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A novel configuration of a landfill wellhead was analyzed to measure flow rate of gas extracted 6

from sanitary landfills. The device provides access points for pressure measurement integral 7

to flow rate computation similarly to orifice and Venturi meters, and has the advantage 8

of eliminating the problem of water condensation often impairing accuracy thereof. It is 9

proved that the proposed configuration entails comparable computational complexity and 10

negligible sensitivity to geometric parameters. Calibration for the new device was attained 11

using a custom optimization procedure, operating on a quadri-dimensional parameter surface 12

evincing discontinuity and non-smoothness. 13

Keywords: flow rate, landfill gas, flowmeter, Darcy friction factor, optimization on dis- 14

continuous surfaces 15

1. Background 16

Landfill gas collection often requires installation of flowmeters to comply with environ- 17

mental regulations. Landfill gas is extracted under vacuum at numerous well points, each 18

monitored for flow rate and gas composition. Methane, carbon dioxide, nitrogen and oxy- 19

gen are commonly contained in the gas stream extracted. In the past numerous methods 20

have been employed to measure wellhead flow rates: orifice plates, Venturi meters as well 21

as other commercial devices. These devices have been used with some success, however 22

their accuracy is impaired when wet gases are encountered. At times space requirements 23

render their use inappropriate. The geometry of the new device addresses these issues. 24

The operation principle of an orifice flowmeter is briefly reviewed here to facilitate com- 25

parison with the proposed configuration infra. The orifice flowmeter comprises a plate 26

with a centred aperture that is to occlude the fluid conduit, and two sensors to measure 27

the pressure drop due to the occlusion. The flow rate is computed by means of a theo- 28

retical formula based on considerations of momentum and supplemented by an empiric 29

discharge coefficient accounting for phyiscal phenomena responsible for head loss not 30

captured by elementary conservation of momentum (Crane 1982). Quondam simplistic 31

models for this coefficient (Idel’chik 1960) proved unsound, the reason thereto designated 32

circa 1980s as a marked sensitivity of orifice calibration to the location of pressure sensors. 33

Since these two entities must be in close conformance to attain adequate accuracy of flow 34

rate estimation, the sensor locations were standardized to a prescribed distance upstream 35

and immediately past the plate, wherewith extensive experiements in conjunction with 36

comprehensive modelling begot the accepted nowadays Reader-Harris / Gallagher dis- 37
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charge coefficient (ISO 2003). However, somewhat cumbersome form thereof and iterative38

calculation process entailed a praxis of commercial orifice flowmeters being calibrated by39

the manufacturer in accord with the foregoing principles, providing a formula requir-40

ing scarce computational effort, but also delegating the full responsibility for no longer41

modifiable installation locations of pressure sensors to the field operator.42

The following circumstances render the commercial calibration of the orifice flowmeter43

incompatible with the geometry of a landfill well (Nec and Huculak 2015). In contrast to44

as universal as it is tacit assumption of horizontal flow used in orifice flowmeters, the well45

is vertical. Typical flow rates are low, at times necessitating reduction in the aperture46

diameter to obtain a discernible pressure drop for the measurement, whence momentum47

loss by gravity is on the same order of magnitude as due to the occlusion by orifice plate.48

Thus applying a calibration constant issued for a horizontal flow impairs the accuracy of49

flow rate estimation. Furthermore, it is impossible to instal the second pressure sensor50

immediately behind the orifice plate due to water vapour, an ever-present component51

entrained in the landfill gas, condensing thereon. Therefore the pressure sensor locations52

do not conform to standards. In a recent study adequate accuracy of flow rate estima-53

tion was achieved by a custom calibration procedure, incorporating an effective relative54

roughness parameter to account for turbulence engendered by the presence of the orifice,55

as well as discovering a linear dependence on the constriction ratio of plate aperture to56

pipe diameter (Nec and Huculak 2015).57

The current contribution proposes a novel wellhead geometry, wherein orifice flowmeter58

usage is discontinued, eliminating the problem of moisture pooling on the orifice plate59

and interference with pressure measurement. The new arrangement is shown to be insen-60

sitive to imprecision inevitable in field installation, whilst the computational complexity61

involved in flow rate determination is on par with the custom calibrated orifice flowmeter62

counterpart (Nec and Huculak 2015). The feasibility of calibration of the new wellhead63

is verified through a series of measurements, however experiments comprehending the64

geometric and flow parameter space in its entirety are beyond the ambit of this study.65

2. Geometry and flow equations66

The wellhead studied herein consists of a tube of inner radius r and wall thickness δ67

inserted concentrically and secured in a well pipe of radius R > r, whose upper end is68

blocked (see figure 1). The upstream pressure sensor is located by the annulus wall and69

measures pressure within the nearly stagnant eddy zone. The tube ends with a sharp70

elbow. A small horizontal recess holds the downstream pressure sensor, measuring the71

static pressure at that point. The elbow outlet connects to pipework collecting gas from72

nodes throughout the landfill.73

For analysis of mass and momentum balance hereunder consider the control volume74

from the upstream plane to the elbow inlet plane. Assume the flow steady, axisymmetric75

and incompressible. Integral mass conservation equation reads (Batchelor 1990)76

∮
∂V

ρu ⋅ ds = 0, (1)77

with ∂V denoting the surface of the control volume V, ρ being fluid density, u –velocity78

vector and s – area vector with the normal directed outwards. Completing the integration,79

−πR2uup + πr2ui⌞ = 0, (2)80

wherein uup and ui⌞ are upstream and elbow inlet velocities respectively. Defining the81
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Figure 1.: Wellhead flow geometry. Eddy region is shaded grey.

constriction ratio β = r/R, equation (2) becomes 82

uup = β2ui⌞ . (3) 83

Integral momentum conservation equation reads (Batchelor 1990) 84

∫
∂V
(ρu ⋅ ds)u + ∫

∂V
pds = ∫

V
ρ fbodydV + fsurf, (4) 85

with p denoting pressure and f( ⋅ ) – force vectors, remaining quantities defined heretofore. 86

Thus 87

πR2u2up − πr2u2i⌞ +
1

ρ

⎧⎪⎪⎨⎪⎪⎩πR
2pup − π(R2 − (r + δ)2 )paw − π((r + δ)2 − r2)pae − πr2pi⌞⎫⎪⎪⎬⎪⎪⎭ = (5) 88

g

⎧⎪⎪⎨⎪⎪⎩πR
2L − πℓ( (r + δ)2 − r2) + πr2ℓout⎫⎪⎪⎬⎪⎪⎭ + u

2
upcf
⎛⎝πRL + π(r + δ)ℓ + πr(ℓ + ℓout)⎞⎠,

wherein as before the subscripts ( ⋅ )up and ( ⋅ )i⌞ refer to upstream and elbow inlet 89
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planes, and ( ⋅ )aw and ( ⋅ )ae designating respectively annulus wall and entry planes.90

Observe that the outlet area of the control volume is threefold: annulus wall, tube wall91

ring and tube interior, responsible for the negative terms within the first set of braces.92

Gravity is the sole body force, g denoting the gravity constant, the second set of braces93

containing the volume of fluid within the pipe and tube compound, with the lengths94

L, ℓ, ℓout marked in figure 1. The surface force accounts for wall shear, by dimensional95

analysis equalling a product of dynamic pressure 1
2ρu

2
up, friction coefficient cf and area96

affected thereby. Without loss of generality uup is a representative velocity for the purpose97

of friction modelling, whence cf is in accord with that choice.98

The pressure immediately beneath the tube ring is related to the pressure at the99

annulus wall through a simple fluid column, since both values are for stagnant fluid:100

pae = paw + ρgℓ, (6)101

allowing to replace pae in (5) and simplify, yielding102

u2up − β2u2i⌞ +
1

ρ
(pup − (1 − β2)paw − β2pi⌞) = (7)103

g(L + β2ℓout) + u2upcf⎧⎪⎪⎨⎪⎪⎩
L

R
+ (β + δ

R
) ℓ

R
+ β ( ℓ

R
+ ℓout

R
)⎫⎪⎪⎬⎪⎪⎭.

The brace delimited term in (7) will infra prove essential to support the negligible sensi-104

tivity of the studied flow geometry to variations of ℓ and ℓout, two parameters prone to105

installation imprecision.106

Identical considerations of mass and momentum in conjunction with dimensional anal-107

ysis allow to introduce the head loss coefficient ζp due to a projection of one concentric108

conduit within another109

pup − pi⌞ = 1

2
ρu2i⌞ (1 − β2) ζp + ρg(L + ℓout). (8a)110

Empiric studies show ζp to depend on thickness ratio δ/r (Idel’chik 1960). Analogously111

for a flow through a sharp elbow with a recess112

pi⌞ − po⌞ = 1

2
ρu2i⌞ ζ⌞, (8b)113

wherein the subscript ( ⋅ )o⌞ refers to elbow outlet plane, with the head loss coefficient ζ⌞114

being a function of relative roughness of the tube inner surface ε and Reynolds number115

(Idel’chik 1960). Hereunder qualitative use only is made of the dimensionless coefficients116

ζp and ζ⌞, rendering the accuracy and reproducibility of the specific values given in117

Idel’chik (1960) of little moment. Since (8b) captures the head loss due to the presence118

of the sharp bend alone, for all practical purposes po⌞ = pr⌞ , to wit the pressure measured119

in the recess pr⌞ might be without loss of generality be deemed equal to po⌞ , the possible120

differences absorbed in ζ⌞. Combining (8a) and (8b) with (3) gives121

pup = pr⌞ + ρu2up

2β4

⎛⎝(1 − β2) ζp + ζ⌞⎞⎠ + ρg(L + ℓout). (9a)122
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Similarly from (8b) and (3) 123

pi⌞ = pr⌞ + ρu2up

2β4
ζ⌞. (9b) 124

Utilizing (9) to replace pup and pi⌞ in (7), upon elementary algebraic manipulation one 125

obtains 126

u2up

2β4
C = paw − pr⌞

ρ
− gℓout , (10) 127

wherein the coefficient C formally equals 128

C = ζp + ζ⌞− 2β2− 2β4cf

1 − β2

⎧⎪⎪⎨⎪⎪⎩
L

R
+ β2⎛⎝(2 + δ

r
)ℓ
r
+ ℓout

r

⎞⎠
⎫⎪⎪⎬⎪⎪⎭. (11) 129

Expression (11) establishes negligibility of geometric minutiae’s impact on the hydraulic 130

resistance coefficient C, as is easily seen from the ascending powers of β, the leading 131

order given by ζp and ζ⌞, both O(1). Interestingly, only even powers of β appear. Since 132

0 < β < 1, the power of β6, for instance, implies that the variation of ℓ and ℓout must be 133O(β−6) for that term to bear on the value of C, incontrovertibly exceeding conceivable 134

adjustments made in the course of installation and operation manyfold. This insensitivity 135

renders the reliability of the flow rate to be derived from (10) hereinafter preferable to 136

that of the corresponding orifice estimate evincing marked sensitivity to the location of 137

the pressure gauges. Here the locations are such as to make incorrect installation virtually 138

impossible, involving no measurements and none of the deftness and experience required 139

for an orifice. Therefore only the qualitative dependence C (β, ε,Re) is of import, akin 140

to the Reader-Harris / Gallagher discharge coefficient for the orifice (ISO 2003) and the 141

modified coefficient developed in Nec and Huculak (2015). 142

From (10) 143

uup =
√
2 β2√
C

√
paw − pr⌞

ρ
− gℓout , (12) 144

yielding the volumetric flow rate 145

q = √2 πr2√
C

√
paw − pr⌞

ρ
− gℓout . (13) 146

Invoking the state equation for ideal gas p = ρRT , where R and T refer to gas constant 147

and temperature respectively, juxtaposition of (13) above and result (13) of Nec and 148

Huculak (2015) forthwith reveals the conceptual equivalence of the orifice flowmeter and 149

wellhead geometry suggested herein. Identically for both devices the gravity term is 150

negligible by comparison to the pressure drop term for high flow rates, becoming coequal 151

only for nearly stagnant wells. 152

Albeit the suitability of the geometry analyzed here might not appear surprising given 153

that the wellhead has been ideated with the distinctive features of the landfill flow regime 154

in mind, whilst the orifice is a generic device, to attain its full potential, formula (13) 155

must be furnished with an adequate calculation procedure for the hydraulic resistance co- 156

efficient C. Hence it is the authors’ intention to glean the qualitative form of C(β, ε,Re), 157
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ascertain the feasibility of calibration and verify that overall computational complexity158

does not exceed that existing for related models of similar accuracy.159

A

Re×

kRe

Re

Figure 2.: Typical functional shape of kRe(Re).

3. Functional form of C160

By (11) the resistance coefficient is a function of head loss coefficients ζp and ζ⌞(ε,Re),161

as well as the constriction ratio β and parameters pertaining to longitudinal geometry162

together with the friction factor cf . Bearing in mind that formally 0 < β < 1 and in praxis163

0 < β < 1
2 , identically to the orifice, retainment of terms with powers higher than square164

is incongruent with the measurement precision expected for the pressure difference in165

(13). The generic friction factor cf is of the same order of magnitude as, for instance,166

Darcy friction factor f (Moody 1944), and for the case of a simple pipe flow can be shown167

to equal cf = 1
4f (Nec and Huculak 2016). Therefore cf ∼ o(1) and expression (11) is168

henceforth curtailed to read169

C = ζp + ζ⌞ − 2β2 + o (β4) . (14)170

The qualitative dependence of ζp and ζ⌞(ε,Re) is adopted from empiric studies (Idel’chik171

1960) and consequently modified below to suit the current application.172

3.1 Coefficient ζp173

The head loss coefficient ζp accounts for the disturbance to flow in the main pipe due174

to projection of the inner tube thereinto. In general ζp depends on the projection length175
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ℓ/r as well as the thickness ratio δ/r, however for sufficient δ/r the dependence becomes 176

trivial (Idel’chik 1960, pg. 98), as is indeed the case here with 0.1 < δ/r < 0.2. Therefore 177

henceforward ζp is regarded a constant. 178

3.2 Coefficient ζ⌞(ε,Re) 179

The head loss coefficient ζ⌞ pertains to the abrupt change in flow direction at the well- 180

head outlet, its two arguments being relative roughness of the conduit material and 181

Reynolds number, here ranging 5×10−5 < ε < 20×10−5 and 104 < Re < 105 respectively. 182

The functional dependence of ζ⌞ comprises three parts (Idel’chik 1960, pg. 215, table 183

6-11): generic constant, factor due to Re and factor due to ε: 184

ζ⌞ = c kRekε. (15) 185

The quantitative dependence thereof as given in Idel’chik (1960) is as follows. The pa- 186

rameter kRe is defined by 187

kRe = {45f Re < 40000
1 Re ⩾ 40000 , (16a) 188

where f refers to Darcy-Weisbach friction coefficient, for a fully turbulent regime obtained 189

by solution of Colebrook equation (Colebrook 1939) 190

1√
f
= −2 log10 ( ε

3.7
+ 2.51

Re
√
f
) . (16b) 191

In (16a) the numeric factor 45 is interlocked with the cross-over Reynolds number 40000, 192

so that the curve kRe(Re) is a continuous function, but non-differentiable at the cross-over 193

point. A typical dependence is shown in figure 2. It is desired to preserve the aforesaid 194

functional dependence whilst converting all fixed empiric constants into variables open 195

to optimization. Therefore definition (16a) is generalized as 196

kRe =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
A

f

f×
Re < Re×

A Re ⩾ Re× , (17a) 197

wherein A supplants unity in (16a) and f× maintains continuity of kRe through the 198

solution to Colebrook equation with Re×: 199

1√
f×
+ 2 log10 ( ε

3.7
+ 2.51

Re×
√
f×
) = 0. (17b) 200

For the geometry at hand Re× is expected to be lower than in (16a) due to turbulence 201

engendered by the projecting tube before the bend in flow within the elbow, begetting 202

an earlier cross-over. Furthermore, with the introduction of A in (17a) the multiplicative 203

constant c in (15) is to be set to equal unity without loss of generality. 204

The most general functional form of kε is given by 205

kε = { 1 Re < Re×
1 +Aεε Re ⩾ Re× . (18) 206
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In Idel’chik (1960) the nominal value of Aε, corresponding to Re× = 40000, is Aε = 500,207

however here Aε is a degree of freedom.208

In light of the generalizations above four parameters are to be determined before209

the computation of resistance coefficient C in (14) can be effected: ζp,A,Re×,Aε. This210

quadruple is obtained infra by minimization of a cost function based on a set of inde-211

pendent measurements.212

4. Optimization213

The optimization centres on fitting the four variables spanning the parameter space of214

C with the purpose to show that given a set of trustworthy flow rate measurements,215

calibration of C can be effected with the stated functional forms for ζp and ζ⌞. Mathe-216

matically, taking a set of measured flow rates {qm} and corresponding estimates {q} as217

computed by (13), find a set of parameters {ζp,A,Re×,Aε} such that the norm ∣∣q−qm∣∣n218

is minimal, n designating the norm’s exponent (solved here for n = 1 and n = 2 with219

qualitatively similar results):220

min ∣∣q − qm∣∣n (19a)221

222

s.t.: q = √2 πr2√
C

√
paw − pr⌞

ρ
− gℓout , (19b)223

224

C(ζp,A,Re×,Aε; ε, β) = ζp + ζ⌞ − 2β2, ζ⌞ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A
f

f×
Re < Re×

A(1 +Aεε) Re ⩾ Re× (19c)225

ζp,A,Re×,Aε > 0.
This problem is unusual from several aspects, the combination thereof compounding the226

complexity of what at first glance might appear an easily amenable task. First, one of227

the optimization variables, the cross-over Reynolds number Re×, is interlocked with the228

estimate q by a doubly implicit relation: the computation of each estimate point in the229

set q requires the hydraulic resistance coefficient C that depends on the flow Reynolds230

number Re, which depends on q by231

Re = 4qρ

πµd
, (20)232

and furthermore the discontinuity point of C is exactly Re×, meaning that for any tested233

value of Re× it is unknown beforehand whether Re < Re× or Re ⩾ Re×. Second, C is a234

function of four variables, the quadruple of optimization parameters, but also depending235

on two parameters ε and β. The relative roughness ε can be deemed fixed, as the pipe236

material is not expected to change during the optimization procedure. By contrast, the237

diameter ratio β, whilst fixed for a given geometric configuration, must perforce change238

for wellheads of different typical flow rates. For a sound accuracy the pressure term239 (paw − pr⌞)/ρ in (19b) must significantly exceed the gravity term gℓout, thence for an240

individual well the geometry might be adjusted depending on the gas production: for241
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high flow rates β can be as high as moiety, whilst low flow rates might necessitate 242

β < 1
6 . This means that the four arguments of C in (19c) all depend on β. Thence 243

the minimum in (19a) attained upon solution is in fact β-dependent. In this light, an 244

additional, difficult to quantify constraint regards the possible solutions {ζp,A,Re×,Aε}: 245

it is undesirable to have the order of magnitude of these quantities vary significantly 246

with β, albeit a smooth or even monotonic dependence is not expected due to possibly 247

qualitatively different turbulent flow regimes. Unreasonable variation, for instance over 248

several orders of magnitude, is an indicator the physical modelling is wanting. Third, 249

although (19) appears conceptually to be a classic curve fitting problem, it is not: the 250

flow rate q depends explicitly on the pressure difference, but also on temperature T 251

through the density ρ. The viscosity µ that affects Re also depends on temperature. In 252

reality the measurements {qm} are taken at different temperatures as well. Therefore 253

there is no curve in the classic sense: the available data correspond to disjoint points on 254

a multivariable surface q with an explicit dependence on T through ρ, and an implicit 255

one through Re. One might argue that a carefully controlled experiment will permit to 256

maintain a fixed temperature, however since this model is to be used in reality, artificially 257

controlling the temperature will nullify the applicability of the results of this experiment: 258

then the optimization will only be valid for the particular sub-space conforming to the 259

chosen temperature out of the entire physical parameter space. 260

Problem (19) is at an obvious variance with studies dedicated to provision of consistent 261

experimental data and subsequent comprehensive modelling (e.g. Colebrook equation for 262

Darcy friction factor and Reader-Harris / Gallagher discharge coefficient for orifice flow 263

rate). Therefore the authors forbear to explore the physical parameter space and focus in 264

lieu on flow regimes characteristic to a landfill, whose field data are summarily accessible 265

(courtesy of GNH Consulting, British Columbia). 266

Problem (19) was solved by an adaptation of a golden ratio search algorithm to handle 267

the implicit nature, discontinuity and non-smoothness of the involved functions. The 268

search procedure was run on the following part of the parameter space 269

{ζp,A,Re×,Aε} ∶ 0 < ζp < 1, 0 < A < 1.5, 103 < Re× < 105, 100 < Aε < 104. (21) 270

A series of local minima of (19a) were stored as the search progressed. None of these 271

were close to the bounds (21). As the bounds were set based on physically meaningful 272

quantities, it is unlikely the global minimum is situated outside (21). The constraint that 273

optimal values be of similar magnitude was exercised only upon completion of the entire 274

search. The existence of numerous local minima is discussed hereinafter. 275

Although some problems incorporating non-smooth functions are nonetheless amenable 276

to reformulations that permit application of gradient based algorithms, it is conjectured 277

that here this will be impossible due to the implicit nature of the constraints that further 278

compounds the inherent discontinuity. 279

4.1 Numerical considerations 280

The computation of flow rate q in (13) is iterative: the hydraulic resistance coefficient 281

C depends on Re, whilst Re depends on q by equation (20). Therefore q is estimated 282

by (13) with an initial guess for C, followed by determination of Re from (20), then 283

repeated recomputation of C, q and Re until proper convergence1. The optimization was 284

implemented in GNU Octave (open source software), utilizing the function fminbnd. For 285

1This is identical to the procedure for an orifice, where Reader-Harris / Gallagher discharge coefficient is employed.
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each suggested quadruple ζp,A,Re×,Aε the hydraulic resistance coefficient C must be286

converged.287

The product of non-differentiable kRe, equation (17a), and discontinuous kε, equation288

(18), renders ζ⌞ a function discontinuous in Re, the selfsame variable that creates the289

implicit dependence of C on q. The discontinuity point is Re×, one of the degrees of290

freedom in the optimization. This intricate inter-dependence poses certain numerical291

complications, the most notable being dearth of convergence of C if the Reynolds number292

is close to the discontinuity point. Even when the likelihood to obtain in the course of the293

iterative computation of C the singular equality Re = Re×, minuscule as it might be, is294

eliminated entirely by a negligible shift wheresoever necessary, Reynolds numbers falling295

sufficiently close to Re× occasion toggling between the two branches of the discontinuous296

function. When the computation of C does not require evaluation of ζ⌞ on both sides of297

Re×, the convergence to precision of 10−6 is obtained within 3-6 iterations, on par with298

Reader-Harris / Gallagher discharge coefficient that converges to said precision in 2-5299

iterations (Nec and Huculak 2015).300

A further concomitant of the discontinuity of ζ⌞ is related to the optimization, but301

will not affect the estimation of flow rate upon completion thereof. It was found that302

the parameter space spanned by the quadruple {ζp,A,Re×,Aε} offered multiple local303

minima to the cost function (19a), when the fit against a set of independent measure-304

ments {qm} was performed. Interestingly, designating as a global optimum the quadru-305

ple {ζp,A,Re×,Aε}
opt

that gives minimal error, there exist several disparate quadruples306

{ζp,A,Re×,Aε}
loc

that correspond to local minima with negligibly higher error. This307

means the field operator will be at liberty to choose any one set of parameters with-308

out introducing perceptible inaccuracy into the estimation of flow rate. This situation309

is unlikely in the extreme with a continuously differentiable multi-dimensional surface310

underlying the optimization and is the direct outcome of the discontinuity in (18) and311

non-smoothness in (17a).312

4.2 Results313

Three flow regimes were considered: high flow rate engendered by an active well, medium314

flow rate corresponding to moderate production and low flow rate conforming to a slowly315

producing well. In all cases a set of reliable measurements {qm} was chosen so as to span316

as uniformly as possible the concomitant interval of differential pressure. The optimiza-317

tion was performed separately, verifying the combined results presented a physically318

acceptable solution. Figures 3-5 depict the comparison between the measured flow rate319

and estimate (13) with {ζp,A,Re×,Aε}
opt

.320

When a well is active, a typical constriction ratio is β ≈ 1
3 with ensuing Reynolds321

numbers ranging 104 < Re < 6×104. The corresponding cross-over Reynolds number Re× is322

relvatively low, whereby for most of the working range the hydraulic resistance coefficient323

C is constant, entailing a rapid convergence. When the Reynolds number is close to Re×,324

it will behove the operator to adjust the wellhead to a smaller constriction ratio so as to325

maintain a viable pressure difference. An example of this situation is shown in figure 3.326

If gas production within the landfill cavity in the proximity of a well diminishes, the327

constriction ratio will be reduced to β ≈ 1
4 in order to sustain the same working range328

of Reynolds numbers, this time Re× found in the upper part thereof, again enabling329

effortless convergence in praxis. Figure 4 details this intermediate flow regime.330

For slow production wells the suitable constriction ratio might be as low as β ≈ 1
5 , with331

a similar range of Reynolds numbers and Re× falling midmost (figure 5). This is the only332
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regime, where toggling around the discontinuity point is likely to present difficulty. As a 333

rule, higher constriction ratios are preferable as long as the pressure difference is aptly 334

measurable. Therefore a configuration with such low β will be installed for Re < Re× and 335

changed in favour of a higher β if the cross-over point is approached. 336

The optimal quadruples ζp,A,Re×,Aε reported in figures 3-5 corresponded to the global 337

error minimum for each set of reference measurements. Whilst it is possible to choose 338

one of the quadruples conforming to local minima for any particular constriction ratio, 339

only the global optima entail a logical adjustment of flow regimes with the fluctuations 340

in gas production, when the entire spectrum of operation is considered. 341

5. Conclusion 342

The novel wellhead configuration presented targeted a long-standing problem of impaired 343

flow rate metering in landfill wells due to condensation of water vapour entrained in the 344

fluid upon the orifice plate and interference with the pressure sensor that must be placed 345

in an immediate proximity thereof. In the proposed setting the fluid proceeds from the 346

main well pipe into a concentric tube of a smaller diameter, permitting to withdraw the 347

orifice plate. The resulting flow rate was proved to be conceptually equivalent to the 348

orifice device by considerations of mass and momentum conservation. The sensitivity of 349

concomitant pressure measurement to installation geometry was shown to be minor, and 350

the associated error was evaluated asymptotically in constriction ratio β, an inherent 351

small parameter of the system. 352

The hydraulic resistance coefficient was modelled by adopting the functional form of 353

empiric coefficients in related geometries and performing a custom optimization to attain 354

a fit against a set of independent measurements. The optimization involved a quadri- 355

dimensional discontinuous surface with an implcit dependence that required iterative 356

numerical solution. In field use the computational complexity was shown to be on par 357

with devices endowed with similar accuracy of flow rate estimation. 358
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Figure 3.: A typical example of flow regime for β = 1

3
. Top: optimization output (diamond) and independently measured

(cross) flow rate. Reference points included multifarious values of density ρ, viscosity µ and relative roughness ε, rendering
interpolation unfeasible. Bottom: hydraulic resistance coefficient C versus Re. Optimal parameters: ζp = 0.66, A = 0.71,
Re× = 13000, Aε = 7300. Diamond symbols on both panels correspond.
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Figure 4.: A typical example of flow regime for β = 1

4
. Top: optimization output (diamond) and independently measured

(cross) flow rate. Reference points included multifarious values of density ρ, viscosity µ and relative roughness ε, rendering
interpolation unfeasible. Bottom: hydraulic resistance coefficient C versus Re. Optimal parameters: ζp = 0.72, A = 1.02,
Re× = 31800, Aε = 1000. Diamond symbols on both panels correspond.
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Figure 5.: A typical example of flow regime for β = 1

5
. Top: optimization output (diamond) and independently measured

(cross) flow rate. Reference points included multifarious values of density ρ, viscosity µ and relative roughness ε, rendering
interpolation unfeasible. Bottom: hydraulic resistance coefficient C versus Re. Optimal parameters: ζp = 1.06, A = 1.33,
Re× = 23000, Aε = 800. Diamond symbols on both panels correspond.
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