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A wide class of exact solutions to equations of steady flow of ideal gas in a porous medium is obtained in a planar

annular domain comprising sectors of distinct permeabilities. The formulation involves an unconventional Sturm-

Liouville problem. The class also admits solutions to configurations with respective distinct generation rates. The

solutions are expected to be applicable to landfill gas (LFG) or natural gas extraction. The breaking of axial symmetry

enables realistic modelling of the radius of influence for both horizontal and vertical wells. The analysis proves that

the well’s reach would have an azimuthal dependence in any problem with a heterogeneous medium. Therefore it is

suggested that the concept of radius of influence as perceived today be revised.

I. INTRODUCTION

Studies of flow through porous media date as far back as

mid nineteenth century and are underpinned by the matrix re-

sistance to flow, quantified through the concept of permeabil-

ity. A seminal description of the factors salient in its estima-

tion was given by Carman 1 . In the vast majority of appli-

cations the permeability is taken as a single effective value

to circumvent analytical difficulties. Over the years a small

number of breakthrough studies reported solutions with a non-

constant permeability. The first appears to be Cheng 2 , solv-

ing an incompressible flow, where the square root of the con-

ductivity k (a parameter better suited for hydraulic problems,

but mathematically equivalent to permeability) is taken to be

a harmonic function, i.e. ∆
√

k = 0, enabling a solution via

Green’s function. Several explicit forms of k(x,y) are anal-

ysed, interestingly leading to radial functional shapes typi-

cal of flow in cylindrical coordinates: lnr associated with the

source or sink potential flow as well as Bessel functions of r.

Thereupon Chandrasekhara 3 obtains similarity solutions for

a mixed convection boundary layer with heat transfer subject

to an exponential variation of permeability for a plate as well

as over a wedge4. Rees and Pop 5 revisit the system studied

in Chandrasekhara 3 15 years later, giving an asymptotic so-

lution. The next results are by Hamdan and Kamel 6 , who use

a quadratic permeability function in the analysis of convec-

tion in a channel, and Capone, Gentile, and Hill 7 , studying

a fluid with a prescribed dependence of density on tempera-

ture penetrating a medium with a generic non-smooth perme-

ability function. Around the same time Ciriello et al. 8 stud-

ied the flow of an incompressible fluid under gravity with the

permeability varying as a power law, possibly fractional; the

flow between two coaxial stationary9 and rotating10 cylinders

was solved with either linear or quadratic radial variation of

permeability; and Verma and Datta 11 solved the flow past a

porous sphere, whose permeability is a function of radial dis-

tance.

The paucity of analytical studies attests to the difficulties

associated with the mathematical analysis of systems with

variable permeability. The current contribution reports new

exact solutions with a discontinuous piecewise constant per-

meability function k(θ) for the flow of an ideal gas in polar
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FIG. 1. Domain configurations and notation

geometry. To the best of the authors’ knowledge, this is the

only study in existence to date on an azimuthal variation of

permeability. The results are expected to be applicable in en-

vironmental gas problems such as landfill gas flow or extrac-

tion of natural gas. For instance, in the problem of a perfo-

rated horizontal landfill well it was shown that the derivatives

in the longitudinal direction were small, so that within a cross-

section the flow could be approximated as planar12.

II. GEOMETRY AND FLOW EQUATIONS

Consider a planar annular domain represented in polar co-

ordinates (r,θ) as [rP rX ]×(−π π], where rP and rX stand

for inner and outer radii. The annulus is divided into N sec-

tors filled with porous media of constant permeabilities ks,

s = {1, . . . , N}, such that ks ≠ ks+1 for any 1 ⩽ s <N and kN ≠ k1.

For brevity notation of the type ( ⋅ )s = ( ⋅ )s+1 will tacitly im-

ply the wrapping condition ( ⋅ )N+1 = ( ⋅ )1 throughout via the

statement 1 ⩽ s ⩽ N. The indexing of contiguity rays θs and
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sector permeabilities ks is counter-clockwise with the first ray

θ1 ⩾ 0 and k1 assigned to the sector immediately preceding θ1.

Consult the example in figure 1(c).

In environmental applications such as landfill gas or natural

gas flow it is reasonable to expect that effective values can be

assigned to given regions, computed according to Carman 1 or

otherwise estimated. A steady flow field of ideal gas through

a porous medium entails conservation of mass13

1

r

∂

∂ r
(rρu)+ 1

r

∂

∂θ
(ρv) =C, (1a)

and balance of momentum, alias Darcy’s law14

u = − k

µ
∇p = − k

µ

⎛⎝∂ p

∂ r
,

1

r

∂ p

∂θ

⎞⎠
T

, (1b)

wherein u = (u, v)T is the velocity vector with u and v radial

and azimuthal components respectively, and the permeability

k is a function of θ . Fluid pressure is denoted by p and den-

sity – by ρ , related through the ideal gas equation p = ρRT ,

where R is the gas constant and T – temperature. For the pur-

pose of this derivation it is assumed the system is under ther-

mal equilibrium and the temperature field can be represented

by an effective value, as is the case in landfill gas flow15. C

is the generation rate and µ – fluid viscosity. If the gas is a

mix, R is given by R = Ro /∑
i

xi Mi, where Ro is the univer-

sal gas constant, and xi, Mi are the components’ molar frac-

tions and weights. Then µ is computed according to David-

son 16 . Equation (1b) does not include velocity components

induced by the gravitational force. A conjunction of circum-

stances, with boundary conditions being a prominent factor,

might render gravity non-negligible17. Notwithstanding, this

assumption served to obtain analytical solutions in vertical18,

horizontal and spherical geometry19 with a uniform perme-

ability, and is inevitable within the current more complicated

framework.

As a first step consider the generation rate to be identical

in all sectors. Combining all of the above yields a system of

equations for the pressure ps in each sector of permeability ks:

∂

∂ r

⎛⎝ksr
∂ p2

s

∂ r

⎞⎠+ ∂

∂θ

⎛⎝ks

r

∂ p2
s

∂θ

⎞⎠ = −2µRTCr, s = {1, . . . , N}.
(2)

To cast (2) into a dimensionless form select characteristic

scales r̄ and p̄ and map psz→ p̄ps, rz→ r̄r. Then ksz→ ksr̄
2

and Cz→C/µ̃ define the corresponding non-dimensional per-

meability and generation rate, where µ̃ = µRT /p̄2 is a com-

pound that will be used throughout for brevity. Hence

∂

∂ r

⎛⎝ksr
∂ p2

s

∂ r

⎞⎠+ ∂

∂θ

⎛⎝ks

r

∂ p2
s

∂θ

⎞⎠=−2Cr, s= {1, . . . , N}, (3a)

where all quantities are non-dimensional. In order to effect

correct matching of solutions in the different sectors, the fol-

lowing conditions must hold on the contiguity rays θs: conti-

nuity of pressure (and consequently its square and radial ve-

locity u)

p2
s(r,θs) = p2

s+1(r,θs), 1 ⩽ s ⩽N, (3b)

and azimuthal velocity v

ks
∂ p2

s

∂θ

RRRRRRRRRRRθ−s = ks+1

∂ p2
s+1

∂θ

RRRRRRRRRRRθ+s , 1 ⩽ s ⩽N. (3c)

The continuity of v is imbedded in (3a), as equation (3c) en-

sues by integration of (3a) over the interval (θs − ε , θs + ε),
taking the limit ε Ð→ 0 and using the fact that p is contin-

uous. Equation (3c) implies that the function p2 belongs to

the C0 differentiability class, i.e. continuous, but not differen-

tiable with respect to θ on the rays θs. Each sector must be of

a sufficient volume to constitute an isotropic porous medium.

System (3) cannot be used where the permeability k exhibits a

strong continuous variation in the azimuthal direction requir-

ing a fine discretisation for adequate representation. To com-

plete the problem, boundary conditions on the annulus must

be set. These can be of either Dirichlet

p(rP,θ) = pP, p(rX ,θ) = pX (4a)

or Neumann type

− rP,X

2µ̃ ∫
π

−π

k
∂ p2

∂ r

RRRRRRRRRRRrP,X

dθ = fP,X , (4b)

where pP,X and fP,X are specified pressure and normal flux

values at radii rP,X (all dimensionless). Whilst (4) fulfil the

formal requirements of the problem statement, later on in the

interest of attaining exact solutions these boundary conditions

will be modified slightly. In the problems of landfill gas or

natural gas extraction pP < pX , so that the fluid flows inwards.

Nonetheless the solution class given below allows for outward

flow in the same degree.

III. BASIC SOLUTION

This section develops the basic solution in a single sector

that is essential in construction of the full class of exact solu-

tions to (1) in the annular domain. The subscript s is omitted

for simplicity. First observe that substituting

p2 def= P(r,θ) = P̃(r,θ)− C

2k
r2 (5)

in (3a) gives a homogeneous equation for P̃, soluble with the

technique of separation of variables:

r
∂

∂ r

⎛⎝r
∂ P̃

∂ r

⎞⎠+ ∂ 2P̃

∂θ 2
= 0. (6)

Writing P̃(r,θ) =A(r)B(θ) and separating r and θ dependent

terms in (6) results in

(rA′)′ r

A
= −B′′

B
= α2

, (7)

wherein α is a constant, generally complex, and neither A nor

B vanishes. Since in this context one is interested in peri-

odic solutions, α2 ⩾ 0, so in fact α ∈ R. Thus the solution
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space of B is spanned by {sin(αθ), cos(αθ)}when α ≠ 0 and{1, θ} if α = 0. The solution B = θ is not periodic and must

be discarded. The respective solution space of A is spanned

by {rα
, r−α} when α ≠ 0 and {1, lnr} if α = 0.

Limiting this basic derivation to configurations symmetric

across the vertical will ultimately allow to write the solutions

for unrestricted configurations more elegantly. Thus imposing

B(π/2+θ) = B(π/2−θ) results in the eigenvalues α = 1+2n

and α = 2n for the sine and cosine eigenfunctions respectively

with n ⩾ 0 an integer. This preliminary eigenfunction basis is

orthogonal and complete (subject to the symmetry condition).

Hence by linearity of (3a), introducing arbitrary constants ain

and bin, i = {1,2}, and combining all foregoing solutions in

(5) yields

P = − C

2k
r2+b10+b20 lnr+

∞

∑
n=0

(a1nr2n+1+a2nr−(2n+1))sin((2n+1)θ)+ ∞∑
n=1

(b1nr2n+b2nr−2n)cos(2nθ). (8)

Hereinafter this solution is used to construct a flow field in an

annular domain. In a conventional Sturm-Liouville problem

the coefficients in (8) would have served to satisfy bound-

ary conditions, and completeness of the eigenfunction basis

would have been imperative to allow for generic boundary

functions. By contrast, herein these coefficients must be set

so as to create a valid flow field with the pressure and radial

velocity continuous on the contiguity rays. This curtails the

genericity of acceptable boundary conditions, whereby the en-

suing eigenfunction basis, albeit orthogonal, is not complete.

Remark 1 For n= 1 the functional shape of the term r2n in the

single sector solution (8) matches the generation term in (5).

This coincidence is crucial to the existence of exact solutions

in an annular domain.

Remark 2 For a solution not encumbered by symmetry across

the vertical two additional sequences would be present, corre-

sponding to sin(2nθ) and cos((2n+1)θ). However, if there

is symmetry across a different diametral line, solution (8) can

be rotated accordingly, as the governing equations (1) are in-

variant under the mapping θ z→ θ +θ∗ for an arbitrary rota-

tion angle θ∗.

IV. SEMI-CIRCULAR CONFIGURATION

This is the simplest annular solution available in the class

endowed by (8) and of twofold value. One, it elucidates which

structural aspects of (8) are imperative to satisfy (3b) and (3c),

thereby creating a valid annular solution. Two, it is forthwith

likely to find application in the area of environmental gas ex-

traction. For instance, in the problem of landfill gas flow to-

ward a horizontal well12,19 planar analytical flow solutions use

an effective permeability value, whilst experience indicates

that the natural settlement of the waste lamina significantly

affects the deeper part of the landfill20,21. Therefore it will be

beneficial to assign distinct permeability values to the top and

bottom halves thereof. In the problem of a vertical well a sim-

ilar division of landfill waste or soil in a natural gas extraction

site into two hollow semi-cylinders of distinct permeability

might prove equally useful where material differences in ma-

trix properties are present, such as fractured rock22.

Returning the attention to the planar domain, by remark 2

the division line might be set at horizontal without loss of gen-

erality. The configuration is shown in figure 1(a). All coeffi-

cients in (8) as well as the function P now bear a parenthesised

superscript indicating the relevant sector, respectively ( ⋅ )(1)
and ( ⋅ )(2) for bottom and top. Equations (3b) and (3c) must

hold on contiguity rays θs = 0,π , but it is immediate that both

angles give identical equations. Equating coefficients of terms

of distinct radial dependence yields

bi
(1)
0 = bi

(2)
0 , i = {1,2}, (9a)

k1ai
(1)
n = k2ai

(2)
n , i = {1,2}, n ⩾ 0, (9b)

b2
(1)
n = b2

(2)
n , n ⩾ 1; b1

(1)
n = b1

(2)
n , n ⩾ 2;

b1
(1)
1 = b1

(2)
1 +

C

2

⎛⎝ 1

k1

− 1

k2

⎞⎠. (9c)

Implementing boundary conditions of the Dirichlet type on

the inner and outer top semi-circle (e.g. imposed well pressure

pP and a higher pressure pX > pP on the outer boundary)

P(2) (rP,θ) = p2
P, P(2) (rX ,θ) = p2

X (10a)

gives ai
(2)
n = 0 ∀n ⩾ 0 and bi

(2)
n = 0 ∀n ⩾ 1 for i = {1,2}. A

similar result follows from an identical condition on the in-

ner semi-circle in conjunction with a zero flux outside (sealed

boundary):

P(2) (rP,θ) = p2
P,

∂P

∂ r

(2)RRRRRRRRRRRrX

= 0. (10b)

For n= 0 by (9a) it is possible to define bi
(s)
0

def= bi0, whereupon

conditions (10a) and (10b) give

b20 =
⎛⎝p2

X − p2
P+ C

2k2

(r2
X − r2

P)⎞⎠/ ln
rX

rP

(11a)
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FIG. 2. Relative difference between pressure as given by exact solu-

tion (12) and boundary value pP. k1 = 1e−08m2, k2 = 1e−06m2. All

other parameters listed in appendix A

and

b20 =
C

k2

r2
X (11b)

respectively, and for both

b10 = p2
P+ C

2k2

r2
P−b20 lnrP. (11c)

Therefore for 0 ⩽ θ ⩽ π

P(2) = − C

2k2

r2+b10+b20 lnr, (12a)

and for −π ⩽ θ ⩽ 0

P(1) = C

2
r2

⎧⎪⎪⎨⎪⎪⎩
⎛⎝ 1

k1

− 1

k2

⎞⎠cos(2θ)− 1

k1

⎫⎪⎪⎬⎪⎪⎭+b10+b20 lnr, (12b)

where bi0 are given by (11).

Remark 3 The matching conditions (3b) and (3c) in conjunc-

tion with the boundary conditions of the top semi-annulus de-

termine the state on the boundaries of the bottom one. This

elicits the question to what extent this departs from the bound-

ary pressure and flux values prescribed in (10). The answer

lies in the magnitude of the oscillatory term in (12b). Figure 2

depicts the comparison for the case of a typical medium sized

landfill, illustrating that the difference is negligible even when

k1 and k2 differ by two orders of magnitude, and the gener-

ation rate value is purposely taken very large (appendix A).

In other configurations the magnitude of the undesired term

might be more tangible, however exact solutions often come

with limitations, and here these stem from the required conti-

nuity of the radial velocity u across contiguity rays.

Remark 4 For the application of a horizontal landfill well it

stands to reason to impose boundary conditions on the top

sector, where there is control of the surface state. However, it

is equally possible to implement the boundary conditions on

the bottom sector if the problem formulation calls for that.

Remark 5 More complicated boundary conditions involv-

ing higher azimuthal frequencies are possible. The usual

Fourier series expansion technique will furnish the coeffi-

cients. Herein this option is foregone, since as explained in

remark 3, the qualitative impact thereof is negligible in the

example problem of the horizontal landfill well; and in prac-

tice the implementation of such conditions is unlikely.

V. TWO UNEQUAL SECTORS

To solve a configuration of the type shown in figure 1(b)

a similar analysis is performed, however more caution is re-

quired. The technical detail appears in appendix B. Imple-

mentation of boundary conditions (10) as they are is impossi-

ble, however for a slight modification

p(rP,X ,θ) = pP,X

¿ÁÁÁÀ1+ Cr2
P,X

2k2 p2
P,X

cos(2θ)
cos(2θo) , (13)

where a calculation as in figure 2 proves the additional terms

have negligible qualitative impact, one gets

P(s) = C

2ks

r2⎛⎝ cos(2θ)
cos(2θo) −1

⎞⎠+b10+b20 lnr,

s = {1,2}, θs−1 ⩽ θ ⩽ θs, (14)

with θo denoting the angle contiguity rays make with the hor-

izontal line as marked in figure 1(b), and bi0, i = {1,2}, as in

(11). Note the elegant symmetry between the two sectors’ so-

lutions. In fact it is possible to achieve the same symmetry

in (12) by “transferring" the term with k2 in (12b) to (12a),

but then the boundary condition on the top semi-annulus will

have to be as in (13). Fortunately the contribution to the total

radial flux on either boundary (or any circle concentric with

the annulus) vanishes, as can be seen by integrating

∫
π

−π
ρurdθ = − r

2µ̃ ∫
π

−π

k(θ)∂P

∂ r
dθ , (15)

where a full cycle integral on cos(2θ) will yield zero.

Remark 6 The temporary restriction of vertical symmetry is

relaxed in any two sector configuration as in remark 2: for

a symmetry line tilted off the vertical at angle θ∗ the rotation

P(s)(r,θ)z→ P(s)(r,θ −θ∗) provides the desired result.

Remark 7 Solution (14) is invalid for θo = π/4. There exists

no steady flow solution for this case, as equations (3b) and

(3c) cannot be satisfied. Consult appendices B and D for de-

tail.
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VI. N ARBITRARY SECTORS

Implementing the lessons on structural aspects imperative

to attain an exact solution and relaxing the symmetry con-

straints, the solution for a generic configuration as in figure

1(c) is of the form

P(s) = C

2ks

r2(a(s) sin(2θ)+b(s) cos(2θ)−1)+b10+b20 lnr,

θs−1 ⩽ θ ⩽ θs, s = {1, . . . , N}. (16a)

The full derivation appears in appendix C. The coefficients

a(s) and b(s) satisfy an (almost) block bi-diagonal linear sys-

tem of equations of size 2N×2N:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B1

A2 B2

⋱ ⋱
AN−1 BN−1

BN AN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

⋮
cN−1

cN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1

r2

⋮
rN−1

rN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(16b)

where

As = ( sin(2θs) cos(2θs)
cos(2θs) −sin(2θs) ) , (16c)

Bs = ( −k
(s)
r sin(2θs) −k

(s)
r cos(2θs)

−cos(2θs) sin(2θs) ) , (16d)

cs = ( a(s)

b(s)
) , rs = ( 1−k

(s)
r

0
) , k

(s)
r =

ks

ks+1

, (16e)

and as before the index s+1 wraps back to 1 for s = N, and

is also the reason for the block BN appearing in the bottom

left corner, breaking the perfect bi-diagonality. For most con-

figurations the determinant of the matrix in (16b) is not zero,

begetting a unique solution. For N = 2 and θ2 = π −θ1 solu-

tion (14) is recovered upon inversion thereof (the algebra is

somewhat tedious, but elementary). Similarly to the case of

two sectors, the boundary conditions on one sector (denote it

by s∗) must be

p(rP,X ,θ)/pP,X =

¿ÁÁÁÀ1+ Cr2
P,X

2ks∗p2
P,X

(a(s∗) sin(2θ)+b(s∗) cos(2θ)) ,

θs∗−1 ⩽ θ ⩽ θs∗ , (17)

and the state on the boundaries of the remaining sectors is

determined by continuity therewith.

VII. DISTINCT GAS GENERATION RATE

All foregoing solutions can be summarily extended to ac-

commodate distinct generation rates Cs in each of the sectors.

The continuity of azimuthal velocity – equation (3c) – is not

affected. For two semi-circular sectors equations (12) become

P(2) = − C2

2k2

r2+b10+b20 lnr, (18a)

P(1) = r2

2

⎧⎪⎪⎨⎪⎪⎩
⎛⎝C1

k1

−C2

k2

⎞⎠cos(2θ)−C1

k1

⎫⎪⎪⎬⎪⎪⎭+b10+b20 lnr. (18b)

For two unequal sectors the counterpart of (14) is

P(s) = r2

2

⎛⎝bs
cos(2θ)
cos(2θo) −

Cs

ks

⎞⎠+b10+b20 lnr,

θs−1 ⩽ θ ⩽ θs, s = {1,2}, (19a)

where the coefficients bs are given by

b1 =
⎛⎝C2

k2

−C1

k1

⎞⎠ k2

k1−k2

, b2 =
⎛⎝C2

k2

−C1

k1

⎞⎠ k1

k1−k2

. (19b)

For N sectors system (16) morphs into

P(s) = r2

2

Cs

ks

(a(s) sin(2θ)+b(s) cos(2θ)−1)+b10+b20 lnr,

θs−1 ⩽ θ ⩽ θs, s = {1, . . . , N}, (20a)

with the coefficients a(s) and b(s) satisfying a system of the

same form as (16b), upon amending the matrix Bs to read

Bs =
⎛⎝ −k

(s)
r sin(2θs) −k

(s)
r cos(2θs)

−c
(s)
r cos(2θs) c

(s)
r sin(2θs)

⎞⎠ , (20b)

wherein c
(s)
r = Cs+1/Cs is the generation ratio of adjacent

sectors, and the quondam permeability ratio is redefined as

k
(s)
r = (ks/ks+1)c(s)r . Then the expressions given for the right

hand side vectors rs in (16) remain correct, but contain the

redefined values of k
(s)
r .

Remark 8 Following the algebra outlined in appendix D for

N = 2 gives

det(B−1
1 A1 − A

−1
2 B2) = −(c(2)r − k

(2)
r )2

sin2 (2(θ2 − θ1)).
Therefore the additional degrees of freedom accorded in this

section do not affect the determinant roots altogether and the

singularity corresponding to one sector being right angled

still stands. For singularity analysis consult appendix D.



6

VIII. APPLICATION TO A HORIZONTAL LANDFILL GAS

WELL

Hitherto the assumption of axial symmetry was inevitable

if an analytical solution was to be obtained for this problem19,

whilst in reality the pressure isocontours are evidently not cir-

cular. Some numerical studies broke this symmetry, with ap-

proaches ranging from the introduction of multiple layers of

permeability decreasing with depth23 and to drawing attention

to the fact that gravity might not be negligible, as it affects

not only the balance of vertical momentum, but also the Neu-

mann boundary conditions17. The new exact solutions found

here admit a realistic asymmetric distribution of the pressure

isocontours, as is illustrated below.

Another modelling aspect these solutions inadvertently

ameliorate is the implementation of boundary conditions on

the outermost circumference of the domain. Pervading the

literature in this area, boundary conditions follow the math-

ematical convention of Dirichlet and Neumann type condi-

tions. The only justified condition is that of zero flux on a

sealed boundary, however that conforms to reality only in a

rectangular domain. Mathematical convention aside, in this

problem the desirable state would be not to have to specify a

boundary condition anywhere, but on fully sealed boundaries

or surfaces open to the atmosphere. Since a circular outer-

most boundary could only approximate a realistic domain of

an inscribing square (the corners are expected to have minor

qualitative effect due to proximity to the boundary), the circu-

lar boundaries cannot be modelled as fully sealed. Therefore

the fact that the solutions given herein require a boundary con-

dition only in one sector (chosen as the top one), renders the

modelling more realistic. Top sectors of an angle less than π
will further reduce the undesired prescription of pressure on a

boundary that does not coincide with the surface.

A. Two sectors

Figure 3(a) depicts the flow field with permeabilities dif-

fering by one order of magnitude. There are two attributes

of note. One, the open bottom contours are almost normal to

the boundary, indicating little radial flow, a physical feature

previously sought in numerical simulations with a rectangular

domain,17,23 and now attained analytically. Two, the marked

saddle point implies the existence of a stagnation point about

two thirds of the landfill depth below the well. The notion of

the radius of influence, whilst being a well understood quan-

tity in hydraulic wells, in the problem of landfill gas flow

remains moot. The scarce methods suggested to define and

calculate it appeared to overestimate reality and furthermore

were fraught with complexity that hindered their implemen-

tation in practice. The solutions given here are accessible to

field operators and yield the radius of influence graphically as

the distance of the largest closed contour from the well. Usage

of these estimates in modelling of specific landfills is a sub-

ject of future studies with the aim to determine whether they

represent reality more faithfully.
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FIG. 3. (a) Pressure contours by (12) at 15 equally distributed values

in the range [pP pX ]. θ1 = 0, θ2 = π . k1 = 1e−07m2 (green / grey),

k2 = 1e−06m2 (black). The diamond marks the stagnation point. All

other parameters listed in appendix A. (b) Respective velocity vector

orientation by (1b). Note the arrows’ length is not to scale and they

represent local flow direction only
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FIG. 4. Pressure contours by (12) at 15 equally distributed values in

the range [pP pX ]. θ1 = 0, θ2 = π . k1 = 1e− 08m2 (green / grey),

k2 = 1e−06m2 (black). The diamond marks the stagnation point. All

other parameters listed in appendix A
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FIG. 5. Pressure contours by (14) at 15 equally distributed val-

ues in the range [pP pX ]. θ1 = π/3, θ2 = 2π/3. k1 = 1e− 07m2

(green / grey), k2 = 1e−06m2 (black). The diamonds mark the stag-

nation points. All other parameters listed in appendix A

In the landfill gas field pressure distribution is the natural

variable to depict: the flow is controlled by exertion of vac-

uum, regulations set high pressure thresholds, and the landfill

operator’s primary responsibilities are to monitor the highest

pressure value and distance where the induced suction dis-

sipates. The contour density in figure 3(a) hints at a fully

fledged boundary layer behaviour (in the mathematical sense)

near the well. Figure 3(b) depicts the corresponding velocity

vector field, however the arrows are not to scale. The abso-

lute velocity spans at least two orders of magnitude with the

highest values obtained at the well, where the visual resolu-

tion of the polar grid diminishes, rendering uniform arrow

length scale impossible. Furthermore, as evinced in figure

2, the azimuthal and radial components of the velocity are

also disparate in magnitude, making an accurate integration of

streamlines a computationally difficult task that requires cus-

tom treatment similar to rigid differential equations. There-

fore pressure distribution is the only feasible way to visualise

this flow field without omitting information or introducing

distortion as in figure 3(a), and the qualitative features of the

velocity field are illative by (1b).

Figure 4 gives the same flow field, but with permeabilities

differing by two orders of magnitude. This disparity renders

the bottom sector’s resistance so high that it effectively stops

the flow toward the well. The green / grey contours that con-

tinue the black ones and are not closed, turn sharply to be-

come almost horizontal and as before, intersect the boundary

almost perpendicularly. The stagnation point is now located

closer to the well. Underneath that point the contours quickly

level into virtually horizontal lines, demonstrating the well’s

failure to extract gas generated in that region. Out of the 15

contours plotted, 9 lie below the stagnation point, correspond-

ing to the 9 closed contours proximate to the well and indicat-

ing that below the stagnation point the gas flows away from

the well with a velocity similar to its flow toward the well

in the immediate vicinity thereof. This flow field invites the

inference that overly compacted waste beneath the well will

result in severely diminished collection from that sector, with

the gas trapped and seeking to circle upwards into the medium

of lesser resistance. This state should be avoided if the suction

imposed at the well is to be used to its full potential. Some-

what counter-intuitively, compacting the waste in the top sec-

tor will yield a more efficient collection.

Figure 5 exemplifies the flow field with a smaller top sector.

This situation is relevant when (a) new waste is added at the

top part of the landfill; and (b) the sides are compacted to be

of a similar permeability as the older settled waste beneath the

well; and (c) the sector immediately above the well is left in

loose fettle to avoid damage to the well from heavy machin-

ery. There are two stagnation points that indicate the radius

of influence. In this instance the largest closed contour would

be quite oblate, implying that the concept of the radius of in-

fluence as adopted from hydraulic wells is not adequate here:

the well’s reach might vary significantly with the azimuthal

angle.
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FIG. 6. Pressure contours by (16) at 15 equally distributed values in

the range [pP pX ]. θ1 = π/3, θ2 = 2π/3, θ3 = 3π/2. k1 = 1e−07m2

(green / grey), k2 = 1e − 06m2 (black), k3 = 1e − 08m2 (dashed

green / grey). The diamonds mark the stagnation points. All other

parameters listed in appendix A

B. Three sectors

Figure 6 depicts a landfill with three sectors such that the

following conditions hold: the left and right sectors respec-

tively contain dense (e.g. household garbage / organic mat-

ter) and large fragment size waste (e.g. demolition and land

clearing debris); both aforementioned sectors are newly com-

pacted, whereas the sector above the well is not. Note the

extreme asymmetry of the well’s influence, suggesting that

poor control of waste density and ensuing heterogeneity in the

medium permeability is likely to result in severely diminished

collection effectiveness.

C. Four sectors

Figure 7 models a field that is perhaps the most common

operational regime of a real landfill cell: (a) bottom sector

bearing the highest density due to natural settlement; and (b)

side sectors of distinct permeabilities due to content or fill-

ing time or compacting differences, but within the same or-

der of magnitude; and (c) not compacted top sector. There is

only one stagnation point located in the bottom sector. Within

the other three sectors the permeability values were chosen to

span two orders of magnitude, yet no additional saddle points

appeared. This is an encouraging evidence of a sufficient lee-

−1 0 1
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1

◇

x/rX

y/
r X

FIG. 7. Pressure contours by (16) at 15 equally distributed values in

the range [pP pX ]. θ1 = π/3, θ2 = 2π/3, θ3 = 16π/15, θ3 = 29π/15.

k1 = 1e−07m2 (dashed green / grey), k2 = 1e−06m2 (black),

k3 = 5e− 08m2 (green / grey), k4 = 1e− 08m2 (dashed black). The

diamond marks the stagnation point. All other parameters listed in

appendix A

way permissible in the control that should be exercised over

the compaction of waste in the top part of the landfill. One

feature of note that was not accomplished in any of the fore-

going configurations is that there are open contours with end-

points located on left and right sides of the landfill throughout

the depth of the domain. This implies that the modelling is a

good qualitative approximation of the flow field in a realistic

rectangular domain, because with a straight top surface and

constant pressure thereon, and sufficiently far away from the

well, the contours must conform to the shape of the boundary.

IX. DISCUSSION

The theory developed in this study pertains to the weakly

compressible flow of ideal gas through a porous medium in

domains of axisymmetric geometry, but admitting azimuthal

variation of permeability, thereby breaking the axial symme-

try. The exact solutions are expected to be applicable in the

analysis of horizontal and vertical extraction wells of landfill

gas or natural gas. The long-standing difficulties to control

the landfill gas flow in the face of waste spatial heterogene-

ity and changes with degradation observed in the field, were

given a mathematical explanation. In contrast to most analyt-

ical solutions in this area – bar the fully symmetric ones pre-

sented in Wise and Townsend 19 – the formulae fortuitously
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FIG. 8. Pressure contours by (14) at 25 equally distributed values in

the range [pP pX ] near the singularity θ2−θ1 = π/2. (a) θ1 = 0.26π ,

θ2 = 0.74π . (b) θ1 = 0.24π , θ2 = 0.76π . k1 = 1e−07m2 (green / grey),

k2 = 1e−06m2 (black). Diamonds mark saddle points. Note that the

saddle points lie on the horizontal in (a) and on the vertical in (b).

All other parameters listed in appendix A

involve no special functions and thus are much more accessi-

ble to landfill design engineers. The preparation of the contour

maps requires a simple facility for solution of linear equations

and plotting, both widely available. The maps allow an easy

graphical estimation of the well radius of influence.

The concept of the radius of influence was historically

adopted from vertical hydraulic wells extracting incompress-

ible fluid. Due to the weak compressibility of the fluid here

and logarithmic pressure growth away from the well in con-

junction with small generation rates, axisymmetric solutions

give the radius of influence as infinite for all practical pur-

poses. Introduction of cut-off thresholds12 as well as full

numerical simulations in non-axisymmetric domains17 en-

tailed better results, nevertheless overestimating the values

suggested by the experience of field operators. Application

of the exact solutions herein to this problem provides more

realistic estimates. A complete investigation of their quality is

beyond the scope of this contribution and constitutes a topic

of future studies.

That landfill medium permeability is highly variable both

spatially and temporally, is a long accepted fact. The analysis

carried out in this study demonstrates how this heterogeneity

impacts the effectiveness of collection: the presence of one

sector of an increased resistance, regardless of orientation,

severely undermines the well’s reach. The landfill designer

or operator should strive to make the waste permeability as

uniform as possible. Mathematically the homogeneity will re-

move undesired saddle points in the pressure contour map and

preclude fluid accumulation in pockets of high resistance, cir-

culation around the landfill cell and ultimately escape through

the boundary.

A real landfill cell contains a thin supporting layer of gravel

around the well, whose permeability nominally differs from

that of the waste. The assumption of axial symmetry admits a

solution to a flow field comprising any number of concentric

annular laminae of distinct permeabilities, albeit commonly

only two are used12. The desired operational regime of a prop-

erly constructed landfill is that the resistance of the gravel

lamina does not impede gas collection. The qualitative de-

pendence on the ratio of gravel to waste permeability can be

classified as follows. With ratios greater than 0.1 (in an ideal

design greater than 1, but the lamina’s thinness renders one

order of magnitude less still acceptable) the pressure gradient

is dominant near the well, but not excessively so. For ratios

beneath 0.1, as can happen when the waste density is rather

low, the imposed vacuum dissipates over the gravel lamina,

resulting in extremely slow flow through the waste. Com-

bining azimuthal and radial piecewise constant permeability

functions appears impossible, as all degrees of freedom are

exhausted in proper coupling of the sectors’ flow fields along

contiguity rays. Scrutiny of contours in figures 3–7 reveals

that with a single lamina the flow regime matches the regular

landfill operation, whereby the presence of a gravel layer is

not an imperative qualitative requirement. When modelling

flow through an extremely loose medium, one should weigh

the benefit of including the gravel layer and thus shifting the

location of the steepest pressure gradient from the main lam-

ina to an adjacent, yet separate layer, versus the qualitative
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advantage of the asymmetry accorded by the azimuthal varia-

tion of permeability.

The interpretation oriented toward the horizontal well prob-

lem is forthwith adaptable to the vertical well. The isocontour

maps in figures 3–7 then represent horizontal cross-sections

of the surrounding ground. Sectors of lower permeability cor-

respond to a denser matrix, such as compacted organic waste,

finer soil or fractured rock.

The steady state flow equation (3a) possesses bifurcation

points, whose presence is manifested as a singularity of the

linear system of equations conforming to equations (3b) and

(3c). For instance, in the case N = 2 the locus of bifurcation

points is the line θ2 − θ1 = π/2. When “crossing" from one

side of this line to the other, the solution function’s saddle

points abruptly move between two perpendicular lines. For

N > 2 the loci are more complicated and their complete analy-

sis is beyond the scope of this study. Whensoever system (3)

is singular, a time dependent flow equation must be solved.

Data sharing is not applicable to this article as no new data

were created or analyzed in this study.
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APPENDIX A. BASE PARAMETERS

Table I lists the nominal set of parameters used in exam-

ples throughout (dimensional). Negative pressure values are

relative to the atmosphere.

parameter value

inner radius 0.0762m (3in)
outer radius 9.0762m

temperature 15oC

well pressure pP −1.25kPa

surface pressure pX 1atm

generation rate C 0.05kg/(m3s)
CH4 molar fraction 0.5

O2 molar fraction 0.01

CO2 molar fraction 0.4

TABLE I. Parameters of a landfill cell common to all examples

APPENDIX B. TWO UNEQUAL SECTORS:
SOLUTION DETAIL

Substituting (8) into (3b) and (3c) for the contiguity ray θo

(the second ray does not contribute independent equations due

to symmetry) yields

− C

2k1

r2+b10
(1)+b20

(1) lnr+
∞

∑
n=1

⎧⎪⎪⎨⎪⎪⎩(a1n
(1)r2n+1+a2n

(1)r−(2n+1))sin((2n+1)θo)+(b1n
(1)r2n+b2n

(1)r−2n)cos(2nθo)⎫⎪⎪⎬⎪⎪⎭ =

− C

2k2

r2+b10
(2)+b20

(2) lnr+
∞

∑
n=1

⎧⎪⎪⎨⎪⎪⎩(a1n
(2)r2n+1+a2n

(2)r−(2n+1))sin((2n+1)θo)+(b1n
(2)r2n+b2n

(2)r−2n)cos(2nθo)⎫⎪⎪⎬⎪⎪⎭ (B1a)

and

k1

∞

∑
n=1

⎧⎪⎪⎨⎪⎪⎩(2n+1)(a1n
(1)r2n+1+a2n

(1)r−(2n+1))cos((2n+1)θo)−2n(b1n
(1)r2n+b2n

(1)r−2n)sin(2nθo)⎫⎪⎪⎬⎪⎪⎭ =

k2

∞

∑
n=1

⎧⎪⎪⎨⎪⎪⎩(2n+1)(a1n
(2)r2n+1+a2n

(2)r−(2n+1))cos((2n+1)θo)−2n(b1n
(2)r2n+b2n

(2)r−2n)sin(2nθo)⎫⎪⎪⎬⎪⎪⎭. (B1b)
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The terms including ai0, i = {1,2}, were omitted in (B1)

to facilitate the juxtaposition of the sine and cosine terms

within the same sum. The legitimacy of this omission is to

be substantiated hereinafter. An immediate observation is

that bi0
(1) = bi0

(2), whereupon one can define bi0
(s) def= bi0,

i = {1,2}, s = {1,2}. It is impossible to satisfy both (B1a) and

(B1b) unless some of the sines and cosines vanish identically,

similar to the semi-circular case, where θo = 0. The equality

sin((2n+1)θo) = 0 will hold if θo = πko/(2no +1) for some

integer ko, no such that ∣θo∣ < π/2. Thus for now θo must be

a rational multiple of π and no ≠ 0. If an irrational multiple

is needed, the fact that the set of rational numbers Q is dense

within the set of real numbers R, implies there exist ko, no

such that θo is arbitrarily close to the desired value.

If there exist indices n∗ such that the equality

(2n∗+1)θo = πk∗

holds for some integer k∗, out of the infinite sum a sequence

of terms will vanish. This happens when

2n∗+1 = (2no+1)k∗/ko.

The left hand side is an odd number, 2no+1 is an odd number,

and therefore so must be k∗/ko. Hence k∗ = (2m− 1)ko for

any integer m ⩾ 1. Then n∗ = (2m−1)no+m−1 and all terms

containing sin((2n∗(m)+1)θo) vanish in (B1a), whereas the

respective cosine terms do not. In particular, since no ≠ 0, n∗
cannot equal unity, thus justifying the unification of the infi-

nite series in (B1). Similarly there is a sequence of vanishing

sine terms in (B1b) for ñ∗ =m(2no+1), m ⩾ 1 integer. Coeffi-

cients ain
(1), ain

(2) for any n ≠ n∗ then satisfy

( 1 −1

k1 −k2
)( ain

(1)

ain
(2) ) = ( 0

0
) , (B2a)

yielding ain
(s) = 0, i = {1,2}, s = {1,2}. For any n ≠ ñ∗ coeffi-

cients bin
(1), bin

(2) satisfy an identical homogeneous system

and thus vanish as well bar the case i = n = 1, because then the

functional shape r2n matches the generation term, giving

b11
(1) = b11

(2)+ C

2cos(2θo)
⎛⎝ 1

k1

− 1

k2

⎞⎠ (B2b)

and

k1b11
(1) = k2b11

(2) (B2c)

that result in

b11
(s) = C

2ks cos(2θo) , s = {1,2}. (B2d)

An intriguing observation is that the case θo = π/4 is singular.

There appears to be no solution for this case, cf. the more

general case with no symmetry assumptions in appendix D.

Another important inference is that the restriction on θo being

a rational multiple of π becomes superfluous, as all higher

azimuthal frequency terms were proven to vanish.

APPENDIX C. N ARBITRARY SECTORS: SOLUTION
DETAIL

At first suppose that there exists an angle θo such that every

contiguity ray satisfies θs = nsθo for some integer ns ⩾ 0, to wit

all sector angles are multiples of a minimal angle that might

be smaller than the smallest chosen sector. Now redefine N to

be N = 2π/θo. Since the sum of all sectors must equal 2π and

each sector is a multiple of θo, this definition indeed yields

an integer. Further redefine the actual number of sectors to be

No. Then a suitable solution form will be

P(s) = C

2ks

r2(a(s) sin(2θ)+b(s) cos(2θ)−1)+b10
(s)+b20

(s) lnr+

∞

∑
n=1

⎧⎪⎪⎨⎪⎪⎩(a1
(s)
n rnN +a2

(s)
n r−nN)sin(nNθ)+(b1

(s)
n rnN +b2

(s)
n r−nN)cos(nNθ)⎫⎪⎪⎬⎪⎪⎭, s = {1, . . . , No}. (C1)

By the solution in appendix B the term of the functional shape

r2 cos(2θ) is required to balance generation, however here

r2 sin(2θ)must also be present in order to relax the constraint

of symmetry tacitly present in a two sector configuration.

When N = 2 the sum effectively starts from n = 2, as the terms

with n= 1 will already have been included explicitly. Substitu-

tion of (C1) into (3b) and (3c) forthwith implies bi
(s)
0 are equal

in all sectors, so the superscript might be omitted: bi
(s)
0

def= bi0,

i = {1,2}. Next observe that sin(nNθs) = sin(2πnns) = 0,

whereas cos(nNθs) ≠ 0, whereby bin
(s) are equal in all sec-

tors as well. Hence bin
(s) def= bin, i = {1,2}, remain degrees of

freedom. Equation (3c) gives

ks ain
(s) = ks+1ain

(s+1)
, s = {1, . . . , No}, (C2)

where the index s+1 wraps to 1 for s = No. Although not as

immediate as with the coefficients bin, this nevertheless is a

homogeneous degenerate system with a single degree of free-

dom, so that ain
(s) = (ks/k1)ain, where ain = ain

(1), i = {1,2},
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remain degrees of freedom.

Finally the coefficients a(s) and b(s) satisfy a linear system

of equations of size 2No×2No:

Cc = r, (C3a)

wherein the matrix C is almost block bi-diagonal:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B1

A2 B2

⋱ ⋱
ANo−1 BNo−1

BNo ANo

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C3b)

with each block a 2×2 matrix:

As = ( sin(2θs) cos(2θs)
cos(2θs) −sin(2θs) ) ,

Bs = ( −k
(s)
r sin(2θs) −k

(s)
r cos(2θs)

−cos(2θs) sin(2θs) ) , s = {1, . . . , No}.
(C3c)

The unknown and right hand side vectors are arranged as fol-

lows:

c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)

b(1)

⋮

a(No)

b(No)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−k
(1)
r

0

⋮

1−k
(No)
r

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C3d)

with k
(s)
r = ks/ks+1, and as before the index s+1 wraps back to

1 for s =No, whereby the block BN appears in the bottom left

corner of C. System (C3a) possesses a unique solution if and

only if detC ≠ 0. It was shown in appendix B that the analysis

utilising symmetry across the vertical eventuated in a singu-

larity in the configuration with θ1 = π/4 and θ2 = 3π/4. The

current more general solution invites the question whether the

additional sine term might help circumnavigate the problem.

This, as well as the concomitant matter whether this is the

only singularity, is resolved in appendix D.

The only unattended issue is that the coefficients ain, bin

remained undetermined. If the boundary conditions do not

contain any higher azimuthal frequencies, it is possible to set

ain = bin = 0 for i = {1,2} and n ⩾ 1. Consequently the assump-

tion on the existence of a minimal sector becomes superfluous,

whence No might be replaced with N, which is done in (16).

APPENDIX D. TWO ARBITRARY SECTORS:
COMPLETE SINGULARITY ANALYSIS

The sole way of gleaning all singular configurations is to

compute detC in (C3b) analytically in the hope the result-

ing expression is insightful without further numerical analy-

sis. For the case N = 2 this is a full matrix of size 4×4. In

order to attain a manageable result, algebraic manipulation is

performed as follows. Multiply C by an auxiliary matrix on

the right:

( A1 B1

B2 A2
)( I2×2 02×2

−A−1
2 B2 I2×2

) = ( A1−B1A
−1
2 B2 B1

02×2 A2
) ,

(D1)

where Im×m and 0m×m denote the identity and zero matrices of

indicated sizes. All blocks in C are invertible. The determi-

nant of the auxiliary matrix is unity. Therefore

detC = det(A2)det(A1−B1A
−1
2 B2) =

det(A2)det(B1)det(B−1
1 A1−A−1

2 B2) . (D2)

In the derivation below kr = k1/k2. Elementary computation

now gives

det(A2) = −1, det(B1) = −kr, (D3)

B
−1
1 A1 =

⎛⎜⎜⎝
− 1

kr

sin2(2θ1)−cos2(2θ1) (1− 1

kr

)sin(2θ1)cos(2θ1)
(1− 1

kr

)sin(2θ1)cos(2θ1) − 1

kr

cos2(2θ1)− sin2(2θ1)
⎞⎟⎟⎠ , (D4)

and A
−1
2 B2 comes out equal to B

−1
1 A1 upon mapping θ1z→ θ2. Thence

det(B−1
1 A1−A−1

2 B2) = ⎛⎝ 1

kr

(sin2(2θ2)− sin2(2θ1))+cos2(2θ2)−cos2(2θ1)⎞⎠×

⎛⎝ 1

kr

(cos2(2θ2)−cos2(2θ1))+ sin2(2θ2)− sin2(2θ1)⎞⎠− 1

4
(1− 1

kr

)2 (sin(4θ1)− sin(4θ2))2

= −(1− 1

kr

)2

sin2 (2(θ1−θ2)).
(D5)
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The last transition ensues upon breaking all differences of

squares into products and utilising trigonometric identities.

Thus detC = 0 if and only if θ2 − θ1 = π/2,π . The case

θ2−θ1 = π corresponds to the semi-circular configuration that

was solved separately. The case θ2 −θ1 = π/2 is a persistent

singularity, leaving the only conclusion that no separation of

variables solution exists for any configuration, where one sec-

tor is of a right angle.

Figure 8 depicts typical pressure contours near this singu-

larity. Scrutiny thereof reveals that the saddle points “jump" to

a perpendicular line, indicating a bifurcation. Since the gov-

erning equations (3) are linear in p2, any solution (for given

boundary conditions) must be unique, and therefore this struc-

tural singularity cannot be circumnavigated via a different so-

lution form or technique other than the separation of variables.

That could have been possible only if near the singularity the

solutions approached a limit that escaped the description used

herein. To paraphrase, if the contours in figure 8(a) or any

other configuration of that type, such as those in figure 5, were

continuously deformable into those in 8(b) or similar (figures

3 and 4), said limit would have existed. Hence for the configu-

ration of two sectors, one of which is right angled, no solution

to (3) exists and the flow is expected to be non-steady.


