

p
b12,

so that

pxx pyy = − 4

p2
sec(2ε)(sec(2ε)+1) ∼ − 4

p2
sec2(2ε) < 0,

where ∣ε ∣≪ 1 was used. Similarly for θ∗ on the vertical b20/r2
∗ = 2(1+b12) and

pxx = 2

p
b12, pyy = − 2

p
(b12+1),

giving

pxx pyy = − 4

p2
sec(2ε)(sec(2ε −1)) ∼ − 4

p2
sec2(2ε) < 0.

Figure 3 illustrates this phenomenon: in configurations comprising nearly right-angled sectors the stagnation

points abruptly shift from the line bisecting the two sectors to its perpendicular or vice versa. Note that in doing so,

the two points in the bottom sector in figure 3(a) are replaced by a single point situated at the same distance from the

well, whereas the new point in the top sector in figure 3(b) is much farther. Translating this to a practical situation,

suppose roughly a quarter of the medium to the north of a sparging or gas extraction well is of a distinct permeability.
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Figure 3. Pressure contours for configuration of lemma 1 with ε = 0.01π and k1 = 0.1. Diamonds mark saddle points. Note

that the saddle points lie on the horizontal in (a) and on the vertical in (b).

In the complementary sector – green / grey contours in figure 3(a) – the zone of influence is delimited by the largest

closed contour. Since traditional measurements assume a radius, i.e. a single scalar, the contour’s notably oblate shape

will result in a rather large discrepancy between monitoring points in the south versus east / west, in this example

about a factor of 2. Yet neither will be found consistent when juxtaposed with the virtually infinite radius of influence

suggested by monitoring points in the northern sector. Moreover, if in the course of a few weeks that sector shrinks

somewhat (e.g. due to changes in saturation) and the measurements are taken again, the readings at the southern and

eastern / western points will swap, whereas the formerly infinite northern one will suddenly become commensurate

with the rest. This kind of uncertainty is well familiar to field personnel monitoring the wells, and collected data

are wontedly cleaned heavily before becoming remotely presentable. This analysis suggests the inability to collect

consistent measurements, often blamed on instrumentation as well as external factors, is in fact an intrinsic property of

this type of flow. This behaviour is not unique to the configuration of two right-angled sectors and is further developed

hereunder.

2.2. N = 3

For N=3 the matrix C in (7c) has the form

C = ⎛⎜⎝
A1 B1

A2 B2

B3 A3

⎞⎟⎠ . (13)
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Figure 4. Singular manifold θ2(θ1) by (15) with k1 = 0.1, k2 = 100 (black) and k1 = 0.01, k2 = 1000 (green / grey). Dotted

vertical lines show the respective regularity corridors determined by equation (19) and geometrically corresponding to the

tangency points with the petal-shaped contours (marked by diamonds). The diagonal dotted line delimits the restriction

θ1 < θ2. Figure 6 gives corresponding f (θ1), equation (16a)

Due to the rotational invariance of (1) it is possible to take θ3 = 2π without loss of generality. Mutiplying C on the

right by
⎛⎜⎝

I2×2 02×2 02×2

02×2 I2×2 02×2

−A−1
3 B3 02×2 I2×2

⎞⎟⎠, it becomes evident that detC = 0 if and only if

det( A1 B1

B̃2 A2
) = 0, (14)

wherein the bottom left block B̃2 is given by

B̃2 = ( −k2c3 sin(2θ2) −k2k3 cos(2θ2)
−c2c3 cos(2θ2) k3c2 sin(2θ2) )

with cn and kn as defined beneath (7c). Computing this determinant, using trigonometric identities as well as

simplifying the products of the different combinations of cn and kn (all dependence on Cn disappears as expected),

gives

cos(4θ1){k̃12+ k̃13− k̃23−2}+cos(4θ2){− k̃12+ k̃13+ k̃23−2}+cos(4(θ2−θ1)){k̃12− k̃13+ k̃23−2} = k̃12+ k̃13+ k̃23−6,

(15a)

where

k̃i j = Ki

K j

+
K j

Ki

. (15b)
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Figure 5. Dependence of regularity corridors ∆θ1 on permeability of one sector. K1 = 10−7, K3 = 10−8.

Note that (15) is periodic with the requisite period π/2 in both θ1 and θ2. Bearing in mind the fixed ray θ3, this

corresponds to a 4-dimensional manifold in the space {θn}3
n=1⋃{ki}2

i=1, i.e. the maximal dimension given by theorem

1. Observe that k̃i j ⩾ 2 and for adjacent sectors the inequality must be strict. Therefore it follows that the manifold

dimension cannot be reduced via a degeneracy: e.g. attempt to remove the dependence on θ1 by equating the

coefficients of cos(4θ1) and cos(4(θ2 −θ1)) to zero. This forthwith implies that k̃12 = 2, a contradiction since any

two sectors out of the three are contiguous. A similar contradiction ensues when any other pair of coefficients in (15a)

enclosed in curly braces is let vanish.

Figure 4 depicts a typical cross-section of the singular manifold. Bearing in mind the limitation 0 ⩽ θ1 < θ2 < 2π ,

for most values of θ1 there are 4, 6 or 8 values of θ2 that conform to a singular configuration (a vertical line intersects

each petal-shaped contour twice, and the total number thereof includes the ones shown above the dotted line along

with replicas within π ⩽ θ2 ⩽ 2π). Proposition 1 proves this is so for any combination of permeabilities. Therefore an

arbitrarily chosen configuration is never far from a singular one and will manifest dynamics governed by a mechanism

similar to that in lemma 1, as is proved hereinafter in theorem 2.

Nonetheless there exist “corridors” of both θ1 and θ2 such that for a fixed value of one, the configuration is

non-singular for any value of the other. This happens when it is possible to draw a vertical or horizontal line on the(θ1,θ2) plane without intersecting any of the petal-shaped contours. In the example in figure 4 the horizontal regularity

corridors are wider than the vertical ones. The asymmetry exists since (15) is not invariant under the reflexion mapping

θ1 ←→ θ2. Furthermore, these corridors grow narrower as the disparity in permeability values increases: the green

contours leave little room to draw a line whilst avoiding all intersections. Figure 5 illustrates how the corridor width

∆θ1 diminishes if one sector’s permeability is gradually increased four orders of magnitude, opening a preferential

direction of flow. Realistic permeability values naturally span such a range. The respective interval of θ1, where no

choice of the ray θ2 will result in a singular configuration, quickly decreases two orders of magnitudes (the exemplary

linearity of the log-log dependence is unlikely to be a generic feature and is a topic of future study). Therefore if

a preferential flow direction exists, any given configuration is almost certainly close to a singular one, inducing the

sensitivity of the flow field and in particular the boundaries of the zone of influence to small changes in geometry.

Proposition 1. Let N = 3 and θ3 = 2π without loss of generality. Then there exists exactly one horizontal and one

vertical regularity corridor in any square representing one period of the manifold mnπ/2 ⩽ θn ⩽ (mn+1)π/2, n = {1,2}
and mn ⩾ 0 an arbitrary integer.
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Proof. Rearrange equation (15a) to read

sin(4(θ2+β)) = T0−T1 cos(4θ1)√
T 2

2 +2T2T12 cos(4θ1)+T 2
12

, (16a)

where

tan(4β) = T2+T12 cos(4θ1)
T12 sin(4θ1) (16b)

and

T0 = k̃12+ k̃13+ k̃23−6, T1 = k̃12+ k̃13− k̃23−2, T2 = −k̃12+ k̃13+ k̃23−2, T12 = k̃12− k̃13+ k̃23−2

are combinations of the coefficients k̃i j in (15b). The right-hand side of (16a) defines a function f (θ1)
f (θ1) = T0−T1 cos(4θ1)√

T 2
2 +2T2T12 cos(4θ1)+T 2

12

, (17)

and its values determine whether there is a solution θ2(θ1). A range of θ1 wherein ∣ f (θ1)∣ ⩽ 1 produces the contours

as in figure 4. A range where ∣ f (θ1)∣ > 1 conforms to the regularity corridors.

Differentiating f and seeking extrema gives two options:

sin(4θ1) = 0 (18a)

and

cos(4θ1) = −T0

T1

−
T2

T12

−
T12

T2

. (18b)

Limiting the values to one period, (18a) yields θ1 = 0,π/4. The values at these points are

f (0) = 1, f (π

4
) = k̃12+ k̃13−4∣k̃12− k̃13∣ .

Since the values of Kn must be distinct in adjacent sectors, k̃12 > 2 and k̃13 > 2, whereby f (π/4) > 1 and in particular

f (π/4) =∞ if k̃12 = k̃13. Suppose that (18b) has no roots. Bar the case k̃12 = k̃13, continuity will imply that θ1 = 0 must

be a minimum and θ1 = π/4 a maximum. This is impossible, as then f (θ1) ⩾ 1 ∀0 ⩽ θ1 ⩽ π/2, and the dimension of

the singular manifold is insufficient, as only point solutions θ2 will ensue. Therefore one infers that the points θ1 = 0

and θ1 = π/4 are both maxima and (18b) must have roots. A trigonometric equation of this type will produce exactly

2 roots per period, and thus these must be minima of f (θ1) located on two sides of π/4. For the case k̃12 = k̃13 the

maximum at π/4 becomes an asymptote, but f (θ1)Ð→∞ on both sides, so the analysis still holds. Thus between

the two minima and the maximum at π/4 lie two points θ1c such that f (θ1c) = 1. These delimit the only regularity

corridor in any one period of θ1 and are given by

T 2
1 cos2(4θ1c)−2(T0T1+T2T12)cos(4θ1c)+T 2

0 −T 2
2 −T 2

12 = 0 (19)

upon discarding the roots at multiples of π/2.

To obtain the result for the regularity corridor of θ2, swap θ1←→ θ2 and T1←→ T2. The analysis is identical, upon

verification that f (0) = 1 and f (π/4) > 1 still hold.

A typical graph of f (θ1) corresponding to the manifold in figure 4 is shown in figure 6. From proposition 1

it forthwith follows that the regularity corridors are centred about π/4, regardless of permeability ratios, for both θ1

and θ2 (with π/2 periodic replicas). Bearing in mind that θ3 = 2π and θ2 > θ1, but rotational translation is allowed,

one infers that unless one sector is of an angle approximately π/4 or 3π/4, most choices of angles for the remaining

two sectors will result in a proximity to a singular configuration, and thus measurements of the zone of influence are

expected to yield erratic results.
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Figure 6. Regularity corridor function: equation (17) with parameters and colour scheme as in figure 4

2.3. N = 4

Without loss of generality set θ4 = 2π . Partition the matrix C in (7c) into 4 square 4×4 blocks as follows:

C = ( C1 C2

C3 C4
)

and multiply on the right by ( I4×4 04×4

−C−1
4 C3 I4×4

) . Since C4 is block diagonal, its inversion involves minimal effort.

The resulting matrix is also block diagonal and requires to operate on 4×4 matrices to compute its determinant. The

determinant of the auxiliary matrix is unity. Upon simplification the singular manifold detC = 0 is given by

cos(4θ1){k̃12+ k̃13+ k̃14− k̃23− k̃24− k̃34+
˜̃k−2}+cos(4θ2){− k̃12+ k̃13+ k̃14+ k̃23+ k̃24− k̃34−

˜̃k−2}+
cos(4θ3){− k̃12− k̃13+ k̃14− k̃23+ k̃24+ k̃34+

˜̃k−2}+cos(4(θ2−θ1)){k̃12− k̃13− k̃14+ k̃23+ k̃24− k̃34+
˜̃k−2}+

cos(4(θ3−θ1)){k̃12+ k̃13− k̃14− k̃23+ k̃24+ k̃34−
˜̃k−2}+cos(4(θ3−θ2)){− k̃12+ k̃13− k̃14+ k̃23− k̃24+ k̃34+

˜̃k−2}+
cos(4(θ3−θ2+θ1)){k̃12− k̃13+ k̃14+ k̃23− k̃24+ k̃34−

˜̃k−2} = k̃12+ k̃13+ k̃14+ k̃23+ k̃24+ k̃34+
˜̃k−14,

(20a)

where ki j are as in (15b) and

˜̃k = K1K3

K2K4

+
K2K4

K1K3

. (20b)
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Figure 7. Singular manifold θ2(θ1;θ3) by (20) with k1 = 0.1, k2 = 20, k3 = 5

Including the fixed θ4, this is a 6-dimensional manifold in the parameter space {θn}4
n=1⋃{ki}3

i=1, the maximal

dimension predicted by theorem 1. No degeneracy is possible. For instance, to remove the dependence on θ1, four

coefficients in curly braces in (20a) must vanish:

k̃12+ k̃13+ k̃14− k̃23− k̃24− k̃34+
˜̃k−2 = 0,

k̃12− k̃13− k̃14+ k̃23+ k̃24− k̃34+
˜̃k−2 = 0,

k̃12+ k̃13− k̃14− k̃23+ k̃24+ k̃34−
˜̃k−2 = 0,

k̃12− k̃13+ k̃14+ k̃23− k̃24+ k̃34−
˜̃k−2 = 0.

Summing the first and second pairs, and then summing the resulting equations yields k̃12 = 2, a contradiction, since for

adjacent sectors k̃i j > 2. A similar process rules out a lesser dimension via the removal of the dependence on θ2 or θ3.

Figure 7 depicts an example of this manifold as 8 cross-sections of θ3. This time the petal-shaped loci shift

and change size asymmetrically, so the regularity corridors are tunnels of non-uniform cross-section and orientation.

Therefore any realistic configuration is always close to a singular one, giving rise to erratic results when the zone of

influence is probed in the field. Theorem 2 proves this result for an arbitrary configuration.
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2.4. Arbitrary N

Although a certain structure of the singular manifold does emerge from the comparison of the first two non-degenerate

cases (15) and (20), generalising to an arbitrary number of sectors appears convoluted. Nevertheless the π/2 periodicity

in all θn must hold. It can only be conjectured that the actual dimension 2(N −1) will remain non-degenerate. An

elegant implicit expression for the manifold can be obtained via an LU decomposition of C:

C =
⎛⎜⎜⎜⎜⎜⎝

I2×2

L21 I2×2

⋱ ⋱

I2×2

LN1 LN,N−1 I2×2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

A1 B1

A2 B2

⋱ ⋱

AN−1 BN−1

UNN

⎞⎟⎟⎟⎟⎟⎠
, (21a)

where An, Bn are defined beneath (7c) and

UNN =AN −(−1)NBNA1B1 × . . . × AN−1BN−1. (21b)

Since the determinant of the lower triangular matrix is unity and all blocks An, Bn are invertible, it follows that

detC = (−1)N det(I2×2−(−1)NA1B1 × . . . × ANBN). (22)

The precise shape of the singular manifold is required in order to differentiate between mathematically singular and

non-singular configurations. However, in practice this binary distinction is not particularly helpful, since a proximity

to a singularity suffices to induce structural inconsistencies in the underlying flow field. The following theorem

generalises lemma 1 to an arbitrary number of sectors and constitutes the salient conceptual argument in support

of the claim that the erratic zone of influence sampling results are in fact inherent to the weakly compressible flow

through a heterogeneous porous medium.

Theorem 2. Let N be the number of sectors. Without loss of generality the functions

p2
n = Cn

2Kn

⎧⎪⎪⎨⎪⎪⎩b1
(n)
0 +

1

2
b2
(n)
0 ln(x2

+y2)+2a1
(n)
2 xy+(b1

(n)
2 −1)x2

−(b1
(n)
2 +1)y2

⎫⎪⎪⎬⎪⎪⎭
conform to solution (6) with no harmonics of m > 2, coefficients bi

(n)
0 given by (9c) – (9d) and coefficients a1

(n)
2 , b1

(n)
2

as in (7c). Further let θ̄o define a N-tuple of contiguity rays such that system (7c) is singular, i.e. detC(θ̄o)= 0. Further

let θ̄ = θ̄o + εθ̄1 with θ̄1 ∼O(1) and ∣ε ∣≪ 1 define a configuration that is a small perturbation of the singular one.

Then in the respective flow field

(i) if critical points exist, they are saddle points;

(ii) there are at most two such points in any given sector;

(iii) when ε changes sign, said saddle points either shift abruptly by an angle of π/2 or disappear.

Proof. If existing, the critical points (r∗,θ∗) solve

b2
(n)
0

r∗
+2r∗(−1+a1

(n)
2 sin(2θ∗)+b1

(n)
2 cos(2θ∗)) = 0, (23a)

a1
(n)
2 cos(2θ∗)−b1

(n)
2 sin(2θ∗) = 0. (23b)

As the attention is on a specific sector where such points might exist, the superscripts might be omitted. To verify the

nature of these points, compute the second order partial derivatives and use (23b) to obtain

pxx(r∗,θ∗) = 2

p
(b12−cos2 θ∗), (24a)
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pyy(r∗,θ∗) = − 2

p
(b12+ sin2 θ∗) (24b)

and

pxy(r∗,θ∗) = 1

p
(2a12− sin(2θ∗)). (24c)

The Hessian matrix determinant is then

detH = pxx pyy− p2
xy = − 4

p2
(a1

2
2+b1

2
2−b12 cos(2θ∗)−a12 sin(2θ∗)). (25a)

By (23b) if b12 ≠ 0, tan(2θ∗) = a12/b12. Then by the identity 1+ tan2(2θ∗) = csc2(2θ∗)
cos(2θ∗) = ± b12√

a1
2
2+b1

2
2

, sin(2θ∗) = ± a12√
a1

2
2+b1

2
2

,

where the plus and minus signs must be respective, as cross-matching will contradict (23b). This allows to re-write

(25a) as

detH = − 4

p2

√
a1

2
2+b1

2
2

⎛⎝
√

a1
2
2+b1

2
2 ±1

⎞⎠. (25b)

If b12 = 0, by (23b) cos(2θ∗) = 0 since a12 ≠ 0, as is to be shown forthwith. Then sin2(2θ∗) = 1 and (25b) in fact

includes this as a particular case. Thus if a1
2
2 +b1

2
2 > 1, detH < 0 for all values of a12, b12, and the critical point must

be a saddle point. To see that it is impossible to have a12 = b12 = 0 in any sector, observe that system (7c) comprises

N −1 block equations of the form

Anc̄n+Bnc̄n+1 = r̄n, 1 ⩽ n <N (26a)

and one block of the form

B1c̄1+BN c̄N = r̄N , (26b)

where

c̄n = ⎛⎝ a1
(n)
2

b1
(n)
2

⎞⎠ , r̄n = ( 1−kn

0
) , 1 ⩽ n ⩽N.

Suppose c̄n∗ = 0̄ for some 1 < n∗ <N. Block n∗ in (26a) will immediately yield c̄n∗+1 and subsequent blocks will give

all c̄n for n∗+2 ⩽ n ⩽ N. Block n∗−1 in (26a) will yield c̄n∗−1 and similarly blocks 1 to n∗−2 will give all remaining

c̄n, 1 ⩽ n ⩽ n∗ −2. Then block (26b) renders the system overdetermined and becomes a contradiction. An identical

argument follows for n∗ = 1 or n∗ = N with (26a) solved block by block in a single sequence going either forwards or

backwards instead of both. Thus at least one of the coefficients a12, b12 in any sector must be non-zero.

The next step is to show that at least one out of a12, b12 exceeds unity in magnitude. For a configuration that is a

small perturbation of the singular one system (7c) can be written as

Cc = (Co+εC1+O(ε2))c = r, (27)

where Co = C(θ̄o) is singular and C1 = dCo

dθ

RRRRRRRRRRRθ̄o

. By Cramer’s rule the n-th entry of c is given by

c(n) = det C̃n

detC
, (28)

where C̃n is the matrix C with column n replaced by r. Similarly to the computation of the characteristic polynomial,

det(Co + εC1 +O(ε2)) will be a polynomial of order 2N in entries from εC1 +O(ε2), i.e. a power series in ε .
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However, since lim
εÐ→0

detC = detCo = 0, the free coefficient of the limit polynomial vanishes, whereas lim
εÐ→0

det C̃n ≠ 0,

giving a power series with a non-zero free coefficient. Therefore

c(n) ∼O(ε−1) . (29)

Thus as ε Ð→ 0, any non-vanishing coefficients a12, b12 exceed unity in magnitude and hence any critical point must

be a saddle point.

By (23b) the angle θ∗ is

θ∗ = 1

2

⎛⎝arctan
a12

b12

+πm
⎞⎠, (30)

where different values of the integer m must give distinct solutions within the same sector. Thus if the saddle point

“skips”, it can only be by an angle of π/2 or π (clockwise or counter-clockwise). By (23a)

2r2
∗ = b20

1−a12 sec(2θ∗) (31a)

if sin(2θ∗) ≠ 0, and

2r2
∗ = b20

1−b12 csc(2θ∗) (31b)

if cos(2θ∗) ≠ 0. At the limit ε Ð→ 0 the estimate (29) respectively implies

r2
∗ ∼ const ⋅cos(2θ∗)ε +O(ε2) , sin(2θ∗) ≠ 0, (32a)

r2
∗ ∼ const ⋅ sin(2θ∗)ε +O(ε2) , cos(2θ∗) ≠ 0. (32b)

Therefore if ε changes sign, the saddle point must shift its location abruptly because r2
∗ > 0. A skip of π does not alter

the sign of sin(2θ∗) and cos(2θ∗), but implies that if that skip falls within the same sector, there must be two saddle

points and no more. Thus either the angle θ∗±π/2 puts the point within the same sector, begetting the required shift,

or the new angle is outside the sector, and the saddle point will disappear. Either possibility does not bar appearance

of new saddle points in other sectors.

Figure 8 illustrates this behaviour for N = 3. Note that in panel (a) there is a single saddle point in sectors 2 and

3. In panel (b) ε changed sign, causing the point in sector 2 to disappear because an angle skip of π/2 would place

it outside its sector, whereas the point in sector 3 follows through with the required shift, morphing into two points

located on a perpendicular line.

The main practical inference to be made from theorem 2 is that the abrupt shifting of the saddle points in the

vicinity of a singular configuration is the generic behaviour. The exposition on the frequency of occurrence of singular

configurations compels the conclusion that a given configuration of a specific well site is very likely to fall close to

a singular one. In conjunction with the understanding that disparity in permeability ratios of the different sectors

will beget critical points, even small fluctuations in the sectors’ angles will induce rapid transitions of pressure and

streamlines between acutely differing steady states. This establishes the theoretical basis for the strong fluctuations

routinely encountered in the field. The critical points of the pressure field correspond to flow stagnation points as well

as the farthest points of the separatrix pressure contour that delineates the zone of influence within each sector. A

sudden rearrangement of these points causes a disruption in the flow field and thus ineffective well function.

3. Discussion

Locally radial flow from or toward a well of a weakly compressible fluid through a porous medium underpins efficient

performance of numerous environmental engineering applications from aquifer sparging to landfill gas and natural

gas extraction. The zone of influence of such a well has traditionally been described by a single scalar referred to
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Figure 8. Pressure contours for the singular configuration θo1 = π/8, θo2 ≈ 1.61655, θo3 = 2π with θ̄1 = (−1,1,0)T. (a)

ε = 0.01π , (b) ε = −0.01π . k1 = 0.1, k2 = 100. Diamonds mark saddle points.

as a radius, adopted from the field of hydraulic wells, where it also enjoys some controversy (Bresciani et al., 2020).

For want of a better alternative, this concept is predominant despite long-standing and well documented difficulties

in measuring or even defining the radius of influence in practice. Most practical definitions select a threshold that is

often chosen after the data are collected and cleaned, be they field measurements or computational results: a certain

head loss that is deemed undetectable and usually depends on the instrumentation employed; or an arbitrary drop in

the concentration of dissolved oxygen; or in numerical simulations a given number of orders of magnitude that the

radial velocity (proportional to the gradient of pressure) must diminish relative to the value at the well before the

collection of fluid or dispersion of injected fluid is considered ineffectual. Whilst any individual choice might be well

substantiated, collectively the ambivalence is staggering. The struggle to define and quantify the radius of influence

makes it abundantly clear there must be an essential flaw in this concept as applied to this type of flow.

Whilst the dependence of a well’s reach on depth figured in both experimental and numerical studies, one aspect

that has been consistently overlooked is the possible azimuthal dependence. The wide class of exact flow solutions

with azimuthally discontinuous permeability accords an explanation of the difficulty to measure or predict the radius

of influence accurately from a unique vantage point. The natural terrain around an aquifer or natural gas deposit, as

well as the man-made landfill medium, is heterogeneous, at times highly so. There are preferential directions of flow

due to differences in the matrix saturation or density. These can be relatively large sectors, such as a rock massif or

highly compacted waste cell, or constitute no more than a sliver of a less resistant medium, as in hydraulic fracturing.

This solution class encompasses all of the foregoing situations and harbours two mathematical properties that translate

directly into the inability to attain a well-posed description of the radius of influence.

One, the broken axial symmetry begets a zone of influence that cannot be captured by a single scalar, as the

contours are no longer concentric circles, but oblate shapes with non-smooth boundaries. This feature compels an

adjustment of the classical notion of a radius into a range delimited by the farthest and nearest points on the largest

closed (separatrix) contour. The azimuthal variation accounts for the large errors – tens to hundreds of per cent –

observed when the monitoring points are not situated on a straight ray emanating from the well centre.
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The second property elucidates the abrupt and defying all conventional modelling temporal changes. These

have been correctly attributed to fluctuations in medium permeability due to saturation or similar natural qualitative

variation outside of the well operators’ control and only detectable with the aid of advanced tri-dimensional imaging.

The foregoing class of solutions is heavily ridden with singularities, formally expressed via the co-dimension of the

singular manifold within the parameter space. The preliminary physical parameter space has dimension 3N with N

being the number of sectors of distinct permeabilities and/or generation rates. When these are grouped into ratios, the

effective dimension is deff = 3N −2. For any N > 2 the co-dimension of the singular manifold is dsing = 2(N −1). For

N =2 the manifold is degenerate with a co-dimension of unity. It follows that for any N >2 the dimension of the singular

manifold always exceeds that of its regular complement dreg = 3N−2−2(N−1) =N, since 2(N−1) >N. If some of the

sectors possess the same generation rate, the dimension of the regular subspace is further reduced, as deff diminishes,

whilst dsing remains fixed, because the generation rates do not participate in the structural mechanism responsible for

the formation of the singular manifold. In the most extreme, but realistically likely, case of an equal generation rate

throughout the domain, deff = 2N, dsing = 2(N −1), whilst dreg = 2. In reality the flow field in a domain corresponding

to a singular configuration would be unsteady. The disparity of the steady flow fields in the vicinity of a singularity

determine the severity of the required transition. Herein it was shown that the change is indeed momentous – stagnation

points shift to a perpendicular line and/or appear or disappear. As the separatrix contour defining the zone of influence

must pass through these points, the abruptness of the ensuing adjustment explains the inconsistence encountered whilst

attempting to measure descriptive flow parameters such as pressure or solute concentration that bear on the zone of

influence.

For a low number of sectors 3 ⩽ N ⩽ 4 it was shown explicitly that most configurations are never far from a

singular one. Whilst regularity tunnels do exist, they are narrow and permeability dependent. Fast permeability

fluctuations caused by such factors as water table, leachate levels etc. might easily cause a transition through a singular

configuration, engendering a qualitative change in pressure contours and gradients, location of stagnation points and

consequently the shape and orientation of the contour delimiting the zone of influence.

To conclude, the weakly compressible flow in a porous medium with azimuthally discontinuous permeability is a

fascinating dynamical system with a complex pattern of singularities, whose most notable feature is a pronounced shift

in the flow characteristics in the vicinity thereof. This quality was used to interpret the enduring difficulty to measure

and predict the radius of influence of wells in environmental engineering applications as an intrinsic peculiarity of the

weakly compressible flow in an anisotropic porous medium. It was shown that a more adequate description would be

a zone of influence, whose azimuthal dependence is considered in field studies.
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