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Abstract. Modelling diffusive processes via a constant effective diffusivity value taken to represent realistic uncer-

tainty or heterogeneity is entrenched in scientific and engineering applications. This brings forth the question to what

extent the flow pattern changes when symmetry is broken by anisotropy. This study supplies the answer by deriving

a class of tridimensional solutions to the steady non-linear diffusion equation in a spherical domain divided into an

arbitrary number of meridian sectors with distinct diffusivities and generation rates. The new family of solutions

permits flexible modelling, where traditionally only isotropic radial transport was considered. The flow patterns

support an extensive variety of topological terrain via tesseral and sectoral harmonics. The anisotropy gives rise to

an unconventional type of a fixed point combining both node and saddle attributes. The contours are non-smooth

on the contiguity planes between sectors and might or might not be localised in the polar angle ϕ and/or azimuthal

angle θ, implying a particle might remain confined to a relatively small neighbourhood or meander over the sphere.

The impact on motion trajectories and thus transport efficiency implies the energy required to sustain a steady flow

is starkly underestimated when symmetry is assumed for simplicity despite the presence of anisotropy.
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1 Background

The non-linear diffusion equation (suitably scaled)

Btu ` ∇ ¨
`

´Kuγ´1∇u
˘

“ C (1)

emerges in numerous applications. The scalar field u induces the vector flux
`

´Kuγ´1
˘

∇u that obeys the
conservation law (1) subject to the bulk source C. The non-linearity parameter γ is constant and connected
to the physical interpretation of u and its flux, whereas the diffusivity K generally need not be constant.
In the problem of diffusion within a semiconductor the function u represents the dopant concentration and
the compound Kuγ´1 models the diffusivity at high concentrations with K taken constant and γ assuming
values γ “ 2 for arsenic and boron in silicon, γ “ 3 for phosphorus in silicon and γ “ 4 for zinc in gallium
[15, and references therein]. When a thin liquid film spreads under gravity, equation (1) governs the surface
shape with K “ 1{3 and non-linearity γ “ 4 originating from the material derivative during the surface
motion [20, 14, 22]. In toroidal fusion plasma devices u stands for the temperature of plasma ions and the
non-linearity depends on the operating regime [2]. In thermostatistics u is a particle density function with
γ ‰ 1 being a measure of non-extensivity [9]. In porous media flows u might be the concentration of a liquid
solvent spreading in a polymer with γ related to material expansion [33] or the pressure of percolating gas
[5], where γ “ 2 stems from the fluid compressibility. In radiative heat transfer γ “ 7 [21] and for moisture
transport in some soils γ “ 8 [8]. These higher values prompted the construction of the mesa-type limit
solution for γ ÝÑ 8 using singular perturbation theory [8]. Fractional as well as negative powers of γ are
also possible: for instance, in heat conduction γ “ ´1{3 for silicon and γ “ 1{3 for superfluid helium [16, 35,
and references therein], diffusion from an instantaneous source has γ “ ´1 [equation (3.3) of 18], whilst in
radiation in ionised gases 6.5 ă γ ă 7.5 [8]. The dates on these studies are evidence that the interest in
equation (1) has not abated in fifty years. Although many of these applications involve a sustained flow,
the predominant solution method is a reduction to an ordinary differential equation via a similarity variable
combining powers of time and a single spatial coordinate, inevitably decaying in time [4]. Even when starting
initially in R

n, the coordinates are quickly reduced to a new space of one spatial dimension implying radial
symmetry, and then the similarity is invoked [19]. Furthermore, such similarity solutions of (1) are not
possible where a bulk source is present, for instance in heat transfer with an ongoing exothermic reaction,
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in aquifer sparging, where the remediation reaction removes the diffusant compounds, or in natural gas and
landfill gas flows through their generating media.

The similarity technique was well established by the mid 1960’s [1] and is accepted as classical today.
Notwithstanding, distinct solution methods emerge and find service in applications. Adomian decomposition
was utilised to derive exact solutions to special cases that are both t and x dependent, but are not of the
similarity type [35]. Steady exact solutions available to date are scarce and of little practical use due to
limiting assumptions and in particular the inability to satisfy generic boundary conditions, cf. [16, equations
(3.20)–(3.23)] and [35, equation (28)]. In n dimensions the radially symmetric case with γ “ 1{2 was solved
with unity diffusivity and no source [17]. One-dimensional solutions in polar and spherical geometry do allow
for conventional boundary conditions as well as bulk generation or degradation, a result considerably more
valuable in practice [36]. Albeit derived for γ “ 2, these are easily extensible to any γ.

The difficulty of attaining exact solutions escalates quickly when the desired setting is made more generic,
e.g. arbitrary γ, anisotropic K, inhomogeneous right-hand side, higher spatial dimension etc. As a result,
gleaning symmetry properties [7] or rigorous bounds [6] has become an area of research unto itself. One
observation unifying all foregoing studies is that the partial differential transport equation is reduced to an
ordinary differential equation. For decades the only steady exact solutions obtained that way were limited
to the radially symmetric setting with different levels of genericity in the aforementioned attributes. Hence
the extensive exploration of the self-similarity class. By contrast, steady state solutions have seen meagre
development despite various applications evincing a clear need of an anisotropic framework, since in reality
the diffusivity is rarely constant. In large environmental applications such as aquifers, natural gas wells and
landfills, a constant effective value is often regarded as the only option due to the highly labile properties of
the porous matrix. The spatial heterogeneity due to either intrinsic changes or external influence impedes
accurate flow modelling and design of effectively functioning engineering systems. The development of
tridimensional matrix penetrating imaging techniques such as gas diffusion nuclear magnetic resonance [24]
is a testament to the importance of access to reliable permeability data that eventually are translated into
the mathematical diffusivity parameter K. Assumption of constant diffusivity hinders the identification of
preferential directions of flow [10, 13], correct delineation of the zone of influence1 [23, 32] or estimation of
source strength [34]. In smaller applications this is no less important, as only a faithful approximation of
the diffusivity can lead to a successful delivery of the desired fluid to its target [26]. A groundbreaking class
of exact solutions with a sufficiently flexible anisotropy function to accommodate custom practical needs
was found in a planar geometry [29]. Whilst planar flow fields furnish useful insight, only a tridimensional
flow can be deemed realistic. The current study’s aim is to construct solutions in spherical geometry with
anisotropy and analyse the resultant transport asymmetry. It will be shown that the presence of anisotropy
strongly undermines radial transport. In particular, the introduction of a distinct diffusivity in a small
portion of the domain engenders significant global changes in the flow field, transferring kinetic energy to
the two angular velocity components and creating numerous nearly stagnant locales. This effect cannot be
explained via regular perturbation theory and has a profound impact on the flow field in applications, where
anisotropy is neglected.

2 General solution

Spherical coordinates are congruous with situations where fluid dispersion or collection is localised around
a central point of interest. As long as such a point can be designated, the physical boundaries of the
domain need not be spherical, since the constructed solutions might be extended to any geometry by the
correspondence of the Cartesian and spherical coordinates. Therefore consider a spherical domain of external

radius rX and core radius rC ě 0: B “
!

pr, ϕ, θq | rC ď r ď rX , 0 ď ϕ ď π, 0 ď θ ă 2π
)

. Let ϕ and θ

denote the polar (latitude) and azimuthal (longitude) angles respectively, as shown in figure 1. In practice
the spherical nature of the problem is sometimes broken by the existence of a tube injecting fluid into or
drawing it from the domain centre. As long as the injection / suction site is deep enough and much smaller
than the external radius rX , it is possible to use the spherical approximation. Mathematically this might
be expressed via the requirement rC ! rX . One such example is a vertical well made of a solid wall pipe
injecting remediating compounds into a contaminated aquifer or collecting natural gas. The ground naturally
comprises heterogeneous regions, such as fractured rock, solid rock, saturated or unsaturated sand, clay, silt

1The zone of influence is defined as the region, where the head induced at the well results in fluid transport in the surrounding

medium: dispersion of the injected reactive compounds in sparging wells and fluid collection in gas or hydraulic wells.
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Figure 1: Spherical coordinates notation (left) and division into sectors of distinct diffusivity and/or source
strength (equator cross-section, right). Dimensions not to scale.

etc. The diffusivity in these media varies significantly, rendering the assumption of a single effective value
for the entire domain untenable. Fractures in particular induce preferential flow directions, i.e. thin wedges
where the diffusivity is many orders of magnitude higher than in the surrounding substrate. In landfills the
medium consists of compacted waste of many types: demolition and land clearing, household, organic etc.
The typical fragment size of the solid matrix and thus the associated diffusivity again range several orders
of magnitude. There is no attempt to mix the different types of waste, resulting in distinct porous media.
An equivalent example is a needle injecting a solvent into a polymer or a drug into tissue. The polymer’s
molecular structure naturally induces preferential directions of motion, whereas tissue heterogeneity, e.g.
muscle, bone or cartilage at different angles around the needle tip, brings about a situation similar to the
landfill media. Another example from the area of biomedicine has been discussed in [30]: injecting certain
diffusing compounds into the brain reveals the structure of the extracellular space, which has been likened
to foam and is known to offer multiple preferential directions of motion that might be thought of as thin
slivers of high diffusivity.

Although the physical dimensions of wells differ starkly from needles, the characteristic length ratio
rC{rX renders the two frameworks mathematically alike. Aligning the z axis with the well or needle, and
setting the origin at the extraction / injection point, in both cases the symmetry is broken along the line
ϕ “ 0. Another example is a horizontal landfill gas well, commonly consisting of a long pipe with equidistant
apertures, whose dimensions are extremely small compared to the length of the solid pipe in between, as
is the pipe radius [28]. This system’s geometry is cylindrical when viewed in its entirety; however, on an
intermediate length scale around one set of apertures – far enough from the next closest perforated section,
yet not too close to the pipe wall itself – the flow conforms to a spherical geometry. The horizontal well can
be thus thought of as a series of sink points controlling spherical flow fields with a progressively diminishing
reach as the suction imposed at the well outlet dissipates upstream. Aligning the z axis with the pipe and
positioning the origin at the perforated section, the spherical symmetry breaking line is ϕ “ 0 as well as
ϕ “ π. Figure 2 shows the two variants of broken symmetry.

The unknown function u might attain Op1q values as in the problem of liquid film, where it represents the
height of the dispersing fluid; it might be naturally limited to the range 0 ď u ď 1 as the concentration of a
diffusing substance; as the temperature of plasma ions u „ O

`

102
˘

, whilst as the absolute pressure of fluid

in porous medium flow its values might be on the order of O
`

105
˘

. It is thus advisable to define the mapping
u ÞÝÑ uX ũ, where ũ is a non-dimensional quantity satisfying 0 ď ũ ď 1 and uX is a reference value equal to
or exceeding max

B

u. Since the only length coordinate is r, the diffusivity K might be non-dimensionalised
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Figure 2: Approximate spherical geometry in applications with symmetry broken along ϕ “ 0 (single source
or sink point, left) and ϕ “ 0, π (multiple source or sink points, right). Green / grey beads mark injection
or extraction sites. Spheres delineate zones of influence rather than physical boundaries. Dimensions not to
scale.

by K ÞÝÑ r2
X
K̃. The corresponding mapping for the generation rate C is then C ÞÝÑ u

γ
X
C̃. When either the

order of magnitude of uX or γ is high, the non-dimensional value of C might be very small. Nonetheless,
if the physics of the system includes a source or sink, |C| ! 1 should not be neglected based solely on its
magnitude. As part of the analysis below it is shown that this decision bears on the solution existence and its
degrees of freedom, and thus should be made with caution upon scrutiny of the full solution. Henceforward
all quantities are non-dimensional and the tilde symbols are omitted.

Suppose that enough information is available on the variation of diffusivity within the domain in order
to divide it into N longitudinal (meridian) sectors that are sufficiently homogeneous to allow an isotropic
description therein, as depicted in figure 1. The sectors need not be equal and there is no restriction on their
number, as long as no attempt is made to create a smooth variation via the limit N ÝÑ 8. The general
solution is derived in §2. The flow patterns and associated degrees of freedom for two sectors are analysed
in §3 and further generalised to an arbitrary number of sectors in §4.

The first step of constructing an exact solution for a multiple sector configuration is to obtain a solution
within one isotropic sector. Equation (1) can be written as

∆uγ “ ´
γC

K
, (2a)

where the subscripts were omitted for simplicity and the Laplacian of a scalar function upr, ϕ, θq in spherical
coordinates is given by

∆u “
1

r2
B

Br

˜

r2
Bu

Br

¸

`
1

r2 sinϕ

B

Bϕ

˜

sinϕ
Bu

Bϕ

¸

`
1

r2 sin2 ϕ

B2u

Bθ2
. (2b)

Seeking a separation of variables solution and balancing the inhomogeneity in equation (2a) via a purely
radial function yields

uγ “ ´
γC

6K
r2`

8
ÿ

n“0

n
ÿ

m“0

Pm
n pcosϕq

#

rn
´

anm sinpmθq`bnm cospmθq
¯

`
1

rn`1

´

αnm sinpmθq`βnm cospmθq
¯

+

,

(3a)
where the function Pm

n pxq is the associated Legendre function of degree n and order m defined as [12, 8.910]

Pm
n pxq “

p´1qm

2nn!

`

1 ´ x2
˘m{2 dn`m

dxn`m

`

x2 ´ 1
˘n

, (3b)

and anm, bnm, αnm and βnm are constants to be determined. The inhomogeneity term in (3a) implies
that the relevant independent compounds are ratios of diffusivities and generation rates rather than the
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parameters themselves. As long as Ci ‰ 0 @ 1 ď i ď N , it is possible to define a uniform generation rate
C˚ and map Ki ÞÝÑ KiC˚{Ci. Therefore hereinafter the rates Ci are taken equal throughout the domain
without loss of generality.

Restricted to any spherical shell of a given radius ro, the function upro, ϕ, θq possesses fixed points at the
poles. Differentiation of (3a) with respect to ϕ will always create a factor sinϕ that will vanish at ϕ “ 0
and ϕ “ π. The derivative with respect to θ vanishes due to different reasons for various combinations of
m and n: for all 0 ă m ď n the associated Legendre functions satisfy Pm

n p˘1q “ 0, so Bθupro, ϕ, θq “ 0
at ϕ “ 0, π regardless of θ, whereas the order m “ 0 removes the dependence on θ altogether for any n.
The type of these two universally present fixed points cannot be unambiguously determined. Whilst for two
sector configurations numerical evidence suggests they might be either saddles or nodes, for N ą 2 they
defy conventional classification. Because the poles belong to all contiguity planes between sectors of distinct
diffusivities, the contour shape nearby might be in keeping with a classical saddle point in some sectors (open
paths approaching and then moving away), but characteristic of a node in others (trajectories that would
have been closed had that sector’s solution been extended to the full span of the azimuthal angle θ). If the
point is of the same type in all sectors, it is to be referred to as node or saddle as required. Notwithstanding,
the trajectories in its vicinity, whilst generally of a shape reminiscent of the expected in classical settings,
including the stable or unstable nature thereof, have an uncommon overall appearance. For nodes the
prominent attribute is points of non-smoothness. Saddles feature more than two characteristic directions
as well as possible closing of incoming and outgoing trajectories into closed contours. If the point type
varies between sectors, it is of a mixed type and might exhibit blended properties. The same classification
equally applies to such points formed on boundaries between sectors away from the poles. Examples of these
situations are given below when the topology of the flow field u is explored.

The single sector solutions (3a) with distinct values of Ki as well as constants a
piq
nm, b

piq
nm, α

piq
nm and

β
piq
nm, form a sequence

 

ui

(N

i“1
that upon satisfying certain continuity requirements on the contiguity planes

comprises the solution u in the entire domain B. The sought function u must be differentiable at least twice
within each isotropic subdomain with respect to all coordinates to satisfy (2a), but this level of smoothness

is not required on the semi-annuli
!

pr, ϕ, θq | rC ď r ď rX , 0 ď ϕ ď π, θ “ θi

)

. Since u is a physical quantity

such as concentration, temperature or pressure, it must be continuous throughout and in particular on these
contiguity planes. Thus

uipr, ϕ, θiq “ ui`1pr, ϕ, θiq, 1 ď i ď N, (4a)

with uN`1 :“ u1 creating the periodicity necessitated by the spherical geometry. The divergence form of the
governing equation (1) implies that the compound ´Kuγ´1∇u represents flux and is the quantity of interest
to be conserved. Consider an infinitesimally small horizontal arc straddling the contiguity surface θ “ θi.
Upon integration of both sides of (1) along this arc and observation that by continuity of u the components
in directions r and ϕ vanish, one arrives at

Ki

Bui

Bθ

ˇ

ˇ

ˇ

ˇ

ˇ

pr,ϕ,θiq

“ Ki`1

Bui`1

Bθ

ˇ

ˇ

ˇ

ˇ

ˇ

pr,ϕ,θiq

, 1 ď i ď N, (4b)

where defining KN`1 :“ K1 creates the generalisation for the last contiguity plane. Conditions (4) are not
enforceable for certain combinations of diffusivities Ki and angles θi. In such a case (1) possesses no steady
state solution. Construction of exact solutions permits to predict such occurrences. The complete analysis
of these singularities is given in §4.1.

3 Two sectors

The simplest family of solutions is constructed for a configuration of two sectors with diffusivities K1 and
K2. The governing equation is rotationally invariant in θ, allowing to set the contiguity planes as θ1 “ θo
and θ2 “ π ´ θo with ´π{2 ă θo ă π{2.

3.1 Flow patterns for n ď 2

Solutions with a small number of harmonics are instructive since their characteristics are more readily
discerned. Juxtaposition of the functional forms of the generation term and homogeneous part in (3a) allows
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to infer that the double sum must not be truncated before n “ 2. Definition (3b) in conjunction with
trigonometric identities for n ď 2 yields

u
γ
i “ ´

γC

6Ki

r2`b
piq
00

`
β

piq
00

r
`cosϕ

#

rb
piq
10

`
β

piq
10

r2

+

´sinϕ

#

r
´

a
piq
11

sin θ`b
piq
11

cos θ
¯

`
1

r2

´

α
piq
11

sin θ`β
piq
11

cos θ
¯

+

`

3

2

˜

1

2
cosp2ϕq `

1

6

¸#

r2b
piq
20

`
β

piq
20

r3

+

´
3

2
sinp2ϕq

#

r2
´

a
piq
21

sin θ ` b
piq
21

cos θ
¯

`
1

r3

´

α
piq
21

sin θ ` β
piq
21

cos θ
¯

+

`

3

2

´

1 ´ cosp2ϕq
¯

#

r2
´

a
piq
22

sinp2θq ` b
piq
22

cosp2θq
¯

`
1

r3

´

α
piq
22

sinp2θq ` β
piq
22

cosp2θq
¯

+

. (5)

Conditions (4) on θ “ θo and θ “ π ´ θo must hold for all r and ϕ, inducing a separation of the coefficients
in (5) into groups based on the respective functional forms. Imposing (4a) for the only constant term yields

b
p1q
00

“ b
p2q
00

, which allows to define b00 :“ b
piq
00
, i={1,2}. Henceforth coefficient notation with the superscript

omitted is used whensoever coefficients are equal in all sectors. Equation (4b) is satisfied unconditionally.

Similar arguments lead to β00 :“ β
piq
00

, b10 :“ b
piq
10

and β10 :“ β
piq
10

. For the coefficients of r sinϕ conditions
(4) give the system

´

a
p1q
11

´ a
p2q
11

¯

sin θo “ 0,
´

b
p1q
11

´ b
p2q
11

¯

cos θo “ 0, (6a)

´

K1a
p1q
11

´ K2a
p2q
11

¯

cos θo “ 0,
´

K1b
p1q
11

´ K2b
p2q
11

¯

sin θo “ 0. (6b)

Since cos θo ‰ 0, b11 :“ b
piq
11

and a
p2q
11

“ K2

M

K1a
p1q
11

follow. If θo ‰ 0, a
piq
11

“ b
piq
11

“ 0 must hold. If θo “ 0, one

coefficient out of each pair a
piq
11

and b
piq
11

remains a degree of freedom. An identical argument applies to the

coefficients α
piq
11
, β

piq
11

, a
piq
21
, b

piq
21
, α

piq
21

and β
piq
21

. For the coefficients of r´3 conditions (4) upon rearrangement
result in

1

4

´

β
p1q
20

´ β
p2q
20

¯

`
3

2
cosp2θoq

´

β
p1q
22

´ β
p2q
22

¯

“ 0,
´

α
p1q
22

´ α
p2q
22

¯

sinp2θoq “ 0, (7a)

´

K1β
p1q
22

´ K2β
p2q
22

¯

sinp2θoq “ 0,
´

K1α
p1q
22

´ K2α
p2q
22

¯

cosp2θoq “ 0. (7b)

This is not a closed system, and moreover θo “ 0 or θo “ π{4 might satisfy some of these equations. Out of
the concomitant quadruple of equations ensuing for the coefficients of r´3 cosp2ϕq, only one is new:

3

4

´

β
p1q
20

´ β
p2q
20

¯

´
3

2
cosp2θoq

´

β
p1q
22

´ β
p2q
22

¯

“ 0, (7c)

completing the linear system. Summing (7c) and the first equality in (7a) gives β20 :“ β
piq
20

. Formulating (4)
for the terms of the type r2 gives

1

4

´

b
p1q
20

´ b
p2q
20

¯

`
3

2
cosp2θoq

´

b
p1q
22

´ b
p2q
22

¯

“
γC

6

˜

1

K1

´
1

K2

¸

,
´

a
p1q
22

´ a
p2q
22

¯

sinp2θoq “ 0, (8a)

´

K1b
p1q
22

´ K2b
p2q
22

¯

sinp2θoq “ 0,
´

K1a
p1q
22

´ K2a
p2q
22

¯

cosp2θoq “ 0. (8b)

The corresponding system for the coefficients of r2 cosp2ϕq contributes only one independent equation:

3

4

´

b
p1q
20

´ b
p2q
20

¯

´
3

2
cosp2θoq

´

b
p1q
22

´ b
p2q
22

¯

“ 0. (8c)

Combining (8c) with the first equality in (8a) yields

b
p1q
20

´ b
p2q
20

“
γC

6

˜

1

K1

´
1

K2

¸

, cosp2θoq
´

b
p1q
22

´ b
p2q
22

¯

“
γC

12

˜

1

K1

´
1

K2

¸

, (9)
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whereby if a solution is to exist for any non-vanishing generation rate C, θo ‰ ˘π{4. A right-angled sector
configuration defined by θo “ ˘π{4 does not possess a solution of the separation of variables type. This is
a persistent singularity that has also been noted in planar flow in polar coordinates [29]. For all θo ‰ ˘π{4

b
p1q
22

´ b
p2q
22

“
γC

12 cosp2θoq

˜

1

K1

´
1

K2

¸

. (10)

The only distinction remaining is whether θo “ 0 or θo ‰ 0. In the latter case (10) and the first equality

in (8b) form a system with a unique solution b
piq
22

“ γC
M´

12Ki cosp2θoq
¯

, i “ t1, 2u. The first equality in

(9) gives the relation between b
piq
20
, and it was already established that β

piq
20

must equal, i.e. one degree of

freedom remains for either pair, whilst α
piq
22

“ β
piq
22

“ a
piq
22

“ 0. If θo “ 0, the first equality in (8b) is satisfied

automatically, leaving one coefficient out of the b
piq
22

pair a degree of freedom. Similarly α
piq
22
, β

piq
22

and a
piq
22

pairs have one degree of freedom each.
To complete the resulting class of flows, boundary conditions must be prescribed in one of the sectors.

The second sector’s solution will follow by the continuity requirements derived above, including on the
boundaries. To implement Dirichlet boundary conditions of values uC and uX on the core and external
spherical shells r “ rC and r “ rX respectively, focus on the first three terms in solution (5) and the sector
delimited by θo ď θ ď π ´ θo:

¨

˝

1 1{rC

1 1{rX

˛

‚

¨

˝

b00

β00

˛

‚“

¨

˚

˚

˚

˝

u
γ
C

`
γC

6K2

r2
C

u
γ
X

`
γC

6K2

r2
X

˛

‹

‹

‹

‚

. (11)

The reason the boundary conditions are limited to the first three terms is twofold. Mathematically two
conditions can only determine two coefficients. From the vantage point of physics, these three terms are the
most significant ones in magnitude. Evidence thereof is to be given below. System (11) always possesses
a unique solution. Note that it is possible to have a full spherical domain with rC “ 0 and β00 as well as
all coefficients of negative powers of r vanishing. Henceforth examples for the generic case of rC ą 0 are
presented.

The constructed family of solutions has an extensive parameter space and effects a considerable variety
of flow patterns that is best illustrated using contours on a spherical shell of a fixed radius ro. In a radially
symmetric flow the function u restricted to such a shell would have been constant and thus incapable of
producing closed contours. The mere ability to display a well defined level set demonstrates the emergence of
strong tangential flow components. The qualitative properties of the pattern (fixed points, ϕ and θ gradients,
separatrices) are not altered when ro varies, proving that the tangential flow persists throughout the domain.

Depending on the physical meaning ascribed to the scalar function u, there is a number of vector functions
associated with it: gradient ∇u, flux ´Kuγ´1∇u and velocity ´K∇u (possibly up to a constant in dimen-
sional quantities). All possess at least one discontinuous component and are extremely difficult to visualise
effectively, since their norm generally spans several orders of magnitude and thus cannot be represented by
proportionate arrow length. The level set comprises continuous contours that provide a consistent depiction
of the flow field throughout the parameter space, regardless of whether the main interest lies in u itself or
the concomitant vector functions.

In light of the above, projections of u on the θ ´ ϕ plane are the preferred method of visualisaion. To
capture the continuity of transition between subdomains of distinct diffusivity, the contour levels must be
identical. On the other hand, the range of u inherent to each subdomain is different and gradients are acutely
non-linear. Hence the level set was taken as the union of adequate values within the range of u restricted to
the relevant sector of the spherical shell. The exact choice of levels was compelled by a reasonable depiction of
the qualitative terrain in each case, and albeit non-trivial, it was not instructive and thus omitted. Respective
tridimensional interactive spherical projections are provided in the supplementary material as figures saved
in MATLAB *.fig [25] and Octave *.ofig [11] (free source) formats, and can be opened using the built-in
function hgload in the command line or by double-clicking if using the applications’ interface. The following
quantities evince no qualitative impact on the flow field: rC , rX , uC , uX , γ and C. The choices rX “ 1
and uX “ 1 can be made without loss of generality by an appropriate non-dimensionalisation. The angle
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θo π

2
π ´ θo π 3π
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2π 2π ` θo

π

π

2

0

θ

ϕ

coefficients

b
p1q
00 = 1.08335

b
p2q
00 = 1.08335

b
p1q
20 = 1.461 ˆ 10´5

b
p1q
22 = 1.6234 ˆ 10´5

b
p2q
22 = 1.6234 ˆ 10´6

β
p1q
00 = ´0.083335

β
p2q
00 = ´0.083335

Figure 3: Flow field u
´

prC ` rX q{2, ϕ, θ
¯

with n ď 2. Green / grey: θo ď θ ď π ´ θo, K2 “ 10´6; black:

π ´ θo ď θ ď 2π ` θo, K1 “ 10´7. Input parameters: rC “ 0.1, rX “ 1, uC “ 0.5, uX “ 1, θo “ π{6,
γ “ 2, C “ 5 ˆ 10´12. All coefficients equal 0 except as stated. Diamonds mark fixed points. Pole-to-pole
separatrices coincide with contour lines, θ coordinates thereof given by equation (14).

θo and diffusivities Ki strongly affect the existence and location of topological features such as separatrices
and fixed points. These are explored in §3.2. Furthermore, the contour shape is extremely sensitive to the
optional parameters – all free coefficients besides the pair determined via boundary conditions.

Figure 3 depicts the basic flow field with all optional parameters set to zero. Note the smoothness of all
contours within the respective subdomains and the continuous, yet non-smooth transition on the contiguity
planes, entailing an abrupt gradient as evidenced by an increase in contour density. Observe that similar
gradients are induced in the proximity of the two pole-to-pole separatrices within the larger (black) sector.
This attests to the global impact a jump in diffusivity might engender. Integration of the velocity field with
the purpose of obtaining streamlines is stiff, and the sensitivity of the location of these secondary (away from
the contiguity interfaces) gradients to problem parameters puts it beyond the ambit of the current study.

The disparity in magnitude of coefficients determined by boundary conditions, as compared to those
ensuing by continuity requirements, confirms the dominance of the former. Both poles are, as expected,
fixed points, and in this example their type is a saddle, as is seen from the shape of the contours near
ϕ “ 0 and ϕ “ π. It is explicit in the tridimensional spherical projection given in the supplementary
file figure3_3Dproj. In addition there are four fixed points of the node type: one in the smaller sector
(green / grey) and three in the bigger one (black). The respective basins are separated by pole-to-pole
separatrices, each lying on a great circle. This basic flow pattern is sensitive to variation in the optional
coefficients. For instance, the topological features change dramatically upon a slight adjustment of the degree

of freedom b
p2q
20

: 0 ÞÝÑ ´10´4 (figure 4). Now there are two nodes, both in the bigger sector; two saddles,
one in each sector; and two “figure eight” separatrices that do not pass through either pole. One of these
extends over the entire range of θ, whereas the other spans only a part thereof. Furthermore, the shape of
the top and bottom isocontours indicates both poles morphed into node points (see also the tridimensional

depiction in the supplementary file figure4_3Dproj). Yet another adjustment β
piq
20

: 0 ÞÝÑ 10´5 turns the
saddle in the smaller sector into a node and reorders the fixed points in the bigger sector from a sequence
of node-saddle-node into saddle-node-saddle. The two separatrices become a single “figure eight” contour,
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π ´ θo π 3π

2

2π 2π ` θo

π

π

2

0

θ

ϕ

coefficients

b
p1q
20 = ´0.8539 ˆ 10´4

b
p2q
20 = ´10´4

Figure 4: Flow field u
´

prC `rX q{2, ϕ, θ
¯

. Configuration, colour scheme, input parameters and all coefficients

as in figure 3 except as stated. Diamonds mark fixed points, dashed curves mark separatrices.

but with two crossing points (figure 5 and supplementary files figure5_3Dproj). This response to a small
variation of the unconstrained coefficients attests to the strong non-linearity of the flow pattern and is
formally analysed in §3.2.

3.2 Topological features for n ď 2

The fixed points visible in the sample flow patterns in figures 3–5 do not in reality constitute formal stagnation
points of the tridimensional flow field, since the gradient of u vanishes only in the two angular directions,
but not in the radial one. Intriguingly the qualitative topology of the pattern restricted to a spherical shell
of a given radius r is independent of r. From the vantage point of physics, one could trace the locus of each
fixed point in space from the core shell r “ rC to the external one r “ rX by a path, whose curvature is
expected to be small. At any point along this path a particle is subject to a purely radial motion.

As was shown above, the configuration with θo “ 0 allowed for more degrees of freedom in the choice of
coefficients than θo ‰ 0. To analyse the more prominent topological features, the attention is limited to a
solution u that is valid for any ´π{2 ă θo ă π{2, θo ‰ ˘π{4:

u
γ
i “ ´

γC

6Ki

r2`b00`
β00

r
`cosϕ

˜

rb10`
β10

r2

¸

`
3

2

˜

1

2
cosp2ϕq`

1

6

¸˜

r2b
piq
20

`
β20

r3

¸

`
3

2

´

1´cosp2ϕq
¯

r2b
piq
22

cosp2θq,

(12)
where equal coefficients in both sectors had the superscript piq omitted. Differentiating with respect to θ

and equating to zero gives
´

1 ´ cosp2ϕq
¯

sinp2θq “ 0. (13a)

Thus the points ϕ “ πℓ and θ “ πℓ{2, ℓ P Z, form the candidate fixed point set. The points ϕ “ 0, π
correspond to the poles and are roots of Bϕu “ 0 as well, establishing the poles are fixed points as expected.
When they are excluded from the set of roots of Bϕu “ 0, one gets

cosϕ

#

2b
piq
22
r2 cosp2θq ´

˜

r2b
piq
20

`
β20

r3

¸+

“
1

3

˜

rb10 `
β10

r2

¸

. (13b)
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θo π
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π ´ θo π 3π
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2π 2π ` θo

π

π

2
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θ

ϕ

coefficients

β
p1q
20 = 10´5

β
p2q
20 = 10´5

Figure 5: Flow field u
´

prC `rX q{2, ϕ, θ
¯

. Configuration, colour scheme, input parameters and all coefficients

as in figure 4 except as stated. Diamonds mark fixed points, dashed curves mark separatrices.

If b10 “ β10 “ 0, as is the case in the patterns depicted in figures 3–5, it follows that ϕ “ π{2 or θ must
satisfy

cosp2θq “

˜

r2b
piq
20

`
β20

r3

¸O

´

2b
piq
22
r2
¯

. (14)

If the right-hand side in equation (14) is less than unity in magnitude, pole-to-pole loci of fixed points ensue,
as in figure 3. By contrast, for the patterns in figures 4 and 5 the right-hand side in (14) exceeds unity,
leaving only isolated fixed points on the equator. If at least one of the coefficients b10 or β10 does not vanish,
the fixed points are always located at θ “ πℓ{2 with ϕ given by equation (13b), provided the resulting
expression for cosϕ does not exceed unity in magnitude. One such example with the fixed points off the
equator is shown in figure 6 and supplementary file figure6_3Dproj.

The separatrix contours are obtained by letting the right-hand side of (12) equal a constant and scru-
tinising the resulting expression. One observation is that if the coefficient of cosp2ϕq vanishes, condition
(13b) is recovered. Depending on the other coefficients, either a simple trigonometric equation for ϕ en-
sues, giving a set of fixed points as in figures 4 and 5, or the equation is satisfied for all ϕ, entailing
pole-to-pole separatrices as in figure 3. If the term cosp2ϕq is retained, the contour might be written as

Ã1prq
´

cosϕ ´ B̃1prq
¯2

` Ã2pr, θq sin2 ϕ “ 1 with functions Ã1, Ã2 and B̃1 following by rearrangement of

equation (12) into this form, and thus viewed as a generalised ellipse. This is a quadratic equation in cosϕ
with coefficients depending on cosp2θq. This defines a contour ϕpθq that is closed in the plane θ´ϕ, provided
that the discriminant gives a real solution, and that the eventual solution for cosϕ does not exceed unity in
magnitude. The dashed trajectories in figures 4 and 5 were computed thereby. Indeed every isocline in these
figures satisfies this equation. One might distinguish between two types of contours: trajectories that span
the full range 0 ď θ ď 2π, and those that do not. The former must perforce traverse both sectors, whilst the
latter might or might not be confined to a single sector. Figure 5 contains examples of all three cases. One
of the more remarkable characteristics is the disparity in the range of ϕ and θ that a single isocline might
span. A contour might traverse most of the range in both ϕ and θ: for instance, tracing the curve above the
green / grey closed contours in figure 6 from left to right begets a latitude variation of about π{4; this curve
then continues into the second sector, skirts the bottom of the first set of closed black contours, ascends
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θo π

2
π ´ θo π 3π
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2π 2π ` θo

π

π

2

0

θ

ϕ

coefficients

b
p1q
10 = 4 ˆ 10´6

b
p2q
10 = 4 ˆ 10´6

Figure 6: Flow field u
´

prC `rX q{2, ϕ, θ
¯

. Configuration, colour scheme, input parameters and all coefficients

as in figure 3 except as stated. Diamonds mark fixed points, ϕ coordinates given by equation (13b).

into the northern hemisphere as it circumnavigates the second fixed point and returns to the vicinity of the
south pole. By contrast, a contour might be a local closed trajectory, such as the lowermost contour in the
green / grey sector, or any of the smaller closed contours around the three fixed points in the black sector.

Another intriguing observation concerns the vicinity of the south pole. The green / grey closed contours
in figure 6 come very close to touching the line ϕ “ π. The ostensibly open adjacent contour is in fact
closed, as both its ends do touch ϕ “ π with different values of θ. This means that although the south
pole is a saddle point, it is a peculiar one with two separatrices merged into a closed contour. In the
supplementary tridimensional spherical projection corresponding to figure 6 use the rotation feature to view
the neighbourhood of the south pole.

3.3 Flow patterns for n ě 3

Harmonics with n ě 3 contribute terms independent of any combination of sine, cosine or r powers present
in (5). In particular there is no interference with the inhomogeneous term stemming from fluid generation
within the domain. Therefore decomposing the associated Legendre functions Pm

n into elementary functions
is no longer necessary. Applying (4) to terms of the form rnPn0 and r´pn`1qPn0 allows to conclude that

b
piq
n0 and β

piq
n0 must equal in both sectors, and define bn0 :“ b

piq
n0 and βn0 :“ β

piq
n0 , i “ t1, 2u. For m ‰ 0

implementing (4) on planes θ “ θo and θ “ π ´ θo gives

sin
`

mθo
˘

´

ap1q
nm ´ ap2q

nm

¯

“ 0, cos
`

mθo
˘

´

bp1q
nm ´ bp2q

nm

¯

“ 0, (15a)

cos
`

mθo
˘

´

K1a
p1q
nm ´ K2a

p2q
nm

¯

“ 0, sin
`

mθo
˘

´

K1b
p1q
nm ´ K2b

p2q
nm

¯

“ 0. (15b)

Thus if sin
`

mθo
˘

‰ 0 and cos
`

mθo
˘

‰ 0, the only possible solution is the trivial one. If θo “ πℓ{m for some
apposite integer ℓ, the first equality in (15a) and the second one in (15b) are satisfied automatically. Then

bnm :“ b
piq
nm and a

p2q
nm “ K1

M

K2 a
p1q
nm. If θo “ π{p2mq ` πℓ{m, similarly anm :“ a

piq
nm and b

p2q
nm “ K1

M

K2 b
p1q
nm.

Swapping a
piq
nm ÐÑ α

piq
nm and b

piq
nm ÐÑ β

piq
nm will give the respective results for those coefficients. In particular
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b
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21 = 10´5
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coefficients
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p1q
10 = 4 ˆ 10´6

b
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10 = 4 ˆ 10´6

a
p1q
32 = 10´5

a
p2q
32 = 10´6

β
p1q
30 = 10´6

β
p2q
30 = 10´6

Figure 7: Flow field u
´

prC ` rX q{2, ϕ, θ
¯

. θo “ 0. Colour scheme, input parameters and all coefficients as in

figure 3 except b
p1q
22

“ 8.1168 ˆ 10´6, b
p2q
22

“ 8.1168 ˆ 10´7 and values stated by each panel.

the angles that will allow additional degrees of freedom form “ 3 are θo “ 0,˘π{6,˘π{3. Some combinations
of m and ℓ result in θo “ ˘π{4. These angles were shown to be singular in the course of the analysis with
n ď 2 and must be excluded here as well. Note that all angles resulting from solving sinpmθoq “ 0 or

cospmθoq “ 0 accord two degrees of freedom within any quadruple
!

a
piq
nm, b

piq
nm

)

, i “ t1, 2u. Scrutiny of

system (15) suggests that a codimension of 2 is the only one possible: a root of sinpmθoq or cospmθoq always
removes exactly two equations, as the sine and cosine functions have no common roots. This codimension
is directly expressed via a matrix rank for any number of sectors N ě 2 in §4. For N “ 3 and N “ 4 the
codimension equals unity [27]. Figure 7 gives examples of the variety of asymmetric flow patterns conduced
by these additional degrees of freedom. Note the appearance of multiple saddle-node mixed points: on the
top left panel the upper one out of the pair at θ “ 0 and the lower one at θ “ π; on the bottom left panel
the lower and upper ones out of the triple at θ “ 0 and the middle one at θ “ π. A companion graphical
user interface allows for further exploration of these flow patterns [3].

4 An arbitrary number of sectors

Implementing equations (4) for a configuration of N sectors leads to a system of linear equations of size
2Nˆ2N involving an (almost) block bidiagonal matrix:

Cpmqc “ r, (16a)
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b
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20 = ´9

b
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20 = 0.9

b
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22 = ´1.8404

b
p2q
22 = ´0.78723

b
p3q
22 = 0.26596

a
p1q
22 = a

p3q
22 “ 0.75547

a
p2q
22 = 2.5797

β
p1q
00 = ´5133.5

β
p2q
00 = ´51335

β
p3q
00 = ´513.35

Figure 8: Flow field u
´

prC ` rX q{2, ϕ, θ
¯

. Sector angles θi “
!

2π
3
, 4π

3
, 2π

)

. Respective diffusivities:

Ki “
!

10´7, 10´6, 10´8

)

. Input parameters as in figure 3. All coefficients equal 0 except as stated.

Cpmq “

¨

˚

˚

˚

˚

˚

˚

˝

A
pmq
1

B
pmq
1

A
pmq
2

B
pmq
2

. . .
. . .

A
pmq
N´1

B
pmq
N´1

B
pmq
N A

pmq
N

˛

‹

‹

‹

‹

‹

‹

‚

(16b)

with the block matrices given by

A
pmq
i “

ˆ

sinpmθiq cospmθiq
cospmθiq ´ sinpmθiq

˙

, B
pmq
i “

ˆ

´ki sinpmθiq ´ki cospmθiq
´ cospmθiq sinpmθiq

˙

. (16c)

For each harmonic pm,nq the unknown vector c consists of the coefficients in (3a) arranged in pairs in the

order of the sectors: cmn “
´

a
p1q
mn, b

p1q
mn, ¨ ¨ ¨ , a

pNq
mn , b

pNq
mn

¯T

or γmn “
´

α
p1q
mn, β

p1q
mn, ¨ ¨ ¨ , α

pNq
mn , β

pNq
mn

¯T

. The

system is inhomogeneous for m “ 2 and homogeneous for all other harmonics m regardless of the value of n.
Interestingly, a matrix of this type appears in the analysis of a particular case of equation (1) with γ “ 2 in
polar coordinates, cf. [27, equation (7c)]. In that problem the manifold defined by detCp2q “ 0 is singular,
prohibiting the existence of a steady state solution of the separation of variables kind, or depending on the
boundary conditions, any steady state at all. Here a similar structure emerges as part of a more convoluted
mosaic of arguments, where one must reconcile conditions pertaining to different groups of coefficients.
Complete technical detail is provided in appendix A.

Figure 8 depicts the flow pattern for a configuration of three equal sectors with the maximal number of
coefficients set to zero. Both poles are fixed points of a mixed type: in the sector 2π{3 ď θ ď 4π{3 the top
and bottom trajectories are characteristic of the node, whereas in the other two sectors they correspond to
a saddle. This is better evident in the supplementary spherical projection figure8_3Dproj. Configurations
with additional degrees of freedom are treated as part of the analysis of the manifolds detCpmq “ 0 in §4.1.

A sufficient condition for the existence of a steady state solution to equation (1) in a configuration
comprising N sectors is detCp2q ‰ 0. The solution might be endowed with additional degrees of freedom if
detCp2q “ 0 and the right-hand side vector r is in the column space of Cp2q. Since for N ą 2 this vector
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Figure 9: Singular manifold detCp2q “ 0 for a generic three sector configuration
!

θ1, θ2, 2π
)

with diffusivities

Ki “
!

10´7, 10´6, 10´8

)

(dotted black curves, left and right panels). Right panel: superimposed manifolds

detCp1q “ 0 (solid green / grey), detCp3q “ 0 (dashed green / grey), detCp4q “ 0 (solid black), detCp5q “ 0
(dashed black). Diamonds mark example intersection points.

depends only on diffusivity ratios, whilst the entries of Cp2q depend both thereon and θi, the likelihood of
this happening in practice is small. The shape of the singular manifold detCp2q “ 0 was delineated in [27]
and its interrelation with detCpmq “ 0 for m ‰ 2 is further discussed in §4.1. For the solution to allow
harmonics with m ‰ 2 the condition detCpmq “ 0 must hold. The number of degrees of freedom within
any one vector cnm or γnm equals 2N ´ rankCpmq. For N “ 2 examples with this codimension equal to 2
were constructed above, in keeping with the degeneracy of the manifold detCpmq “ 0 in that configuration
established in [27]. Therein it is further proved that for N “ 3 and N “ 4 the codimension cannot exceed
unity and conjectured no degeneracy is to appear for a larger number of sectors.

4.1 Manifolds detCpmq “ 0 and degrees of freedom

Rigorous results on the structure and properties of the manifold detCp2q “ 0 were derived in [27]. Here use
will be made of its explicit form. For two sectors the manifold is entirely free of dependence on diffusivities
[27, equation (10)]:

cos
`

4pθ2 ´ θ1q
˘

“ 1 (17)

and can be reduced to the line θ2 ´ θ1 “ π{2. Hence as long as the sectors are not right-angled, a steady
state solution exists. To open the possibility of additional degrees of freedom for a frequency m ‰ 2, one
must have detCpmq “ 0 whilst detCp2q ‰ 0. To generalise (17) for any m observe that it originated from
the matrix Cp2q, whose entries contained sines and cosines of the angles 2θi, and no other dependence on
θi. Since the matrix Cpmq contains the same entries, but of angles mθi, the mapping θi ÞÝÑ mθi{2 gives the
required manifold as θ2 ´ θ1 “ πℓ{m, where ℓ is an apposite integer. For instance with m “ 1 and ℓ “ 1
one gets θ2 ´ θ1 “ π, i.e. equal sectors. Without loss of generality this corresponds to θo “ 0, an angle that
emerged multiple times in the explicit analysis of the degrees of freedom for n ď 2 and n ě 3 harmonics. For
m “ 3 the relevant options are θ2 ´ θ1 “ π{3, 2π{3, conforming to θo “ ˘π{6,˘π{3. The respective degrees
of freedom accorded by these configurations were discussed as part of the solution to system (15).

For three sectors, upon the foregoing mapping, the manifold detCpmq “ 0 becomes [27, equation (15a)]

cosp2mθ1q
!

k̃12 ` k̃13 ´ k̃23 ´ 2
)

` cosp2mθ2q
!

´ k̃12 ` k̃13 ` k̃23 ´ 2
)

`

cos
`

2mpθ2 ´ θ1q
˘

!

k̃12 ´ k̃13 ` k̃23 ´ 2
)

“ k̃12 ` k̃13 ` k̃23 ´ 6, (18)
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b
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n1 “ 1, 1 ď n ď 3

a
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n1 = ´11.961, 1 ď n ď 3

β
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00 as in figure 8

Figure 10: Flow field u
´

prC ` rX q{2, ϕ, θ
¯

. Sector angles θi “
!

1.77382, 2.38034, 2π
)

conform to the lower

of the two intersection points of m “ 1 and m “ 4 orbits in figure 9. Respective diffusivities: Ki “
!

10´7, 10´6, 10´8

)

. Input parameters as in figure 3. All coefficients equal 0 except as stated.

where k̃ij “ Ki

M

Kj ` Kj

M

Ki. The left panel of figure 9 shows a typical shape of this manifold with m “ 2

for a configuration, where θ3 “ 2π without loss of generality due to the rotational invariance of equation (1).
The explicit formula for the petal shaped orbits is found in [27]. For most angles θ1 drawing a vertical line
and limiting the attention to one half of the plane with θ2 ą θ1 results in a number of intersections. For
these values of θ2 no steady state solution exists. For some ranges of θ1 there are no intersections, i.e. any
value of θ2 might be picked. These are referred to as regularity corridors. In the right panel of figure 9 the
orbits of the concomitant manifolds with m “ 1 and 3 ď m ď 5 are superimposed. This plot should be read
as follows. To identify a configuration, where a steady state solution (involving m “ 2 harmonics) exists
and additional degrees of freedom with m ‰ 2 are allowed, one must find combinations pθ1, θ2q that lie on
the orbits corresponding to the desired harmonics, but avoiding the dotted contours. For instance, for any
θ1 within one of the regularity corridors all solid and dashed orbits offer configurations according degrees of
freedom associated with the respective frequency m. Some of these orbits intersect, so it is possible to have
degrees of freedom with m “ 4 and m “ 5 simultaneously (solid and dashed black), m “ 1 and m “ 4 (solid
black and green / grey), m “ 3 and m “ 5 (dashed black and green / grey), and many other combinations.
All these examples are marked with pairs of black diamonds. Outside of the regularity corridors combinations
might be similarly constructed, only care must be taken to avoid the singular dotted orbits.

Figure 10 depicts the flow pattern for an example, where harmonics with m “ 1 and m “ 4 are allowed
to co-exist. The associated degrees of freedom endow the flow field with an impressive variety of topological
terrain. There are three features of note. One, the curved contours in the northern half of the narrow
sector 1.77382 ď θ ď 2.38034 imply a fixed point of the node type. However, the curvature of the contours
immediately across the contiguity plane to the right of θ “ 2.38034 renders that part of the saddle type.
This shows that a fixed point of a mixed type is also possible in configurations that have no immediately
apparent symmetry. The second observation is that the dashed closed contour straddling all three sectors
encompasses the aforementioned mixed type point and two more simple node points (as well as one saddle).
The same isocline constitutes incoming and outgoing trajectories typical of a saddle point for both poles,
but fused into a single closed contour. The third point of interest is that the presence of a narrow sector
with a higher diffusivity gives rise to multiple fixed points and a variegated pattern of basins in the other
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sectors, to wit the impact of one narrow preferential direction might be global and significant.
A generic combination of two co-existing harmonics is constructed by choosing two desired values of m

and creating a system of two equations in two unknowns pθ1, θ2q from (18). Some pairs of m values, e.g.
m “ 1 and m “ 3, result in no intersections. If this system does possess a solution, it is likely not unique, as
the orbits are closed – begetting paired solutions – and furthermore replicated periodically. For higher values
of N the petal-shaped orbits persist on any planar cross-section of the pN ´ 1q-dimensional manifold (with
the last contiguity azimuth set to θN “ 2π and Ki specified), but their orientation, area and proximity to
one another vary greatly, cf. [27, figure 7]. Via a similar construction with N ´ 1 values of m one might find
some N -tuples of θi that accord additional degrees of freedom. Furthermore, since N ´ 1 more parameters

in the form of diffusivity ratios ki “ Ki

M

Ki`1 are available, it might be possible to tune those so that three

or more contours intersect at the same point. In figure 9 this is exemplified by the trifold intersection of
m “ 1, m “ 4 and m “ 5 orbits marked by a lone (unpaired) diamond. In this particular example θ2 ă θ1.
Therefore the correct contiguity angle layout must be obtained by adding π to the value of θ2, as the relevant
period is that of the manifold corresponding to the harmonic m “ 1.

5 Conclusion

The steady non-linear diffusion equation with an azimuthal piecewise constant anisotropy admits a wide class
of exact solutions in spherical coordinates. Within each sector the solution is a series comprising tesseral
and sectoral harmonics written via the associated Legendre functions of degree n and order m, m ď n. The
harmonics with m “ n “ 2 are essential if the fluid generation rate within the domain is not zero. The
presence of other combinations of m and n is governed by a set of manifolds defined via the determinant
of the matrix Cpmq. Solution existence is guaranteed if detCp2q ‰ 0. By contrast, for a degree of freedom
associated with harmonic m ‰ 2 (and any value of n) to be present, detCpmq must vanish. The constraint
detCp2q ‰ 0 as a sufficient condition for the solution existence first emerged in the context of exact solutions
in the simpler framework of a planar flow in polar coordinates [27]. The question whether the topology of
this singular manifold is an inherent structure of the non-linear diffusion equation regardless of dimension
and system of coordinates, is a topic of future study.

Due to the abrupt change of diffusivity between adjacent subdomains the contours of u are not smooth on
the contiguity surfaces. This phenomenon has been observed in experimental studies of a plume traversing a
sharp interface between two distinct porous media [31], but has not been hitherto modelled mathematically
with multiple interfaces. The anisotropy also gives rise to a new type of fixed point that is neither a node nor
a saddle, but commingles the local terrain attributes of both. Such points are located on contiguity planes
between sectors, with each sector responsible for a part of the contour that would have been a pure node or
saddle, had the solution therein been extended to the entire range of the azimuthal angle θ. When sectors
contribute contours of distinct types, the result is a fixed point of a mixed type. Moreover, when such point
is located at the pole, any permutation of an N -tuple of saddle and node contributions is possible. This
topological feature is new and cannot be obtained without the presence of anisotropy.

The inherent abundance of fixed points associated with upr, ϕ, θq restricted to a shell of radius r and
the striking variability of their basins of attraction or repulsion, conduce one fundamental inference: when
the radial symmetry is broken by anisotropy, radial transport becomes surprisingly ineffective. The only
dependence of uγ on r is of the power law type. Therefore all three components of ∇u are proportional to
the same power of r: the radial velocity by differentiation, and the polar and azimuthal velocity via the factor
1{r. Any generic boundary condition is bound to invoke all harmonics, including those with negative powers
of r. The dimensionless outer radius is rX “ 1 and the core radius satisfies rC ! 1. Thus as r ÝÑ r`

C
, all three

velocity components become large. If the highest harmonic present is n, the magnitude of u itself and its

gradient are u „ O
´

r´pn`1q{γ
¯

and ∇u „ O
´

r´1´pn`1q{γ
¯

respectively. Since all gradient components are

of the same magnitude, a fraction as large as 2/3 of the diffusant’s kinetic energy – proportional to |∇u|2 –
is associated with motion tangential to the spherical shell. In wells, whose purpose is to collect fluid, this
translates to an increase of the energy required to maintain a desired radial flowrate and diminution of the
zone of influence. The only way to avoid that is to eliminate anisotropy. Narrow wedges of higher or lower
diffusivity engender strong tangential flow throughout the domain. Nevertheless, the existence of preferential
directions of flow might be crucial for a successful function of a well, whose installation is extremely difficult
(for instance, offshore), whilst the reservoir is large [37]. In an application such as aquifer remediation, where
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the well’s purpose is to inject fluid, the strong polar and azimuthal currents might be beneficial in the sense
that the performance of active compounds will improve due to mixing, at the expense of compromised radial
reach. In the biomedical example of exploration of the extracellular space of the brain [30], particles are set
to perform a random walk for the purpose of revealing an unknown terrain of obstacles. The anisotropy will
enhance walk pattern variety and thus identify the space structure with fewer walkers.

In summary, the introduction of anisotropy breaks the spherical radial symmetry and profoundly impacts
the flow pattern, entailing strong polar and azimuthal velocities, whose magnitude is comparable with
that of the radial motion. The existence of a narrow sector of a distinct diffusivity suffices to create a
tessellation of attraction and repulsion basins in the other sectors, greatly diminishing the effectiveness of
the radial transport. The quantitative exploration of local and global fluxes as well as flow pattern control
via diffusivities is a topic of future study.
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Appendix A. An arbitrary number of sectors: technical detail

A.1 Harmonics n ď 2

For an arbitrary number of sectors the derivation is more elegant if (5) is rewritten as

6Ki

γC
u
γ
i “ ´r2`b

piq
00

`
β

piq
00

r
`cosϕ

#

rb
piq
10

`
β

piq
10

r2

+

´sinϕ

#

r
´

a
piq
11

sin θ`b
piq
11

cos θ
¯

`
1

r2

´

α
piq
11

sin θ`β
piq
11

cos θ
¯

+

`

3

2

˜

1

2
cosp2ϕq `

1

6

¸#

r2b
piq
20

`
β

piq
20

r3

+

´
3

2
sinp2ϕq

#

r2
´

a
piq
21

sin θ ` b
piq
21

cos θ
¯

`
1

r3

´

α
piq
21

sin θ ` β
piq
21

cos θ
¯

+

`

3

2

´

1 ´ cosp2ϕq
¯

#

r2
´

a
piq
22

sinp2θq ` b
piq
22

cosp2θq
¯

`
1

r3

´

α
piq
22

sinp2θq ` β
piq
22

cosp2θq
¯

+

. pA1q

Beginning with the simplest constant term in (A1), define ki “ Ki

M

Ki`1, 1 ď i ď N (as before the last

index must wrap back to the first sector via kN “ KN{K1) and apply conditions (4) to get the linear system

b
piq
00

“ kib
pi`1q
00

, 1 ď i ď N. pA2aq

Herein and below any recurrence or similar relation involving an index that exceeds the range 1 ď i ď N ,

is tacitly mapped N ` 1 ÞÝÑ 1 or 0 ÞÝÑ N as required for periodicity. Isolating b
pi`1q
00

in terms of b
piq
00
, by

mathematical induction it is elementary to arrive at

b
pi`1q
00

“ b
p1q
00

O

i
ź

ℓ“1

kℓ. pA2bq

To interpret (A2b) for i “ N , observe that
N
ś

ℓ“1

kℓ “ 1 and furthermore utilise the contiguity of the N -th and

first sectors to infer this relation results in an identity. Thus the linear system defined by (A2a) is of rank

N ´ 1, entailing one degree of freedom. An identical inference follows for β
piq
00

, b
piq
10

and β
piq
10

.
Next consider the coefficients of r sinϕ. Equations (4) yield a system of 2N equations in 2N unknown

coefficients
!

a
piq
11
, b

piq
11

)

, 1 ď i ď N :

a
piq
11

sin θi ` b
piq
11

cos θi ´ ki

´

a
pi`1q
11

sin θi ` b
pi`1q
11

cos θi

¯

“ 0, pA3aq
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a
piq
11

cos θi ´ b
piq
11

sin θi ´ a
pi`1q
11

cos θi ` b
pi`1q
11

sin θi “ 0. pA3bq

Equations (A3) might be arranged as an (almost) block bidiagonal linear system:

Cp1qc11 “ 0, pA4aq

where the vector cmn is cmn “
´

a
p1q
mn, b

p1q
mn, ¨ ¨ ¨ , a

pNq
mn , b

pNq
mn

¯T

, and the matrix Cpmq is defined as

Cpmq “

¨

˚

˚

˚

˚

˚

˚

˝

A
pmq
1

B
pmq
1

A
pmq
2

B
pmq
2

. . .
. . .

A
pmq
N´1

B
pmq
N´1

B
pmq
N A

pmq
N

˛

‹

‹

‹

‹

‹

‹

‚

, pA4bq

with the block matrices given by

A
pmq
i “

ˆ

sinpmθiq cospmθiq
cospmθiq ´ sinpmθiq

˙

, B
pmq
i “

ˆ

´ki sinpmθiq ´ki cospmθiq
´ cospmθiq sinpmθiq

˙

. pA4cq

For the negative powers of r define the vector of coefficients γmn “
´

α
p1q
mn, β

p1q
mn, ¨ ¨ ¨ , α

pNq
mn , β

pNq
mn

¯T

. Then

γ
11

satisfies a system identical to (A4a), as do c21 and γ
21
. The homogeneity of equation (A4a) implies that

if detCp1q ‰ 0, the only solution is c11 “ c21 “ γ
11

“ γ
21

“ 0. If detCp1q “ 0, some degrees of freedom are
expected.

Equations (4) for the terms of the form r2 in (A1) give

´1`
1

4
b

piq
20

`
3

2

´

a
piq
22

sinp2θiq`b
piq
22

cosp2θiq
¯

“ ki

#

´1`
1

4
b

pi`1q
20

`
3

2

´

a
pi`1q
22

sinp2θiq`b
pi`1q
22

cosp2θiq
¯

+

pA5aq

and
a

piq
22

cosp2θiq ´ b
piq
22

sinp2θiq ´ a
pi`1q
22

cosp2θiq ` b
pi`1q
22

sinp2θiq “ 0 pA5bq

respectively. Condition (4a) applied to the r2 cosp2ϕq terms gives

3

4
b

piq
20

´
3

2

´

a
piq
22

sinp2θiq ` b
piq
22

cosp2θiq
¯

“ ki

#

3

4
b

pi`1q
20

´
3

2

´

a
pi`1q
22

sinp2θiq ` b
pi`1q
22

cosp2θiq
¯

+

, pA5cq

whilst (4b) results in an equation that matches (A5b). System (A5) comprises 3N linear equations in 3N

unknown coefficients
!

b
piq
20
, a

piq
22
, b

piq
22

)N

i“1

. It is possible to simplify it somewhat. Summing equations (A5a)

and (A5c) gives

b
piq
20

“ 1 ´ ki ` kib
pi`1q
20

. pA6aq

Induction similar to that employed in (A2) gives

b
pi`1q
20

“ 1 `
´

b
p1q
20

´ 1
¯

O

i
ź

ℓ“1

kℓ pA6bq

with a single degree of freedom, since relation (A6b) for i “ N leads to an identity. Note that setting b
p1q
20

“ 1

will end up in the symmetry b
piq
20

“ 1 @ 1 ď i ď N . Multiplying (A5a) by 2

3
and rearranging in conjunction

with (A5b) yields
Cp2qc22 “ r, pA7aq

where Cp2q is defined in (A4b) and c22 immediately below (A4a). This time, however, the system is inhomo-

geneous with the right-hand side vector given by r “ 1

2

´

1 ´ k1, 0, ¨ ¨ ¨ , 1 ´ kN , 0
¯T

, where (A6b) was used
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to simplify the terms involving b
piq
20
. A procedure of the same ilk for the triple N -tuple

!

β
piq
20

, α
piq
22
, β

piq
22

)N

i“1

leads to a homogeneous counterpart of (A7a), accompanied by a condition identical to (A2b):

Cp2q
γ
22

“ 0, β
pi`1q
20

“ β
p1q
20

O

i
ź

ℓ“1

kℓ. pA7bq

Since system (A7a) is inhomogeneous, there are two possibilities for (A1) to be a viable solution. One, the
matrix Cp2q is non-singular, i.e. detCp2q ‰ 0 holds. Then the resulting set of coefficients c22 is unique and
contains some non-vanishing entries, whilst γ

22
“ 0. Two, detCp2q “ 0, but the right-hand side vector r is

within the column space of Cp2q. Then both c22 and γ
22

will contain degrees of freedom.

A.2 Harmonics n ě 3

As with the two sector configuration, n ě 3 harmonics do not interlace with those corresponding to n ď 2.
Redefining the constants in (3a) in the spirit of (A1) by shifting the ratio γC{

`

6Ki

˘

to the left-hand side,
applying conditions (4) to terms of the form rnPm

n with n ě 3 and utilising the induction technique outlined

for n ď 2 results in the following relation for the coefficients b
piq
n0 and a linear system for

!

a
piq
nm, b

piq
nm

)N

i“1

when

m ‰ 0:

b
pi`1q
n0 “ b

p1q
n0

O

i
ź

ℓ“1

kℓ, Cpmqcnm “ 0, pA8aq

where Cpmq is defined in (A4b) and cnm immediately below (A4a). Identical steps for the functional shape
r´pn`1qPm

n yield respectively

β
pi`1q
n0 “ β

p1q
n0

O

i
ź

ℓ“1

kℓ, Cpmq
γnm “ 0, pA8bq

where γnm is defined as beneath (A4c). If detCp2q ‰ 0 in the solution u
γ
i

ˇ

ˇ

ˇ

nď2

, the only solution to equations

(A8) with m “ 2 is cn2 “ γn2 “ 0. The requirement detCpmq “ 0 suffices to retain degrees of freedom for

coefficients
!

a
piq
nm, b

piq
nm, α

piq
nm, β

piq
nm

)

with any m.
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