
Spike-Type Solutions to One Dimensional
Gierer–Meinhardt Model with Lévy Flights

By Y. Nec

The Gierer–Meinhardt model with Lévy flights is shown to give rise to patterns
of spikes with algebraically decaying tails. The spike shape is given by a
solution to a fractional differential equation. Near an equilibrium formation
the spikes drift according to the differential equations of the form known for
Fickian diffusion, but with a new homoclinic. A nonlocal eigenvalue problem of
a new type is formulated and studied. The system is less stable due to the Lévy
flights, though the behavior of eigenvalues is changed mainly quantitatively.

1. Introduction

This paper is concerned with the analysis of motion and stability of spike-type
solutions for a two component reaction—diffusion system allowing for a
diffusion anomaly of the type Lévy flights. A short overview of Lévy flights
and related fractional operators is given before the description of the model.

1.1. Lévy flights

In the formalism of the continuous time random walk a particle location
evolves according the probability to make a step of length r after time t

ψ(r, t) = w(t) m(r),

where w(t) and m(r) are waiting time and step length probability density
functions, respectively. Regular Fickian diffusion, i.e. 〈r2(t)〉 ∼ t , ensues when
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m(r) is Gaussian andw(t) = 1
τ∗

e−t/τ∗ , with 0 < τ∗ ∼ O(1) being a characteristic
time scale. Lévy flight is a diffusion anomaly, where the step length probability
density function possesses an algebraic decay

m(r) ∼ 1

rγ+1
, r� 1, 1 ≤ γ < 2,

rendering the second moment 〈r2(t)〉 divergent for any finite t. The continuum
limit operator ∂t −� in the diffusion equation is then replaced by a fractional
operator [1] ∂t + (−�)γ /2 .

Observations of super-diffusion of the type Lévy flights in nature have been
reported and analyzed in the past two decades in quite a few unrelated fields.
Some examples are fluid dynamics [2, 3], polymers [4], granular materials [5]
and animal motion [6]. As the measurement techniques advance, the exponent
γ is estimated in a growing number of systems, demonstrating that the regular
diffusion is only a special limit of a whole family of processes.

1.2. Fractional derivative operators

The fractional derivative is a generalization of the usual integer derivative to
an arbitrary order, most generally defined as [7]

DEFINITION 1.

aD
γ
x f (x)= 1

�(n − γ )

dn

dxn

∫ x

a

f (ξ ) dξ

(x − ξ )γ−n+1
, n − 1 ≤ γ < n,

n ∈ N, a ∈ R.

This derivative is clearly asymmetric under the reflexion x 
−→ (−x). The
range of γ relevant to Lévy flights is 1 ≤ γ < 2. Using equally weighted
combination of the left-hand and right-hand fractional derivatives gives a
symmetric operator alias fractional Laplacian in one spatial dimension

DEFINITION 2.

D
γ

|x | f (x)=− sec γ̃

2�(2− γ )

d2

dx2

{∫ x

−∞

f (ξ ) dξ

(x − ξ )γ−1
+
∫ ∞

x

f (ξ ) dξ

(ξ − x)γ−1

}
= sec γ̃

2�(−γ )
–
∫ ∞
−∞

f (x)− f (ξ )

|x − ξ |γ+1
dξ, γ̃ = πγ

2
, 1 ≤ γ < 2.

Both equalities in Definition 2 are used throughout the paper at convenience
for all theoretical derivations. Note that the prefactor is finite at the limit
γ −→ 1. Definition 2 is generalized to higher dimensions as
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DEFINITION 3.

−(−�)γ /2 f (x)= Cd,γ –
∫

R
d

f (ξ )− f (x)

|x− ξ |d+γ dξ , Cd,γ = 2γ
�((d + γ )/2)

πd/2|�(−γ /2)| ,

1 ≤ γ < 2.

For functions on R
d , whose Fourier transform exists, an equivalent definition

in Fourier space is

DEFINITION 4.

Fx 
−→q{−(−�)γ /2 f (x)} = −|q|γFx 
−→q{ f (x)}, 1 ≤ γ ≤ 2.

This definition is used for the numerical computation of the homoclinic in
§3.1. Definition 3 and Definition 2 have improper limits at γ = 2, whereas
Definition 4 is proper at that limit.

1.3. Mathematical model

Fractional diffusion equations [1] have been used to model anomalously slow or
fast scattering of particles in a variety of natural applications. The methods of
solution of such equations often use integral transforms and special functions
for the representation of fundamental solutions [8]. When the diffusion process
is accompanied by a nonlinear reaction term, even fewer exact solutions are
known than in the case of regular diffusion. One of the better studied types of
reaction kinetics is that yielding front solutions [9], and in that case exact
solutions for any 1 ≤ γ ≤ 2 are available only with piecewise linear kinetics
[10]. Existence and uniqueness of solutions for a type of nonlinearity yielding
homoclinics were studied [11], and an exact solution was given for γ = 1
(limiting value corresponding to the most extreme Lévy flight).

To the authors’ knowledge no stability theories exist for any homoclinic
pulse solutions of reaction—diffusion models with super-diffusion. The purpose
of the current work is to set a stability theory for a quasi-equilibrium spike
pattern subject to Lévy flights.

Spike patterns are functions, whose value is close to a background state
in most of the domain of their definition, except for a few localized foci.
This behavior is observed, for example, in neural pulses traveling along axons,
stripe patterns in the morphogenesis of certain animal species as well as
chemical systems. A paradigm for the generation of spike-type solutions
is the activator-inhibitor system with Gierer–Meinhardt kinetics (written in
dimensionless form)

∂t a = ε2axx − a + a p

hq
, −1 < x < 1, t > 0, (1a)
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τo ∂t h = D hxx − μh + ε−1 am

hs
, −1 < x < 1, t > 0, (1b)

ax (±1, t) = hx (±1, t) = 0, a(x, 0) = a0(x), h(x, 0) = h0(x), (1c)

with a(x, t), h(x, t) denoting the activator and inhibitor respective concen-
trations. In addition, ε and D denote the diffusivities, μ is the inhibitor decay
rate and τo – the reaction time constant. The usual assumption on the exponents
(p, q,m, s) is

p > 1, q > 0, r > 0, s ≥ 0, 0 <
p − 1

q
<

m

s + 1
.

Aquasi-equilibriumspike solutionexistswhen0 < ε � 1and0 < D ∼ O(1).
Symmetric and asymmetric combinations of spikes are possible. Stability
of symmetric profiles was analyzed separately for the case[12] ∂t h ≡ 0 (or
equivalently τo = 0) and the generic case [13] τo > 0. Asymmetric spike
patterns were also investigated [14], but are beyond the scope of this paper.

To incorporate Lévy flights system (1) is modified as

∂t a = εγDγ

|x |a − a + a p

hq
, −1 < x < 1, t > 0, (2a)

τo ∂t h = D hxx − μh + ε−1 am

hs
, −1 < x < 1, t > 0, (2b)

ax (±1, t) = hx (±1, t) = 0, a(x, 0) = a0(x), h(x, 0) = h0(x), (2c)

a(x, t) = a(x + 2k, t), h(x, t) = h(x + 2k, t), x ∈ R, t > 0, k ∈ Z. (2d)

The γ -dependent powers of ε in system (2) are essential for the existence of
a spike pattern. The operator D

γ

|x | requires the values of a(x, t) over R, and thus
condition (2d) defines both a(x, t) and h(x, t) on R by a periodic replication
of the pattern. This is possible due to the identical background state of all
spikes and Neumann boundary conditions in (2c) that ensure the smoothness
of both functions at the juncture points x = 1+ 2k. The substitution of γ = 2
recovers the normal model (1) and condition (2d) is then superfluous.

Model (2) is particularly interesting because of two features. First, the ratio
of diffusivities is of order O(εγ ), i.e. asymptotically larger than O(ε2), the
ratio required to sustain patterns with regular diffusion. This property is of
importance because in actual biological systems it is difficult to justify a ratio
of diffusion coefficients as small as O(ε2) for two species diffusing in the
same medium. A model with a similar feature has recently been studied with
sub-diffusion [15], and in this sense the regular diffusion gives the least
biologically realistic ratio of activator to inhibitor diffusivities. Second, the
super-diffusive species is the usually slow activator, thus creating a tighter



276 Y. Nec

competition between the species. In fact, the effective ratio of the mean square
displacement 〈

r2
act(t)

〉〈
r2

inh(t)
〉 = εγ

D t

∫ ∞
−∞

r2ψ(r, t) dr

is in favor of the activator (and infinite because the second moment of ψ(r, t)
does not exist) if ε is taken finite. At the limit ε −→ 0 the effective ratio
is undefined, but the analysis below shows that patterns exist and numerical
findings support the conjecture that the ratio is kept in favor of the inhibitor as
usually.

The current contribution is a pioneering study of localized patterns in a fully
nonlinear regime with Lévy flights. In §2 slowly drifting spikes are constructed.
Their tail asymptotics is shown to be algebraic rather than exponential. The
spike shape is determined by a solution to a fractional differential equation,
analyzed in §3. In §4 a new type of a nonlocal eigenvalue problem with a
fractional linear operator in addition to the usual nonlocality is posed. To
solve this problem numerically a special numerical approach is devised (by
contrast to a similar study with sub-diffusion [15], where the results obtained
for regular diffusion could be used).

2. Quasi-equilibrium pattern

Equation (2a) possesses the background solution a(x, t) ≡ 0. Consider a
solution of (2a) that is zero everywhere but at a finite set of locations xi ,
i = {0, . . . , n − 1}, the spikes’ foci. Then an inner layer is formed near each
focus with the spatial scaling given by

yi (t)
def= x − xi (τ )

ε
, i = {0, . . . , n − 1}, (3)

where τ is a slow evolution scale. The existence of a quasi-equilibrium
spike-type solution is proved in the proposition below preceded by auxiliary
lemmata.

LEMMA 1. Let u(y) be the least energy solution of

D
γ

|y|u − u + u p = 0 −∞ < y <∞, u′(0) = 0, u(0) > 0, lim
|y|−→∞

u = 0
(4)

with 1 ≤ γ < 2 and p > 1. Then, the linearized operator L0 = D
γ

|y| − 1+
pu p−1 in L0w = 0 endowed with the boundary condition lim|y|−→∞w = 0
has dim Ker L0 = 1 and Ker L0 = {u′}.
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Proof . The existence of the homoclinic solution u(y) was proved in the
study of ground state solutions to the equation (−�)s Q + Q − Qα+1 = 0 with
the range of the parameters s and α containing the sets relevant here [11]. Use
the first equality in Definition 2

D
γ

|y|u
′(y) = − sec γ̃

2�(2− γ )

d2

dy2

{∫ y

−∞

u′(ξ )

(y − ξ )γ−1
dξ +

∫ ∞
y

u′(ξ )

(ξ − y)γ−1
dξ

}
,

perform integration by parts and differentiate the braced expression once to
establish that

D
γ

|y|u
′(y) = d

dy
D
γ

|y|u(y)

by the second equality of Definition 2. Thus

L0u′ = d

dy

(
D
γ

|y|u − u + u p
) = 0,

and u′ ∈ Ker L0. The statement dim Ker L0 = 1 was proved by uniqueness
considerations for a more general class of problems [11]. �

Remark 1. Hereinafter the least energy solution to (4) will be referred to
as the homoclinic for convenience. For γ = 2 this solution constitutes indeed
the unique homoclinic.

LEMMA 2. Let u(y) be the solution of (4). Then L0 = D
γ

|y| − 1+ pu p−1 in
L0w = 0 endowed with the boundary condition lim|y|−→∞w = 0 is self-adjoint.

Proof . Use the second equality in Definition 2 to obtain

〈
D
γ

|y| f1, f2
〉= sec γ̃

2�(−γ )

∫ ∞
−∞

f2(y)

{∫ y

−∞

f1(y)− f1(ξ )

(y − ξ )γ+1
dξ

+
∫ ∞

y

f1(y)− f1(ξ )

(ξ − y)γ+1
dξ

}
dy,

swap the order of integration for f1(ξ ) in each integral and then rename the
variables y←→ ξ to obtain〈

D
γ

|y| f1, f2
〉 = 〈 f1,D

γ

|y| f2
〉
. �

Remark 2. The solution u(y) to the fractional equation D
γ

|y|u − u + u p = 0
is not known exactly for any 1 < γ < 2. For γ = 2 (regular diffusion) the



278 Y. Nec

solution is given by [11]

u(y) =
{

p + 1

2
sech2

(
p − 1

2
y

)}1/(p−1)

.

For γ = 1 (fastest Lévy flight) the solution is known only for p = 2 and is
given by [11]

u(y) = 2

1+ y2
. (5)

When 1 ≤ γ < 2, the decay of u(y) at |y| −→ ∞ is no longer exponential.
In the construction of spike-type solutions to (2) u(y) will be related to the
spikes’ shape. Thus, a rigorous re-establishing of the proper localization of the
spikes’ foci is required, which in turn demands an insight into the asymptotics
of u at |y| −→ ∞. The following two lemmata provide these results.

LEMMA 3. Let u(y) be the least energy solution of (4). Then for 1 ≤ γ < 2
and some a(p, γ ) > 0

u ∼ −a(p, γ ) sec γ̃

2�(−γ )
|y|−(γ+1) |y| � 1, γ̃ = πγ

2
.

Proof . At |y| −→ ∞ u p � u holds and

D
γ

|y|u − u = −u p ≈ −δ(a(p, γ )y).

The δ-function represents the far field and a(p, γ ) is the appropriate p-dependent
weight. Thus after Fourier transform

û = a(p, γ )

1+ |q|γ ,

and in the limit of small q (conforming to large |y|)

u∼a(p, γ )

2π
lim
ε−→0

∫ ∞
−∞

eı qy−ε|q|(1− |q|γ +O (|q|2γ ))dq ∼ a(p, γ )δ(y)

− a(p, γ )

π
lim
ε−→0

∫ ∞
0

e−εq cos(qy)qγ dq.

(6)

Here ε is not related to the activator diffusivity εγ . Note that∫ ∞
0

e−εq cos(qy)qγ dq = �
∫ ∞

0
eı qy−εqqγ dq,

where � denotes the real part. Construct a contour in the complex plane
consisting of a sector of radius R in the first quadrant, bounded by the real
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axis and the line q = �/(ε − ıy). The integrand is analytic and by the residue
theorem one obtains

lim
R−→∞
ε−→0

{∫ R

0
eı qy−εqqγ dq +

∫ arctg(y/ε)

0
e(ıy−ε)Reıϑ R1+γ e(γ+1)ıϑ

ı dϑ

− 1

(ε − ıy)γ+1

∫ R(ε2+y2)1/2

0
e−��γ d�

}
= 0.

The integral along the arc vanishes because 0 ≤ ϑ < π
2 . Thus

lim
ε−→0
�
∫ ∞

0
eı qy−εqqγ dq = −�(γ + 1)

yγ+1
sin γ̃ = π sec γ̃

2�(−γ )yγ+1
,

where the following identity was used

�(γ + 1) = −π csc(πγ )

�(−γ )
.

Finally, from (6) along with the fact u(y) is an even function by (4),

u ∼ −a(p, γ ) sec γ̃

2�(−γ )
|y|−(γ+1), |y| � 1.

Because a(p, γ ) is not known, only the algebraic decay rate of the asymptotics
can be used. The constant cannot be determined because this is in fact a
solution to the linearized problem. �

Remark 3. For γ = 1 and p = 2 by the exact solution (5) u ∼ 2y−2 when
|y| � 1, and thus the factor a(p, γ ) becomes

a(2, 1) = − lim
γ−→1+

4�(−γ ) cos γ̃ = 2π.

LEMMA 4. At the limit ε −→ 0 the expression of the form ar/ε for any
r > 0 and a localized function a(x, t) given by

a(x, t) ∼
n−1∑
i=0

αi (τ )u

(
x − xi

ε

)
conforms to a generalized function of the Dirac delta type, satisfying

lim
ε−→0

ε−1
∫ x0+δx

x0

ar dx = 0 ∀ |x0 − xi | � δx ∼ O(ε), (7a)

lim
ε−→0

ε−1
∫ x+i

x−i

ar dx ∼ O(1). (7b)
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Proof . Use the form of a to obtain (7a) by a direct computation:

lim
ε−→0

ε−1
∫ x0+δx

x0

ar dx ∼ lim
ε−→0

∫ (δx+x0−xi )/ε

(x0−xi )/ε

(
n−1∑
i=0

αi u(ζ )

)r

dζ = 0.

The last equality ensues due to the following facts

lim
ε−→0

x0 − xi

ε
= ∞ · sgn(x0 − xi ),

δx

ε
∼ O(1), lim

|ζ |−→∞
u(ζ ) = 0.

Note that u can be any function decaying at infinity. Thus (7a) is proved. To
show (7b), change the integration variable to yi

lim
ε−→0

ε−1
∫ x+i

x−i

ar dx ∼ αi

∫ ∞
−∞

ur (yi ) dyi ∼ O(1),

where the passage to the inner layer of the i-th spike uses the assumption on
sufficient decay (no longer exponential) of the contributions of the adjacent
and farther spikes as well as the integrability of ur (for the homoclinic (4) the
integrability ensues by Lemma 3). �

PROPOSITION 1. Let xi (τ ) be the location of the center of the i th spike,
evolving on the slow time scale τ = ε2t . Suppose that τo ∼ o(ε−2). Then at the
limit ε −→ 0 in each inner region the quasi-equilibrium solution of (2) is
given asymptotically by

A(yi , τ ) = a(xi + εyi , ε
−2τ ) = A(0)

i + εA(1)
i + . . . (8a)

H (yi , τ ) = h(xi + εyi , ε
−2τ ) = H (0)

i + εH (1)
i + . . . , (8b)

where

H (0)
i = H̄ i (τ ), A(0)

i = H̄
β

i u(yi ), β = q

p − 1
,

u(y) is the solution of (4) and

H̄ i (τ ) = −bm

n−1∑
j=0

H̄
βm−s
j G(xi ; x j ), bm =

∫ ∞
−∞

um dy (9a)

dxi

dτ
= q bm f (p)

(p + 1)H̄ i

⎧⎪⎪⎨⎪⎪⎩
n−1∑
j = 0
j �=i

H̄
βm−s
j G ′(xi ; x j )+ 1

2
H̄
βm−s
i (G ′(x−i ; xi )+G ′(x+i ; xi ))

⎫⎪⎪⎬⎪⎪⎭
f (p)=

∫ ∞
−∞

u p+1dy

/∫ ∞
−∞

u′2 dy.
(9b)
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In (9) G(x ; xi ) is the Green’s function satisfying

DG′′ − μG = δ(x − xi ), G ′(±1; xi ) = 0.

Proof . Substitution of (8) into (2) gives the following system for the
leading order functions

(
D
γ

|yi | − 1
)

A(0)
i +

A(0)
i

p

H (0)
i

q = 0, −∞ < y <∞, (10a)

lim
|yi |−→∞

∂A(0)
i

∂yi
= 0,

∂2

∂y2
i

H (0)
i = 0, −∞ < y <∞, (10b)

lim
|yi |−→∞

∂H (0)
i

∂yi
= 0.

The correction equations are

(
D
γ

|yi | − 1
)

A(1)
i + p

A(0)
i

p−1

H (0)
i

q A(1)
i = q

A(0)
i

p

H (0)
i

q+1
H (1)

i −
dxi

dτ

∂

∂yi
A(0)

i ,

−∞ < y <∞,
(11a)

lim
|yi |−→∞

∂A(1)
i

∂yi
= 0.

D
∂2

∂y2
i

H (1)
i = −

A(0)
i

m

H (0)
i

s , −∞ < y <∞, (11b)

lim
|yi |−→∞

∂H (1)
i

∂yi
= 0.

Solving (10b) gives H (0)
i = H̄ i (τ ). Proposing A(0)

i = H̄
β

i u(yi ) gives β = q
p−1

and D
γ

|yi |u − u + u p = 0. With this (11a) is re-written as

L0 A(1)
i = q H̄

β−1
i u p H (1)

i − H̄
β

i u′(yi )
dxi

dτ
, L0 = D

γ

|yi | − 1+ pu p−1.
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Thus by the Fredholm alternative (L0 is self-adjoint by Lemma 2) one gets

q

H̄ i

∫ ∞
−∞

u′u p H (1)
i dyi = dxi

dτ

∫ ∞
−∞

u′2dyi ,

which can be shown to give (same as for regular diffusion [12])

q

2(p + 1)H̄ i

∫ ∞
−∞

u p+1dyi

(
lim

yi−→∞
d H (1)

i

dyi
+ lim

yi−→−∞
d H (1)

i

dyi

)
= dxi

dτ

∫ ∞
−∞

u′2dyi .

(12)

For the outer solution expand

h(x, t) ∼ h(0)(x, t)+O(ε).

Then the matching to the inner solution yields

h(0)(xi , t)= H̄ i (τ )

lim
yi−→±∞

d H (1)
i

dyi
= lim

yi−→±∞
ε−→0

ε−1 ∂

∂yi

(
h
(
xi + εyi , ε

−2τ
)− H (0)

i

)= lim
x−→x±i

∂h(0)

∂x
.

(13)

By Lemma 4 the nonlinear term of (2b) can be expressed as a combination of
δ-functions due to the localized behavior of a

ε−1 am

hs
=

n−1∑
i=0

bi δ(x − xi ).

Then integrating over [x−i , x+i ] it is found that the weights are identical for all
the spikes

bi = ε−1
∫ x+i

x−i

am

hs
dx =

∫ ∞
−∞

am

hs
dyi = H̄

βm−s
i

∫ ∞
−∞

um dyi .

From (2b) the equation for h(0) is

Dh(0)
xx −μh(0)=−bm

n∑
i=1

H̄
βm−s
i δ(x− xi ), h(0)

x (±1)= 0, bm =
∫ ∞
−∞

um dy.

The solution in terms of Green’s function is

h(0)(x, t)=−bm

n∑
i=1

H̄
βm−s
i G(x ; xi ), DG ′−μG= δ(x−xi ), G ′(±1; xi ) = 0.

(14)

The contribution of the temporal term is negligible at this order because
τo∂t h(0) = τoε

2∂τh(0) ∼ o(ε), and the only dependence on t comes through
H̄ i (τ ) (same as for regular diffusion). Using h(0)(x, t) in the matching conditions
(13) and the solvability condition (12) yields the desired differential-algebraic
system. �
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Remark 4. The differential-algebraic system (9) has the same form as its
counterpart for regular diffusion and exhibits no explicit dependence on the
anomaly exponent γ as an additional parameter. The dependence on γ comes
through the homoclinic u, i.e. only the factors f (p) and bm change.

3. Computation of homoclinic

3.1. Numerical solution

Due to the nonlocality of the fractional Laplacian the implementation of
numerical schemes is significantly easier in Fourier space, where the computation
of (−�)γ /2 is straightforward with Definition 4. However, solving an equation
of the type (4) in Fourier space requires iteration at each point of the grid
due to its nonlinearity. A few iterative methods were tested (simple iteration,
secant) and exhibited no convergence even when the initial function was very
close to the true solution (cases γ = 1 and γ = 2 with p = 2).

On the other hand, because (4) locally minimises a functional, the homoclinic
is a steady state of a scalar partial differential equation. However, this steady
state solution is unstable similarly to the regular diffusion case owing to the
strictly positive eigenvalue of the linearized operator L0 = D

γ

|y| − 1+ pu p−1

(by Lemma 1 zero is an eigenvalue for all γ with u′ being the eigenfunction, and
by Sturm-Liouville theory for γ = 2 this immediately implies a strictly positive
eigenvalue with an eigenfunction that does not change sign). In the case of the
shadow model [16] a system of two PDEs was used to obtain the homoclinic
as a stable steady state in the limit D −→∞. A similar approach was adopted
in the present work, and the following simplified system was solved

ut = εγDγ

|x |u− u+ up

v
,

τovt = D vxx − v+ up

ε
. (15)

The scheme was pseudo-spectral, i.e. the system

dû

dt
=−(εγ |q|γ + 1)̂u+ F

{
up

v

}
,

dv̂

dt
=−(Dq2 + 1)̂v+ F

{
up

ε

}
, (16)

where the hats denote Fourier transformed quantities, was integrated in time
with the Euler method.

The linear terms were integrated by the implicit Crank–Nicolson scheme,
whereas for the nonlinear terms the explicit Adams–Bashforth scheme was
employed. The parameters used in the computation were as follows. The



284 Y. Nec

anomaly exponent was 1 ≤ γ ≤ 2. The homoclinic nonlinearity p was chosen
as two rather common values p = 2 and p = 3. The spatial domain was
x ∈ [−2π, 2π ). The remaining parameters were the time step δt = 0.01,
number of Fourier modes N = 2048, inhibitor diffusivity D = 1000, activator
diffusivity ε = 0.1, characteristic time τo = 0.2 for p = 2 and τo = 0.1 for
p = 3. The choice of τo affects greatly the stability of the solution, and
the values were chosen significantly below the thresholds known for Hopf
bifurcations in the case of regular diffusion [16]. For higher values of p the
required value is τo � 1, which requires a very small time step (similarly to
regular diffusion). Because exact solutions are known for γ = 2 with all p and
for γ = 1, p = 2, these are interpolated to assign the initial function for any
desired γ and p.

For D � 1 the asymptotic solution is expected to be in the form

u ∼ u0 + u1

D
+O

(
1

D2

)
, v ∼ v0 + v1

D
+O

(
1

D2

)
.

For the inhibitor at O(D) v0xx = 0, giving v0 = v0(t) to have no flux at the
boundary. At O(1)

v1xx = τov0t + v0 − u
p
0

ε
,

yielding the solvability condition

v0+τov0t=
1

4πε

∫ 2π

−2π
u

p
0 dx ∀ t, v0= 1

4πε

∫ 2π

−2π
u

p
0 dx= const t −→∞.

For the activator at O(1)

u0t = εγDγ

|x |u0 − u0 + u
p
0

v0

and at t −→∞

εγD
γ

|x |u0 − u0 + u
p
0

v0
= 0

or using y = x/ε

D
γ

|y|u0 − u0 + u
p
0

v0
= 0.

Because at the steady state v0 is constant, rescaling u0 = a u gives a = v
1/(p−1)
0

for the sought homoclinic that solves (4).
For the inhibitor zero flux boundary conditions are implemented with the

simplest first order forward and backward differences, i.e. setting the grid
to x j = 4π ( j − N/2)/N , j = 0, . . . , N − 1 and δx = 4π/N , the boundary
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Figure 1. Verification of the asymptotic solvability condition at steady state v0 = 1
4πε

∫ 2π
−2π u

p
0 dx

for p = 2 (left) and p = 3 (right): integration of u and mean value of v (solid black and red/gray
curves, difference indistinguishable), maxx v (dashed curve) and minx v (dash-dotted curve).

conditions are v(x0) = v(x1) and v(xN−1) = v(xN−2). For the activator it is
necessary to enforce the correct algebraic decay. By Lemma 3 at t −→∞

u′

u
= −γ + 1

x
,

disretized using forward differences to give

u(x j+1)− u(x j )

δx u(x j )
= −γ + 1

x j

or

u(x j+1) = u(x j )

(
1− γ + 1

j − N/2

)
.

This condition was implemented at the penultimate three points of the right
tail and reflected to the left tail (conforming to backward differences there).

In addition to the reconstruction of exact solutions some precision checks
were performed for the parameters p and γ , where exact solutions were not
known. Figure 1 compares the quantities involved in the asymptotic solvability
condition with the numerical values of v and u. Figure 2 depicts the least
squares fit slope of numerically obtained ln u with the expected line−(γ + 1).

3.2. Hopf bifurcation threshold for τo

The homoclinic code allows to obtain an interesting related result. As mentioned
in §3.1, if the value of τo is not taken sufficiently small, the convergence to the
homoclinic is oscillatory and slow, and when crossing a critical threshold of
τo, no homoclinic is obtained. The computation of the threshold value τth was
done for the same value of D as for the homoclinics. The value of τo was given
as before until the convergence of the homoclinic maximum point to seven
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Figure 2. Comparison of the algebraic decay exponent for p = 2 (left) and p = 3 (right) of
numerically computed homoclinics u (solid) and the asymptotic exponent −(γ + 1) (dashed).

significant digits, then τo was increased by increments of 0.001 to a value
slightly below the threshold, while watching for further convergence of the
homoclinic maximum to eleven significant digits. Then τo was increased by
increments of 0.00002 past the threshold, and the simulation was stopped when
the relative change in the maximal value exceeded one order of magnitude.
Starting at γ = 1, at each value of γ the obtained τth was used as the new initial
guess for the next value of γ (incremented by 0.01 till γ = 2). Figure 3 shows
typical pictures of the developing instability. Figure 4 shows a less typical
picture of beats seen around γ = 1.2. Apparently two unstable eigenvalues
interact there. Note how the frequency of the oscillation increases from γ = 1
till beats appear, then at γ = 1.3 the beats are almost indistinguishable, and
past γ = 1.3 the frequency decreases again. Also, as γ approaches the normal
value γ = 2, the instability is more pronounced, i.e. the oscillation amplitude
develops faster.

Figure 5 shows the threshold value τth versus the anomaly exponent γ. The
dependence is slightly nonlinear and the slope grows steeper as γ becomes
more anomalous.

4. Eigenvalue problem

By Proposition 1 the uniformly valid form of the quasi-equilibrium spike
pattern is

aqe=
n−1∑
i=0

H̄
β

i u

(
x − xi

ε

)
,

hqe=−bm

n−1∑
i=0

H̄
βm−s
i G(x ; xi ).
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Figure 3. Divergence of maxy u at the Hopf bifurcation threshold τth for p = 2 and γ = 1
(left upper), γ = 1.2 (right upper), γ = 1.4 (left lower), γ = 1.6 (right lower).

Because the temporal derivative in (2) is of an integer order, a proper spectrum
is expected (as opposed to a sub-diffusive system with a fractional temporal
derivative, where exponential perturbations cannot evolve with a constant
growth rate [15]). The theorem below gives the ensuing nonlocal eigenvalue
problem.

THEOREM 1. The eigenfunction ã(x) of the eigenpair {λ, ã(x)} in

a ∼ aqe + eλt ã(x), h ∼ hqe + eλt h̃(x), |ã(x)|, |h̃(x)| ∼ o(1)

is of the form

ã ∼
n−1∑
i=0

ãi

(
x − xi

ε

)
, (17)
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Figure 5. Hopf bifurcation threshold τth versus γ for p = 2.
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where {λ, ãi } is the solution of the nonlocal problem in the vicinity of the i-th
spike

D
γ

|yi |ãi − (1+ λ− pu p−1)ãi = q H̄
β−1
i u ph̃ (xi ) , i = {0, . . . , n − 1}.

Proof . Upon linearization for the eigenfunctions ã and h̃ system (2) reads

λ ã = εγDγ

|x |ã − ã + p
a p−1

qe

hq
qe

ã − q
a p

qe

hq+1
qe

h̃, (18a)

τ0 λ h̃ = D
d2h̃

dx2
− μh̃ + m

ε

am−1
qe

hs
qe

ã − s

ε

am
qe

hs+1
qe

h̃, (18b)

d

dx
ã

∣∣∣∣∣
x=±1

= d

dx
h̃

∣∣∣∣∣
x=±1

= 0. (18c)

Seeking an eigenfunction of the form (17) and expressing all terms of the
type ar/ε in (18b) according to Lemma 4 yields the desired eigenvalue problem
with the boundary conditions lim|yi |−→∞ ãi = 0 replacing (18c). �

COROLLARY 1. For a pattern of n spikes with identical height the
eigenfunction is

ã ∼
n−1∑
i=0

ci Ã

(
x − xi

ε

)
, ci = const,

where Ã(y) is the solution to

D
γ

|y| Ã − (1+ λ− pu p−1) Ã = χu p

bm

∫ ∞
−∞

um−1 Ã dy,

χ = qm

(
s + ν

2

ϑ

ϑo
ctgh

ϑo

n

)−1

,

ν = ν (λ; n, i) = 2

sinh(2ϑ/n)

(
cosh

2ϑ

n
− cos

π i

n

)
≥ 0,

ϑ =
√
μ+ τoλ

D
, ϑo =

√
μ

D
.
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Proof . By Theorem 1 the eigenvalue problem for any spike pattern is
identical to the case of regular diffusion but for the dependence on the solution
to (4). The desired result was previously proved for regular diffusion [12, 14]. �

Remark 5. The nonlocal eigenvalue problem in Corollary 1 can be also
written in a vector form, allowing to relate the constants ci to an eigenvector
of a certain tridiagonal matrix [12, 14].

PROPOSITION 2. For λ = 0 the solution of

D
γ

|y| Ã − (1+ λ− pu p−1) Ã = χu p

bm

∫ ∞
−∞

um−1 Ã dy,

is Ã(y) = u(y)/(p − 1) for all values of γ (up to a multiplicative constant).

Proof . Due to the problem linearity Ã can only be determined up to a
multiple. Thus it suffices to consider

D
γ

|y| Ã − (1− pu p−1) Ã = u p,

i.e. set

χ

bm

∫ ∞
−∞

um−1 Ã dy = 1.

Substitutiting Ã(y) = u(y)/(p − 1) and using D
γ

|y|u − u = −u p completes the
proof. �

Combining Proposition 2 and Lemma 3, it is obvious that for λ = 0 and
all values of γ the eigenfunction Ã(y) is real and obeys the asymptotics
Ã ∼ |y|−(γ+1) as |y| � 1. The decay of Ã(y) for any λ is required to set
the proper boundary conditions in the course of a numerical solution of the
eigenvalue problem in Corollary 1. The following proposition proves that the
same asymptotics holds for all values of λ both for � Ã and � Ã (whenever
� Ã �≡ 0).

PROPOSITION 3. The solution Ã(y) of

D
γ

|y| Ã − (1+ λ− pu p−1) Ã = u p, lim
|y|−→∞

Ã(y) = 0

where λ = λr + ı λi with λr , λi ∈ R, obeys the following asymptotics. If λi �= 0,

� Ã ∼ |y|−(γ+1), � Ã ∼ |y|−(γ+1) as |y| −→ ∞.
If λi = 0, � Ã ≡ 0 and

� Ã ∼ |y|−(γ+1) as |y| −→ ∞.
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Proof . Because the problem stated in Corollary 1 is symmetric in y,
both � Ã(y) and � Ã(y) are even functions. Thus it suffices to consider
only y > 0. By Lemma 3 the linear terms in D

γ

|y|u − u + u p = 0 are of
order O(y−(γ+1)) and balance each other as y −→∞, whereas the nonlinear
term is of order O(y−p(γ+1)) and is negligible. By an argument identical
to that presented in Lemma 3 the decay of Ã must be algebraic for
any 1 ≤ γ < 2. Suppose � Ã ∼ y−αr and � Ã ∼ y−αi with αr , αi > 0. Then
u p−1� Ã ∼ O(y−(p−1)(γ+1)−αr ) is negligible as compared to the linear term � Ã,
and the same holds for � Ã with αi . The remaining terms correspond exactly
to the terms balanced by equation (4), because the presence of λ does not
change their magnitude. Thus u p can be represented by Dirac delta function as
in Lemma 3, and the corresponding linear equations are given by

D
γ

|y|� Ã − (1+ λr )� Ã ∼ δ(y),

D
γ

|y|� Ã − λi� Ã ∼ δ(y).

An argument identical to Lemma 3 yields the desired asymptotics, i.e.
αr = γ + 1 and αi = γ + 1 if λi �= 0. If λi = 0, � Ã ≡ 0 because the problem
is real. �

4.1 Numerical solution of the eigenvalue problem for a single spike

To demonstrate the effect of Lévy flights on the location of the eigenvalues, the
simplest case of a single spike was considered. Similarly to regular diffusion,
the only exact solution known for the nonlocal eigenvalue problem is for λ = 0,
and the problem must be solved numerically for any other value of λ. An
elaborate numerical investigation of the possible spike patterns is beyond the
scope of this paper. In this section, a few distinctive effects of Lévy flights are
discussed. One of the desired results is the path followed by the eigenvalues in
the right half plane, parametrized by τo and in particular the Hopf bifurcation
threshold, i.e., the value of τo where the eigenvalue is purely imaginary. As a
first step the linear problem (as in Proposition 3)

D
γ

|y| Ã − (1+ λ− pu p−1) Ã = u p, lim
|y|−→∞

Ã(y) = 0,

is solved for a guessed range of �λ with �λ fixed. Then the transcedental
equation for the normalization condition

χ

bm

∫ ∞
−∞

um−1 Ã dy = 1,

is solved to find �λ. This procedure is repeated for sufficiently dense values of
�λ to obtain the desired path. The detailed description of the discretization
scheme and implementation appear in Appendix.
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Table 1
Hopf Bifurcation Frequency and Corresponding Value of τo with Regular

Diffusion (Courtesy of M. J. Ward).

(p, q,m, s) D �λ|�λ=0 τo|�λ=0

(2,1,2,0) 0.5 0.8509 1.9934
1.0 0.9678 1.3431
1.5 1.0372 1.1346

(2,1,3,0) 0.5 0.9499 4.6229
1.0 1.0746 2.4822
1.5 1.2553 1.6932

(3,2,2,0) 0.5 2.0903 0.70241
1.0 2.3284 0.49675
1.5 2.4647 0.42858
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Figure 6. Eigenfunction Ã for a single spike with the set of exponents (p, q,m, s) = (2, 1, 2, 0),
λ = 1.6667 ı and the anomaly exponents γ = 1.05 (solid), γ = 1.25 (dashed), γ = 1.5
(dash-dotted) and γ = 1.75 (dotted) compared to regular diffusion (γ = 2, thick green/gray
curves, courtesy of M. J. Ward).

The solution code was tested in the case λ = 0 to yield an eigenfunction
consistent with the exact solution from Proposition 2 for all 1 ≤ γ < 2. It was
impossible to reproduce directly the results of regular diffusion with this code
because Definition 2 and the discretization procedure are not valid for γ = 2.
Moreover, the evaluation of the principal value integrals becomes extremely
challenging as γ −→ 2−. With the current numerical method the eigenvalue
problem can be solved for 1 < γ ≤ 1.75, and the precision deteriorates quickly
for 1.75 < γ < 2. Development of a numerical method with uniform precision
for the entire range 1 ≤ γ ≤ 2 and the confirmation that as γ −→ 2−, the
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Figure 7. Eigenvalue path parametrized by τo for a single spike with the set of exponents
(p, q,m, s) = (2, 1, 2, 0) (left), (p, q,m, s) = (2, 1, 3, 0) (right) and (p, q,m, s) = (3, 2, 2, 0)
(bottom), and the anomaly exponents γ = 1.05 (solid), γ = 1.25 (dashed), γ = 1.5 (dash-dotted)
and γ = 1.75 (dotted) compared to regular diffusion (γ = 2, thick green/gray curves, courtesy
of M. J. Ward). D = μ = 1.

eigenvalue paths approach the normal curve and the Hopf bifurcation thresholds
tend to the normal values, is a topic of a future work. The figures below
summarize the effects of Lévy flights within the limitations of the current
method for three sets of kinetic exponents. The relevant normal values are
brought in Table 1.

Figure 6 shows the eigenfunction Ã for several values of γ. The tail decay
is obviously slower as compared to γ = 2, however the maxima are higher.
Within the range 1 < γ ≤ 1.75 the maxima approach the maximum at γ = 2
monotonously.

Figure 7 depicts the effect of Lévy flights on the location of the eigenvalues
(the one with �λ > 0 is shown out of the conjugate pair). It is seen that the
Hopf bifurcation frequency is higher, and the modulus of the eigenvalue and in
particular the double real eigenvalue are larger than normal. The effect is more
pronounced for higher values of p, where the homoclinics are more localized.
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Figure 8. Growth rate �λ versus τo for a single spike with the set of exponents
(p, q,m, s) = (2, 1, 2, 0) (left),(p, q,m, s) = (2, 1, 3, 0) (right) and (p, q,m, s) = (3, 2, 2, 0)
(bottom), and the anomaly exponents γ = 1.05 (solid), γ = 1.25 (dashed), γ = 1.5 (dash-dotted)
and γ = 1.75 (dotted) compared to regular diffusion (γ = 2, thick green/gray curves, courtesy
of M. J. Ward). D = μ = 1.

Within the range 1 < γ ≤ 1.75 the curves �λ(�λ; γ ) approach the normal
curve �λ(�λ; 2) monotonously. The explicit dependence of the growth rate
�λ on τo is plotted in Figure 8. For a fixed value of τo the growth rate grows
monotonously as γ decreases within the range 1 < γ ≤ 1.75.

Figure 9 shows the dependence of the Hopf bifurcation frequency on γ.
Figure 10 shows the corresponding value of τo. Note that this threshold is
not identical to τth, the Hopf bifurcation threshold of the full system (2),
obtained with the numerical scheme used for the homoclinics. However, the
general trend of destabilization as γ becomes more anomalous is consistent. In
addition, though the parametrization �λ(τo) and �λ(τo) in the complex plane
is monotonously ascending in τo for a fixed value of γ , the dependence of the
Hopf frequency and the corresponding value of τo on γ is not necessarily
monotonous. If an extremum in �λ|�λ=0(γ ) and τo|�λ=0(γ ) is obtained, its
location is very close for all tested values of D. Also note a peculiar
phenomenon of reversal of the dependence �λ|�λ=0(γ ; D): for the sets of
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Figure 9. Hopf bifurcation frequency �λ|�λ=0 versus γ for a single spike with the set of
exponents (p, q,m, s) = (2, 1, 2, 0) (left), (p, q,m, s) = (2, 1, 3, 0) (right) and (p, q,m, s) =
(3, 2, 2, 0) (bottom), and diffusion coefficients D = 0.5 (solid), D = 1 (dashed) and D = 1.5
(dash-dotted).

exponents (2,1,2,0) and (3,2,2,0) the Hopf frequency decreases with D, whereas
for the set (2,1,3,0) the opposite is true, similarly to the results in Table 1. As
evident from Table 1, the corresponding curves of τo should possess an inflexion
point to approach properly the expected values at γ = 2. This result emphasizes
that the dependence of both the Hopf bifurcation frequency �λ|�λ=0(γ ) and
the value τo|�λ=0(γ ) is more complicated in the range 1.75 < γ ≤ 2.

5. Discussion

The Gierer–Meinhardt model was modified to allow the activator to perform a
random walk of the type Lévy flight. This feature brings the formal ratio of
diffusivities required to sustain patterns closer to realistic, and the effective
ratio of the mean square displacement is in favor of the activator for a finite
value of ε. At the limit ε −→ 0 the effective ratio is undefined, but the
existence of patterns implies it is finite. Overall this model is expected to
correspond to a realistic diffusivities ratio of the two species.
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Figure 10. Hopf bifurcation value of τo|�λ=0 versus γ for a single spike with the set of exponents
(p, q,m, s) = (2, 1, 2, 0) (left), (p, q,m, s) = (2, 1, 3, 0) (right) and (p, q,m, s) = (3, 2, 2, 0)
(bottom), and diffusion coefficients D = 0.5 (solid), D = 1 (dashed) and D = 1.5 (dash-dotted).

The quasi-equilibrium pattern was found to consist of spikes, whose shape is
described by a solution to a fractional integro-differential equation. A notable
anomalous effect is the algebraic asymptotics of the homoclinic tail versus the
regular exponential decay. The equations governing the slow drift of spikes
near the equilibrium formation were shown to be of the normal form, but
involved a new homoclinic.

The homoclinics were obtained numerically through an auxiliary system of
PDEs. The numerical scheme was also used to compute the Hopf bifurcation
threshold τth of the full system and it was found to diminish as γ became
more anomalous. A phenomenon of a beating oscillation was discovered near
γ ≈ 1.2.

A new type of a nonlocal eigenvalue problem was formulated for eigenvalues
of order O(1). Except for the nonlocality inflicted by the nonlocalized inhibitor
species, the differential operator in that problem is also nonlocal, yielding a
much more complicated integro-differential equation. The latter was solved
numerically and some effects of Lévy flights were examined.
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The path followed by the eigenvalues in the right half plane �λ(τo; γ, D)
and �λ(τo; γ, D) was found to be sensitive to the presence of Lévy flights, and
more so for higher values of p. Related entities manifesting sensitivity to the
changes in γ are Hopf bifurcation frequency �λ|�λ=0 and the corresponding
value τo|�λ=0. In all parts of the parameter space tested the anomalous system
is less stable in the sense that a broader range of τo gives rise to an oscillatory
instability. It is also less stable in the sense that the real part of an eigenvalue
for a given value of τo appears to grow monotonously as γ diminishes.

Most effects of Lévy flights on a single spike appear to be quantitative, and
all mentioned curves keep their normal form for a fixed value of γ , even though
the dependence on γ might not be monotonous, especially in the range of γ
close to the normal value γ = 2. The finding of no profound changes of the
behavior for a fixed value of γ supports the expectation to have the effective
ratio of the mean square displacement of the two species as usually in favor of
the inhibitor at the limit ε −→ 0, however very close to the realistic ratio of
O(1). To paraphrase, the proposed model allows for pattern formation with
formally more desirable and effectively very close to realistic diffusivities ratios,
whilst keeping all the known properties of the normal counterpart model.
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Appendix: Discretization Scheme and Implementation for the Eigenvalue
Problem

The equation

D
γ

|y| Ã − (1+ λ− pu p−1) Ã = u p, lim
|y|−→∞

Ã(y) = 0

is linear, however the integro-differential operator D
γ

|y| involves Cauchy
principal value integrals and is nontrivial to discretize. For any 1 ≤ γ < 2

2�(−γ ) cos γ̃ D
γ

|y| Ã =
∫ y

−∞

Ã(y)− Ã(ζ )

(y − ζ )γ+1
dζ +

∫ ∞
y

Ã(y)− Ã(ζ )

(ζ − y)γ+1
dζ,

and for γ = 1 the prefactor 2�(−γ ) cos γ̃ = −π by Lôpital’s rule. The infinite
domain is approximated by −y∞ ≤ y ≤ y∞ with y∞ being a finite number
sufficiently large to capture properly the algebraically decaying tail. Then the
domain [−y∞, y∞] is divided into N + 1 grid points

yi = −y∞ + δy i, δy = 2y∞
N
, i = 0, . . . , N .
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Using the trapezoidal rule for the principal value integrals with integration
domains [−y∞, yi−1] and [yi+1, y∞] for any inner point, and the simplifying
with yk − yi = δy(k − i) yields a linear system of N − 1 equations

Ãi

⎧⎪⎪⎨⎪⎪⎩1+ 1

2

(
1

iγ+1
+ 1

(N − i)γ+1

)
+

N−1∑
k = 1

k �= i − 1, i, i + 1

1

|i − k|γ+1

⎫⎪⎪⎬⎪⎪⎭−
1

2
( Ãi−1+ Ãi+1)

−
N−1∑
k = 1

k �= i − 1, i, i + 1

Ãk

|i − k|γ+1
= 2(δy)γ �(−γ ) cos γ̃

((
1+ λ− pu p−1

i

)
Ãi + u p

i

)
,

Ãi = Ã(yi ), ui = u(yi ), i = 1, . . . , N − 1

equivalent to

Ay = r,

where the vectors y, r ∈ R
N−1 with the i-th entries given by (y)i = yi and

(r)i = 2(δy)γ �(−γ ) cos γ̃ u p
i . The values A(y0), A(yN ) can be prescribed in

two additional equations for the boundary conditions. The simplest choice is
A(y0) = A(yN ) = 0. A more sophisticated approach is to use the asymptotics
for the algebraic decay the way it was done for the homoclinic computation. In
practice the matrix A is very large and the solution for y is time consuming. It
is possible to estimate the expected decay of Ã and invert only the core block of
the matrix, i.e. a smaller matrix that corresponds to i = i∗, . . . , N − i∗. Then
the precise implemenation of the boundary conditions becomes immaterial.
Note that the matrix must be assembled in its full size before the inner block
is extracted because the assembly of only the inner core block results in an
extremely poor precision, as the integrands in the principal value integrals
decay quite slowly. Obviously, all parts of the linear system but the addition of
λ can be computed only once for a given γ.

In the second part of the numerical procedure the transcedental equation

χ

bm

∫ ∞
−∞

um−1 Ã dy = 1

must be solved. For this purpose the functions um and um−1 Ã must be integrated.
To enhance the precision of these integrals the asymptotics of the tails

u ≈ u(y∗)
(

y

y∗

)−(γ+1)

, Ã ≈ Ã(y∗)
(

y

y∗

)−(γ+1)

, y ≥ y∗
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were used with y∗ = y(i∗) and Ã(y∗) being the last available value from the
solution of the linear system. Thus

bm =
∫ ∞
−∞

umdy ≈ 2
∫ y∗

0
umdy + 2um

∗ y∗
m(γ + 1)− 1

, u∗ = u(y∗),

∫ ∞
−∞

um−1 Ã dy ≈ 2
∫ y∗

0
um−1 Ã dy + 2um−1

∗ Ã∗y∗
m(γ + 1)− 1

, Ã∗ = Ã(y∗).
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self-organized critical granular system, Phys. Rev. Lett. 78:4950–4953 (1997).

6. G. M. VISWANATHAN, E. P. RAPOSO, and M. G. E. Da LUZ, Lévy flights and superdiffusion
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