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Abstract

Front propagation in a number of reaction-superdiffusion problems is studied.
Specifically, traveling wave propagation, domain wall pinning, and systems
of waves governed by a bistable single equation as well as FitzHugh-Nagumo
equations are considered. The reaction terms in the equations are taken in
the form of piecewise linear functions, which allows for exact solutions to be
obtained. The effect of superdiffusion on front propagation is discussed.
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1. Introduction

Traveling wave solutions of reaction-diffusion problems attract much at-
tention of researchers due to both numerous applications and mathematical
challenges which are mainly faced when systems of equations are considered
rather than single equations. Studies of traveling wave solutions began with
the Fisher [1] – Kolmogorov-Petrovsky-Piskunov (KPP) [2] equation on the
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one hand and Zeldovich and Frank-Kamenetskii work on combustion prob-
lems [3] on the other. Since then, thousands of papers on traveling wave
solutions have been published (see the monographs [4–18] and the references
therein).

A characteristic feature of most of the reaction-diffusion systems that
have been studied to date is that diffusion is normal, i.e., at the molecular
level it is the result of independent random jumps, e.g., nearest neighbor
jumps, at regularly spaced time increments. In fact, the molecules can wait
between successive jumps and can also execute not just nearest neighbor
jumps, but rather long jumps. However, both the waiting time distribution
and jump length distribution must have finite moments for normal diffusion
to occur. In some cases, however, these conditions are not met, in that the
molecules may undergo anomalous diffusion [19–24]. Unlike normal diffusion,
which is characterized by the dependence < (∆r)2 >∼ t of the mean square
displacement of a randomly walking particle on time, anomalous diffusion is
characterized by the more general dependence

< (∆r)2 >= 2dKαt
α,

where d is the (embedding) spatial dimension, Kα is a generalized diffu-
sion constant, and the exponent α is not necessarily an integer. For α = 1
anomalous diffusion reduces to normal diffusion, with K1 being the ordinary
diffusion coefficient. For α < 1 (α > 1), the diffusion process is slower (faster)
than normal diffusion and is called “subdiffusive” (“superdiffusive”). Both
types of anomalous diffusion processes have been recognized to play impor-
tant roles in various physical, chemical, biological and geological processes.
For example, subdiffusion, which corresponds to molecules waiting for long
times before jumping, i.e., with a waiting time distribution having infinite
moments, often occurs in gels (especially bio-gels [25, 26]), porous media [27]
and polymers [28], while superdiffusion occurs in systems where there are
long jumps of particles, i.e., with a jump length distribution having infinite
moments. It is typical of some processes in plasmas and turbulence [29, 30],
surface diffusion [31, 32], charge carrier transfer in semiconductors [33], as
well as in geophysical and geological processes, including the dispersion of
nuclear waste in soil [34] (see also [19–24] for reviews and numerous other ex-
amples). A special case of superdiffusive process corresponds to Lévy flights
[24].

Although many aspects of anomalous diffusion have been extensively
studied (see [24] for a recent review), the propagation of reaction-diffusion
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fronts governed by anomalous diffusion was a subject of only a very limited
number of works. A problem with nonlinear kinetics similar to that in the
KPP problem [2] was investigated both for the subdiffusive case [35, 36] and
the superdiffusive case [37–39]. It was shown, in particular, that superdiffu-
sion leads to significant acceleration of the front speed. Propagation failure
in the subdiffusive case was discussed in [40]. Superdiffusive front dynamics
in the Allen-Cahn equation was analyzed in [41]. Another study [42] of the
bistable case focused on directional anomalous diffusion.

In this paper we consider several front propagation problems in the bistable
case. In all these problems the reaction term has a sufficiently simple piece-
wise linear form, so that exact solutions of the problems can be found.

2. Mathematical model

We consider the following reaction-superdiffusion equation

∂tw = Dγ
|x|w + f(w). (1)

The operator Dγ
|x| represents the superdiffusion term and is defined by its

action in the Fourier space as

Fx→q

{
Dγ

|x|w(x, t)
}
= −|q|γFx→q {w(x, t)} , 1 ≤ γ ≤ 2.

The nonlinear term f is a piecewise linear function

f(w) = −k[w −H(w − a)] =

{
−kw, 0 ≤ w < a
−k(w − 1), a < w ≤ 1

(see Figure 1). Here k > 0 and 0 < a < 1 are two source term parameters, and
H is the Heaviside function. The traveling wave w(x− ct) is then governed
by the equation

Dγ
|x|w + c

dw

dx
+ f(w) = 0, −∞ < x < ∞, (2a)

with the boundary conditions at infinities

w(−∞) = 0, w(∞) = 1. (2b)

Due to the translational invariance of the solution, we can assume that

w(0) = a. (3)
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Figure 1: The source term in the equation (1)

We remark that we are seeking a monotonically increasing solution w(x)
(Figure 2). Then w(x) < a for x < 0, and w(x) > a for x > 0. Thus

H(w(x)− a) = H(x),

and the source term can be written as

f(w) = −k[w −H(x)]. (4)

x0

w=1

w=0

w=a

Figure 2: The sketch of the traveling wave solution

We next apply the Fourier transform to equation (2a), which, as follows
from (4), is a linear nonhomogeneous equation, to obtain

(−|q|γ + ciq − k)w̃ + k

(
πδ(q)− i

q

)
= 0. (5)

4



Here the Fourier transform

w̃(q) = Fx→q {w(x)} =

∫ ∞

−∞
w(x)e−iqx dx,

is understood in the sense of distributions, in particular we have used

Fx→q {H(x)} = πδ(q)− i

q
,

where δ is the Dirac δ-function. Solving (5) for w̃ and inverting the Fourier
transform yields

w(x) =
1

2π

∫ ∞

−∞

k(πδ(q)− i/q)

|q|γ − ciq + k
eiqx dq

=
1

2
− ki

2π
V.P.

∫ ∞

−∞

1

q(|q|γ − ciq + k)
eiqx dq

=
1

2
− ki

2π
lim
ǫ→0

[∫ −ǫ

−∞

eiqx dq

q(|q|γ − ciq + k)

+

∫ ∞

ǫ

eiqx dq

q(|q|γ − ciq + k)

]

=
1

2
− ki

2π
lim
ǫ→0

[
−
∫ ∞

ǫ

e−iqx dq

q(qγ + ciq + k)

+

∫ ∞

ǫ

eiqx dq

q(qγ − ciq + k)

]

=
1

2
+

k

π
Im

∫ ∞

0

(qγ + ciq + k)eiqx

q[(qγ + k)2 + c2q2]
dq

=
1

2
+

k

π

∫ ∞

0

(qγ + k) sin(qx) + cq cos(qx)

q[(qγ + k)2 + c2q2]
dq.

In this calculation, V.P. denotes the Cauchy principal value of the integral.
Making the substitution q = sk1/γ in the last integral, we finally obtain

w(x) =
1

2
+

1

π

∫ ∞

0

(sγ + 1) sin(sξ) + αs cos(sξ)

s[(sγ + 1)2 + α2s2]
ds, (6)

where
α = ck1/γ−1, ξ = xk1/γ (7)
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are the scaled propagation velocity and spatial variable.
The propagation velocity is determined from the condition (3), which

implies

a− 1

2
=

α

π

∫ ∞

0

1

(sγ + 1)2 + α2s2
ds ≡ F (α; γ), (8)

and can be treated as the inverse dependence of the scaled propagation ve-
locity α on the source parameter a. Thus, properties of the function F (α; γ)
can be translated into the properties of the propagation velocity as a function
of the parameters. The function F (α; γ) varies from −1/2 as α → −∞ to
1/2 as α → ∞ and it is an odd, monotonically increasing function of α for
any 1 ≤ γ ≤ 2 (see Figure 3). It means that there is a unique traveling wave
solution of the problem (2) for any 0 < α < 1, k > 0 and 1 ≤ γ ≤ 2.

0.5

α

10−10

−0.5

0

0.0

−5 5

Figure 3: The graph of the function F (α; γ) for γ = 2, 1.5, 1. The graphs of F (α; 2)
and F (α; 1.5) are almost indistinguishable, i.e., the propagation speed does not noticeably
depend on γ unless γ is sufficiently close to one. For large α, F (α; 2) > F (α; 1).

As a function of γ, F is monotonically increasing for α large (it is sufficient
to take α > 3/2) and is monotonically decreasing for α > 0 close to zero (it
is sufficient to take 0 < α < 1/2). For γ = 1 and γ = 2 the function can be
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expressed in terms of elementary functions as

F (α; 1) =
1

π
arctan α, F (α; 2) =

α

2
√
4 + α2

.

Traveling wave propagation represents the process of displacement of one
steady state by another. We will refer to the establishing steady state as the
dominant. If c > 0, then the wave goes to the right so that the state w = 0
displaces the state w = 1 and, therefore, is the dominant one. If c < 0, then
the wave goes to the left and w = 1 is the dominant state. It is easy to see
from the graphs of F and equation (8) that which state dominates depends
on whether a is greater or less than one half, or, equivalently, on the sign of
the integral of the source term

∫ 1

0

f(w) dw.

A positive (negative) integral implies that c < 0 (c > 0) and w = 1 (w =
0) dominates. It can be shown that similar to what is known for normal
diffusion, the direction of propagation of the wave is determined by the sign
of the integral of the source term not only for the specific piecewise linear
function that we consider, but for any f(w) provided that the wave exists.
Indeed, multiplying equation (2a), where f(w) is a general source term, by
dw/dx and integrating from −∞ to ∞ in x yields

∫ ∞

−∞
Dγ

|x|w
dw

dx
dx+ c

∫ ∞

−∞

(
dw

dx

)2

dx+

∫ 1

0

f(w) dw = 0.

The first integral is equal to zero. Indeed,

∫ ∞

−∞
Dγ

|x|w
dw

dx
dx =

− 1

2π

∫ ∞

−∞

dw

dx

(∫ ∞

−∞
|q|γw̃(q)eiqx dq

)
dx =

− 1

2π

∫ ∞

−∞
|q|γw̃(q)

(∫ ∞

−∞

dw

dx
eiqx dx

)
dq =

1

2π

∫ ∞

−∞
iq|q|γw̃(q)w̃(q) dq = 0
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because the integrand is an odd function of q. Thus,

c = −
∫ 1

0

f(w) dw

[∫ ∞

−∞

(
dw

dx

)2

dx

]−1

,

i.e., the sign of c is the opposite of the sign of the integral of the source
function.

Figure 3 also demonstrates that unless |α| is large or, equivalently, a is
close to zero or to one, the graphs of F for different values of γ are very close
to each other, so that the propagation velocity in this case is not sensitive
to the type of the diffusion process. The proximity of a to zero or to one
can be interpreted as a significant dominance of one of the states over the
other. Thus, if neither of the states is significantly dominant, the propagation
velocity is almost independent of the diffusion exponent.

When one of the states significantly dominates the other (a is close to
zero or to one), the situation is quite different. Not only the propagation
velocities are numerically significantly different for different γ, but they also
obey different power laws. This statement can be quantified by determining
the asymptotics of F for large α. We have

F (α, γ) =
1

π

∫ ∞

0

dt

(1 + tγ/αγ)2 + t2

∼ 1

π

∫ ∞

0

dt

1 + t2 + 2tγ/αγ

∼ 1

π

∫ ∞

0

1− 2tγ/αγ/(1 + t2)

1 + t2
dt

=
1

2
− 2

π

1

αγ

∫ ∞

0

tγ

(1 + t2)2
dt

=
1

2
+

1

2

1

αγ

γ − 1

cos(πγ/2)
.

Thus, for a close to 1, which corresponds to the case of large α, the propa-
gation velocity can be approximately determined from

a− 1 ≈ 1

2

1

αγ

γ − 1

cos(πγ/2)

yielding

α ≈
(

γ − 1

2(1− a) sin(π(γ − 1)/2)

)1/γ

.
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In particular, for γ = 1

α ≈ 1

π(1− a)

and for γ = 2

α ≈ 1√
2(1− a)

.

It is instructive to study the behavior of the solution w(x) for large |x|.
This behavior is important, in particular, as it affects the interaction of two
domain walls (cf. [41]). Using (6) we can write w(x) as

w(x) =
1

2
+

1

π
I1 −

α2

π
I2 +

α

π
I3,

where

I1 =

∫ ∞

0

sin(sξ)

s(sγ + 1)
ds,

I2 =

∫ ∞

0

s sin(sξ)

(sγ + 1)[(sγ + 1)2 + α2s2]
ds,

I3 =

∫ ∞

0

cos(sξ)

(sγ + 1)2 + α2s2
ds,

and we study each of the integrals separately. We have
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I1 =

∫ ∞

0

sin(sξ)

s
ds−

∫ ∞

0

sγ−1 sin(sξ)

sγ + 1
ds

=
π

2
H(ξ)− 1

ξ

∫ ∞

0

d

ds

(
sγ−1

sγ + 1

)
cos(sξ) ds

=
π

2
H(ξ)− γ − 1

ξ

∫ ∞

0

sγ−2

sγ + 1
cos(sξ) ds

+
γ

ξ

∫ ∞

0

s2γ−2

(sγ + 1)2
cos(sξ) ds

=
π

2
H(ξ)− γ − 1

ξ

∫ ∞

0

sγ−2 cos(sξ) ds

+
1

ξ

∫ ∞

0

(γ − 1)s3γ−2 + (2γ − 1)s2γ−2

(sγ + 1)2
cos(sξ) ds

=
π

2
H(ξ)− sgn(ξ)

|ξ|γ sin

(
1

2
πγ

)
Γ(γ)

+
1

ξ2

∫ ∞

0

(
(γ − 1)s3γ−2 + (2γ − 1)s2γ−2

(sγ + 1)2

)′
sin(sξ) ds.

The function that multiplies sin(sξ) in the last integral is absolutely inte-
grable, so that the integral, according to the Riemann-Lebesgue lemma goes
to zero as ξ → ∞. Thus, as ξ → ∞

I1 ∼
π

2
H(ξ)− sgn(ξ)

|ξ|γ sin

(
1

2
πγ

)
Γ(γ).

Next, we show that the integrals I2 and I3 do not contribute to the leading
order asymptotics. Indeed, integrating I2 by parts twice we obtain

I2 =
1

ξ2

∫ ∞

0

(
s

(sγ + 1)[(sγ + 1)2 + α2s2]

)′′
sin(sξ) ds.

Once again, the function that multiplies sin(sξ) in the integral is absolutely
integrable, so that the integral goes to zero as ξ → ∞ and

I2 = o

(
1

ξ2

)
.
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In a similar way, integrating by parts twice in I3, we obtain

I3 =
1

ξ2

∫ ∞

0

(
1

(sγ + 1)2 + α2s2

)′′
cos(sξ) ds,

and the function that multiplies cos(sξ) is absolutely integrable, so that

I3 = o

(
1

ξ2

)
.

We finally obtain for 1 ≤ γ < 2

w(x) ∼ 1

π|ξ|γ sin

(
1

2
πγ

)
Γ(γ), x → −∞,

w(x) ∼ 1− 1

πξγ
sin

(
1

2
πγ

)
Γ(γ), x → ∞,

with ξ given by (7). This power law behavior is very different from the
exponential behavior of the solution in the case of normal diffusion. We
remark that γ = 2 is a singular value in our calculations in the sense that
the coefficients of all the power terms of the above expansions vanish.

We finally remark that a more general formulation of the traveling wave
problem

Dγ
|x|w + c

dw

dx
+ f(w) = 0, −∞ < x < ∞,

w(−∞) = w1, w(∞) = w2

with
f(w) = −k[w − w1 + (w1 − w2)H(w − a)]

can be treated in the same way as (2), yielding the equation for the propa-
gation velocity

a− 1
2
(w1 + w2)

w2 − w1

= F (α, γ). (9)

where α is the scaled propagation velocity (7).
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3. Domain wall pinning

We now discuss a front propagation problem, in which an additional non-
homogeneous source term of strength A localized at x = 0 is present in the
system. As the front propagates from plus or minus infinity, it encounters
the obstacle and can either pass it, upon undergoing some transformation,
or get stuck, thus resulting in the existence of a stationary solution of the
problem.

This problem may been given a physical interpretation as domain wall
”pinning”. This term originates from the magnetism theory, where a domain
wall is an interface between two magnetic domains that can propagate, thus
causing the displacement of one of the domains by the other. Non-magnetic
inclusions in the medium can stop domain wall propagation, which is referred
to as domain wall pinning. For a review of defect pinning phenomena in
normal diffusion-reaction systems, see [43].

We study the existence of the stationary solutions, which we interpret as
the inability of the front to propagate, i.e., the front pinning. We consider
the problem

Dγ
|x|w − k[w −H(w − a)] + Aδ(x) = 0, −∞ < x < ∞, (10)

where δ(x) is the Dirac δ-function, the strength A of which can be either
positive or negative. The solution w must satisfy the conditions at infinities

w(−∞) = 0, w(∞) = 1. (11)

Assuming
w(x0) = a (12)

where x0 is unknown, and taking into account that w(x) is a monotonically
increasing function, we see that

H(w − a) = H(x− x0),

so that equation (10) can be reformulated as

Dγ
|x|w − k[w −H(x− x0)] + Aδ(x) = 0, −∞ < x < ∞. (13)

Applying the Fourier transform to (13), we obtain

(−|q|γ − k)w̃ + k

(
πδ(q)− i

q

)
e−iqx0 + A = 0.
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Thus,

w(x) =
1

2π

∫ ∞

−∞

k(πδ(q)− i/q) exp(−iqx0) + A

|q|γ + k
eiqx dq

=
1

2
− ki

2π
V.P.

∫ ∞

−∞

1

q(|q|γ + k)
eiq(x−x0) dq

+
A

2π

∫ ∞

−∞

1

|q|γ + k
eiqx dq

=
1

2
+

k

π

∫ ∞

0

sin q(x− x0)

q(qγ + k)
dq +

A

π

∫ ∞

0

cos(qx)

qγ + k
dq.

Evaluating the above result at x = x0, we obtain an equation for x0

a− 1

2
=

A

π

∫ ∞

0

cos(qx0)

qγ + k
dq, (14)

which can be written in the form

a− 1

2
=

A

k1−1/γ
G(x1; γ) (15)

with

G(x; γ) =
1

π

∫ ∞

0

cos(sx)

sγ + 1
ds, x1 = x0k

1/γ . (16)

Existence of solution of the equation manifests domain pinning, while the
absence of solution means that the front can propagate. For γ = 2, eq. (14)
simplifies to

a− 1

2
=

A

2
√
k
e−|x0|

√
k.

For a general γ, the function G(x; γ) is also an even function that mono-
tonically decreases for x > 0. It is shown in Figure 4 for three values of
γ.

The maximum value of G which occurs at x = 0 is

G(0; γ) =
1

π

∫ ∞

0

1

sγ + 1
ds =

1

γ sin(π/γ)
.

Thus, we can draw the following conclusions about the existence of the sta-
tionary solution of the problem. If a > 1/2, so that the speed of propagation
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0.4

0

0.8

Figure 4: The graph of the function G(x; γ) (see (16) for γ = 2, 5/3, 4/3. The smaller
values of γ correspond to larger values of G at x = 0.

without the nonhomogeneity (A = 0) would be positive, the solution exists
only if A > 0 and moreover, A must be sufficiently large,

A > γk1−1/γ

(
a− 1

2

)
sin

π

γ
≡ Acr(γ)

for a solution to exist. This is consistent with our understanding that without
the nonhomogeneity for a > 1/2 the smaller stationary state w = 0 displaces
the larger stationary state w = 1, because the integral value of the source
term is negative. Adding the nonhomogeneous term with a negative A makes
the source term even more negative and therefore enhances wave propagation
rather than acts to stop the front. If A > 0 but not large enough, the
nonhomogeneity does act to prevent front propagation but is not sufficiently
strong.

If a < 1/2, then the situation is similar in the sense that the stationary
solution exists only for a sufficiently strong nonhomogeneity of the right sign,
namely, for A < Acr (note that Acr < 0 in this case). The above qualitative
explanation of the existence result that addresses the sign of the source term
works here as well.

We remark that Acr(γ) monotonically approaches zero as γ decreases
from γ = 2 to γ = 1. Thus, pinning occurs more readily in the superdiffu-
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sive medium than in the case of normal diffusion. In fact, pinning becomes
inevitable in the limit γ → 1 since Acr(1) = 0.

Finally, we observe that if a stationary solution exists, it is non-unique,
because G(x, γ) is an even function of x, so that if x0 is a solution of (15),
then −x0 is also a solution. One of these solutions must be unstable. Though
we have not performed a linear stability analysis, it is reasonable to expect
that the solution, in which the wave already passed the nonhomogeneity (i.e.,
x0 > 0 for a > 1/2 and x0 < 0 for a < 1/2), is unstable and can evolve into
a front propagating solution.

4. Systems of waves

We now discuss a model equation with a more complex nonlinearity that
has three intermediate zeros instead of one. The source term is shown in
Figure 5.

0 1 w

f

a

−(k +k )w
−(k +k )w+ k1

−(k +k )w 1+k + k2

b

1 2
1 2

1 2

w*

Figure 5: The source term in the equation (17)

According to the results in Section 2, there may be a traveling wave that
connects the steady state w = 0 and w = w∗ ≡ k1/(k1+k2) (the [0, w∗]-wave)
as well as a wave that connects w = w∗ with w = 1 (the [w∗, 1]-wave). We
are interested in the existence of a [0, 1]-wave, i.e., the wave that connects
w = 0 and w = 1 (Figure 6).
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Figure 6: The sketch of the traveling wave solution

Known results [44] state that in the case of normal diffusion a [0, 1]-wave
exists if the propagation velocity of the [0, w∗]-wave exceeds the velocity
of the [w∗, 1]-wave. The dynamics of the solution of the time-dependent
problem is as follows. Suppose the initial condition is composed of two parts
that are separated by an approximately w = w∗ plateau: one is a profile
resembling the [0, w∗]-wave and the other [w∗, 1]-wave. Then if the velocity
of the former is larger than that of the latter, the [0, w∗]-wave will catch
up to the [w∗, 1]-wave and a single wave will form. If the velocity of the
[0, w∗]-wave is smaller than the velocity of the [w∗, 1]-wave, the waves will
propagate independently, the distance between the fronts will increase and
no [0, 1]-wave exists in this case. We want to check if the same result is valid
for the superdiffusion problem with the piecewise linear source term. Thus,
we consider the problem

Dγ
|x|w + cw′ − (k1 + k2)w + k1H(w − a) + k2H(w − b) = 0, (17)

−∞ < x < ∞,

with conditions at infinities

w(−∞) = 0, w(∞) = 1. (18)

Assuming b > a we can translate the solution in such a way that

w(0) = a, w(x0) = b, x0 > 0. (19)

Then (17) takes the form

Dγ
|x|w + cw′ − (k1 + k2)w + k1H(x) + k2H(x− x0) = 0. (20)
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Applying the Fourier transform to (20), we obtain

−(|q|γ − ciq + k1 + k2)w̃ + k1

(
πδ(q)− i

q

)

+k2

(
πδ(q)− i

q

)
e−iqx0 = 0,

so that
w(x) =

1

2π

∫ ∞

−∞

k1(πδ(q)− i/q) + k2(πδ(q)− i/q)e−iqx0

|q|γ − ciq + k1 + k2
eiqx dq

=
1

2
− i

2π
V.P.

∫ ∞

−∞

k1 + k2e
−iqx0

q(|q|γ − ciq + k1 + k2)
eiqx dq.

The first condition in (19) gives

a = w(0) =
1

2
− i

2π
V.P.

∫ ∞

−∞

k1 + k2e
−iqx0

q(|q|γ − ciq + k1 + k2)
dq

=
1

2
+

αw∗
π

∫ ∞

0

ds

(sγ + 1)2 + α2s2

+
1− w∗

π

∫ ∞

0

αs cos(sx1)− (sγ + 1) sin(sx1)

s[(sγ + 1)2 + α2s2]
ds,

where
α = c(k1 + k2)

1/γ−1, x1 = x0(k1 + k2)
1/γ .

Next, using for x1 > 0 the representation
∫ ∞

0

(sγ + 1) sin(sx1)

s[(sγ + 1)2 + α2s2]
ds =

∫ ∞

0

sin(sx1)

s
ds−

∫ ∞

0

[sγ−1(sγ + 1) + α2s] sin(sx1)

(sγ + 1)2 + α2s2
ds

=
π

2
−

∫ ∞

0

[sγ−1(sγ + 1) + α2s] sin(sx1)

(sγ + 1)2 + α2s2
ds,

which yields an integral that goes to zero as x1 → ∞, we finally obtain

a− 1
2
w∗

w∗
= F (α, γ) +

1− w∗
w∗

H(α, γ, x1), (21)
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where
H(α, γ, x) =

1

π

∫ ∞

0

α cos(sx) + [sγ−1(sγ + 1) + α2s] sin(sx)

(sγ + 1)2 + α2s2
ds

and F as defined in (8).
The functionH(α, γ, x) is a monotonically increasing function of α, −∞ <

α < ∞ for x > 0 and 1 ≤ γ ≤ 2. It monotonically decreases with x > 0 for
any α, −∞ < α < ∞ and γ, 1 ≤ γ ≤ 2 (see Figures 7, 8).

0.8

−4

0.4

0.0

α

40

Figure 7: The dependence of the function H on α for γ = 3/2 and x = 0.1, 1, 10 (the
larger is the x, the lower is the graph).

In addition,
H(−∞, γ, x) = 0, H(∞, γ, x) = 1,

H(α, γ, 0) = F (α, γ) +
1

2
, (22)

H(α, 2, x) =
1

2

(
1 +

α√
α2 + 4

)
exp

(
−x

2
(
√
α2 + 4− α)

)
.

The second condition in (19) gives

b− 1
2
(1 + w∗)

1− w∗
= F (α, γ)− w∗

1− w∗
H(−α, γ, x1). (23)

Equations (21) and (23) determine α and x1 which are the scaled prop-
agation velocity and distance between the fronts. Consider first equation
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4

0.8

0

Figure 8: The dependence of the function H on x for α = 2 and γ = 2, 3/2, 1 (for large x,
the larger is the γ, the lower is the graph).

(21). Since the last term on the right-hand side is positive and F (α, γ) is a
monotonically increasing function of α, we see that the α determined by this
equation is necessarily smaller than the α determined by the equation

a− 1
2
w∗

w∗
= F (α, γ),

which gives the speed of the [0, w∗]-wave (see (9)). In a similar way, consider-
ing equation (23) we conclude that the speed of the wave must be necessarily
larger than that of the [w∗, 1]-wave. Combining these two results together,
we see that if the [0, 1]-wave exists, then the speed of the [0, w∗]-wave is larger
than the speed of [w∗, 1]-wave. We now show that this necessary condition
is also a sufficient condition.

Consider first equation (21). Let us treat this equation as an equation
for α with x1 being a parameter. We will denote the solution as α = α1(x1).
For x1 = ∞, we have H = 0, so that the equation reduces to

a− 1
2
w∗

w∗
= F (α1(∞), γ), (24)

which yields the propagation speed of the [0, w∗]-wave. For x1 = 0 using
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(22), we obtain that α1(0) satisfies

a− 1

2
= F (α1(0), γ). (25)

Since the right-hand side of equation (21) is an increasing function of α
and a decreasing function of x1, the solution α = α1(x1) of this equation
exists, is unique and is a monotonically increasing function for 0 < x1 < ∞
that varies between α1(0) and α1(∞) that are determined by (25) and (24),
respectively. Next, consider equation (23). Since the right-hand side of this
equation is an increasing function of both α and x1, the solution α = α2(x1)
exists, is unique and is a monotonically decreasing function for 0 < x1 < ∞
that varies between α2(0) and α2(∞) that are determined by

b− 1

2
= F (α2(0), γ). (26)

and
b− 1

2
(1 + w∗)

1− w∗
= F (α2(∞), γ),

respectively. The graphs of functions α1(x1) and α2(x1) have exactly one
intersection because α2(0) > α1(0) (since F is monotonically increasing and
b > a – see equations (25), (26)) and α1(∞) > α2(∞) (since these veloci-
ties are the velocities of the [0, w∗]-wave and the [w∗, 1]-wave for which this
inequality is assumed).

Finally, the necessary and sufficient condition for the [0, 1] wave to exist
is that the velocity of the [0, w∗] wave is larger than the velocity of the [w∗, 1]
wave.

5. FitzHugh-Nagumo equations

The FitzHugh-Nagumo system [45, 46] has been studied in many works
as a simplified model of nerve conduction. The equations have the form

vt = vξξ + f(v)− w, wt = ǫ(v − bw),

where ǫ and b are positive parameters and f(v) is, in general, a function with
three zeros, two of which are stable, say v = 0, v = 1, and the third one
v = a, 0 < a < 1, is unstable. The system has a critical point v = w = 0,
which is referred to as the rest state. In addition, for some parameter ranges
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there is another critical point v = v∗, w = w∗, referred to as the excited state.
The problem is known to have traveling wave solutions that connect the two
states as well as various pulse solutions [47, 48]. Moreover, many solutions
can occur for the same parameter values.

In this paper we consider a generalization of the FitzHugh-Nagumo sys-
tem that accounts for superdiffusion. We take f(v) = −v+H(v− a) [48, 49]
and restrict the consideration to traveling waves which connect the rest and
the excited states, i.e., we do not consider pulse solutions. The problem
written in the coordinate system that moves together with the wave has the
form

Dγ
|x|v + cv′ − v +H(v − a)− w = 0,

cw′ + ǫv − bǫw = 0, −∞ < x < ∞,

with conditions at infinities

v(−∞) = w(−∞) = 0, v(∞) = v∗ ≡
b

1 + b
,

w(∞) = w∗ ≡
1

1 + b
.

Here the prime denotes the derivative with respect to the traveling wave
coordinate x = ξ − ct, where c is the (unknown) propagation velocity. We
remark that in order for the excited state to exist, one needs

a <
b

b+ 1
,

which we assume. Translating the wave in x so that v(0) = a we can replace
H(v − a) by H(x). Then applying the Fourier transform to both equations,
we obtain

(−|q|γ + ciq − 1)ṽ + πδ(q)− i

q
− w̃ = 0,

ciqw̃ + ǫṽ − bǫw̃ = 0.

Solving the equations for ṽ and w̃ and inverting the Fourier transform of the
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solution yields

v(x) =
1

2π

∫ ∞

−∞

πδ(q)− i/q

|q|γ − ciq + 1 + ǫ/(bǫ− ciq)
eiqx dq

=
b

2(1 + b)

+
1

π
Im

∫ ∞

0

eiqx

q(qγ − ciq + 1 + ǫ/(bǫ− ciq))
dq

=
b

2(1 + b)
+

1

π

∫ ∞

0

cq (1− ǫ1) cos(qx) + (qγ + 1 + ǫ2) sin(qx)

q
[
(qγ + 1 + ǫ2)

2 + c2q2 (1− ǫ1)
2] dq,

where

ǫ1 =
ǫ

b2ǫ2 + c2q2
, ǫ2 =

bǫ2

b2ǫ2 + c2q2
.

Evaluating this equation at x = 0 yields

a− 1
2
v∗

v∗
= P (c, γ, b, ǫ), (27)

where
P (c, γ, b, ǫ) =

1 + b

πb

∫ ∞

0

c (1− ǫ1) dq

(qγ + 1 + ǫ2)
2 + c2q2 (1− ǫ1)

2 .

The dependence of function P on the propagation speed c may exhibit a
complex nonmonotonic behavior that is illustrated in Figure 9. Function
P is an odd function of c that goes to ±1/2 as c → ±∞. For relatively
large ǫ, the function is monotonic. As ǫ decreases, the function becomes
nonmonotonic (at ǫ = 1/b2). The smaller is the ǫ, the more pronounced the
extrema are. In the limit ǫ → 0, the function P tends to a function of c that
is monotonically increasing for c < 0 and for c > 0 with a discontinuity at
c = 0. The limits as c → ∓0 are ±1/(2b).

Figures 10 and 11 depict the v component of the solution for specific
parameter values as a function of the spatial variable. The value of the
propagation velocity is found from (27).
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Figure 12 shows the partition of the parameter space into regions with
different number of solutions for 0 < a < 1/2. Here in (n,m), n is the
number of rest-state-dominated waves and m is the number of excited-state-
dominated waves. If b is less than the critical value a/(1− a), no fronts exist
because there is no excited state. There are two regions in the (b, ǫ) plane
marked (1, 2). In the lower one the existence of two excited-state-dominated
waves is unconditional, i.e., for any value of a. In the upper one, a must be
sufficiently small for the two solutions to exist. If a > 1/2 the diagram is
similar, with the only difference that the lower, unconditional region (1, 2)
disappears. If a < 0, the behavior is similar in the sense that (n,m) regions
become (m,n) regions because the function P is an odd function. Finally,
this parameter diagram is qualitatively the same for any γ, 1 < γ < 2. A
quantitative difference is that with the decrease of γ parameter regions where
multiple solutions exist become smaller.

2

0.0

0−4−6
c

6−2

−0.4

0.4

4

(a) γ = 2.

2 640−6 −4 −2

0.0

0.4

c

−0.4

(b) γ = 1.

Figure 9: The dependence of the function P on c for b = 1, ǫ = 5.0, 1.0, 0.1, 0.01 and two
values of γ. The smaller is the ǫ, the more pronounced the extrema of the functions are.

6. Conclusion

We study front propagation in reaction-superdiffusion problems. Specifi-
cally, we consider traveling wave propagation, domain pinning, and systems
of waves governed by a bistable single equation as well as FitzHugh-Nagumo
equations. The reaction terms in these equations are taken in the form of
piecewise linear functions, which allows us to determine exact solutions of
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0.0

(a) γ = 2, c = −0.74.

10

0.2

x

0 155−5

0.4

(b) γ = 1, c = −0.241.

Figure 10: Excited-state-dominated wave (goes to the left). The v-profile of the solution
is shown as a function of x for two values of γ. Here a = 0.3, b = 1, ǫ = 0.1 and the
propagation velocity c is determined by equation (27).

the problems. We discuss the effect of superdiffusion on front propagation.
The main conclusions are as follows.

• If one state significantly dominates the other, then superdiffusion re-
sults in much faster displacement of the weaker phase than regular
diffusion.

• If two states are of comparable strength, superdiffusion is not notice-
able.

• Superdiffusive systems of waves obey the same rules as in the case of
regular diffusion.

• Domain pinning occurs more readily for superdiffusion than for normal
diffusion. In fact, pinning becomes inevitable in the limit γ → 1.

• In the FitzHugh-Nagumo system, superdiffusion reduces the parameter
range of multiple solutions.

Acknowledgment. This work was supported by the NSF grant DMS-
0707445 and by the Israel Science Foundation grant 812/06.
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(a) γ = 2, c = 1.46.

x
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Figure 11: Rest-state-dominated wave (goes to the right). The v-profile of the solution
as a function of x for two values of γ. Here a = 0.3, b = 1, ǫ = 0.1 and the propagation
velocity c is determined by equation (27).

A. Properties of the function a(c; γ)

Hereinafter the monotonicity of the relation a(c) is proved for the problem

D
γ
|x|w + c

dw

dx
− w +H(x) = 0, (A.1)

where the source term (4) was used, and the dependence on the parameter
k was removed by scaling (1) with t 7→ k t and x 7→ k1/γ x. The fractional
operator is defined in a more general way as a weighted sum of leftward and
rightward fractional derivatives in Fourier space:

Fx→q

{
D

γ
|x|w(x)

}
=

− sec
(πγ

2

)
(p(iq)γ + r(−iq)γ)Fx→q {w(x)} ,

so that

r = 1− p, p =
1 + ν

2
, r =

1− ν

2
, −1 6 ν 6 1.

Then ν = 0 conforms to Riesz derivative and ν = 1 – to Weyl derivative.
The negative range of ν corresponds to derivatives with more weight on the
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Figure 12: Parameter regions with different number of solutions. See text.

leftward direction and is quite superfluous, as any problem with a domi-
nating leftward propagation direction can be equivalently formulated with a
rightward one. An equivalent form to be used below is

Fx→q

{
D

γ
|x|w(x)

}
= −|q|γ − i sgn(q)µ |q|γ, µ = ν tan

πγ

2
.

The relation connecting the propagation velocity to the kinetics parameter
a for (A.1) is obtained similarly to (8) and reads

a(c; γ, ν) =
1

2
+

1

π

∫ ∞

0

c− µ qγ−1

(1 + qγ)2 + (c− µ qγ−1)2 q2
dq.

For ν = 0 the relation simplifies to a form equivalent to (8):

a(c; γ, 0) =
1

2
+

c

π

∫ ∞

0

dq

(1 + qγ)2 + (cq)2
.

For γ = 2 the value of ν is immaterial and

a(c; 2, ν)− 1

2
=

c

π

∫ ∞

0

dq

(1 + q2)2 + (cq)2
=

c

π(b22 − b21)

∫ ∞

0

(
1

q2 + b21
− 1

q2 + b22

)
dq

with b1, b2 > 0 satisfying

b21b
2
2 = 1, b21 + b22 = c2 + 2
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by which
b1b2 = 1, (b1 + b2)

2 = c2 + 4.

Then

a(c; 2, ν)− 1

2
=

c

2 (b22 − b21)

(
1

b1
− 1

b2

)
=

c

2b1b2(b1 + b2)
=

c

2
√
c2 + 4

.

The same result might be obtained directly through the ordinary differential
equation

u′′ + cu′ − u+H(x) = 0.

For the general function a(c; γ, ν) the behavior at c → ±∞ is as follows.
Defining q′ = qc, c > 0

a− 1

2
∼

∼ 1

π

∫ ∞

0

dq′

1 + q′2

+
c−γ

π

∫ ∞

0

q′γ−1
[
µ
(
q′2 − 1

)
− 2q′

]
(
1 + q′2

)2 dq′ + o
(
c−γ

)

=
1

2
+

(γ − 1)(ν + 1)

2 cos(πγ/2)
c−γ + o

(
c−γ

)
, c → ∞. (A.2a)

Similarly, for c → −∞
a− 1

2
=

−1

2
+

(γ − 1)(ν + 1)

2 cos(πγ/2)
|c|−γ + o

(
|c|−γ

)
, c → −∞. (A.2b)

Therefore the slope at the tails is always positive.
Obviously, a(c; γ, ν) is an odd function of c if γ = 2 or ν = 0. For other

values of γ and ν the integrand denominator is positive throughout, and
thus the numerator must change sign for some q⋆ > 0 at a = 1/2, as a is a
continuous function of c and such a point exists by the intermediate value
theorem:

∃ q⋆ : qγ−1
⋆ =

c

µ
=

c

ν
cot

πγ

2
.

Referring to the range 0 < ν 6 1 and noting that cot(πγ/2) < 0 ∀ 1 < γ <
2, an immediate conclusion is that the point a = 1/2 is obtained at c < 0.
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For the negative range of ν c > 0. Figure 13 depicts the function a(c; γ, ν) for
γ = 1.2 and several values of ν. The behavior bears no qualitative changes
throughout the range 1 < γ < 2.

−15 −10 −5 0 5 10 15
−1

−0.5

0

0.5

1

  −1−0.5   0 0.5   1

c

a ε

γ=1.2

Figure 13: Relation a(c; γ, ν) for γ = 1.2 and several values of ν.

It is possible to evaluate the lower and upper bounds of the slope. Dif-
ferentiating the function a(c; γ, ν) with respect to c,

da

dc
=

1

π

∫ ∞

0

(1 + qγ)2 − (qc− µ qγ)2

[(1 + qγ)2 + (qc− µ qγ)2]2
dq. (A.3)

Defining

A(q; γ)
def
= 1 + qγ, B(q; γ, c, ν)

def
= qc− µqγ,

h(q; γ, c, ν) =
B

A
,

the integrand is expressed as

I(q; γ, c, ν) =
A2 −B2

(A2 +B2)2
=

1− h2

A2(1 + h2)2
.

The function

f(h2) =
1− h2

(1 + h2)2
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satisfies −1/8 ≤ f ≤ 1 for h2 ≥ 0. Thus

−1

8

∫ ∞

0

dq

A2
6 π

da

dc
6

∫ ∞

0

dq

A2
.

Computing the integral as

∫ ∞

0

dq

A2
=

π(γ − 1)

γ2 sin(π/γ)
≤ 1, 1 ≤ γ ≤ 2

we obtain

− 1

8π
≤ da

dc
≤ 1

π

regardless of all parameter values.
In fact, the function a(c; γ, ν) should be monotone in c, however it is

not seen directly from (A.3). To show monotonicity the expression for the
difference a2 − a1 is derived:

π(a2 − a1) = (c2 − c1)

∫ ∞

0

A2 −B1B2

(A2 + B2
1) (A

2 + B2
2)
dq,

Bi ≡ B(q; γ, ci, ν), i = {1, 2}.
Suppose that there exists a point where da/dc changes sign ( not just van-
ishes, but becomes negative, so that the point is a real extremum and not an
inflection point ). Then by continuity and the general ascending behavior of
a ( see equations (A.2)) there must be another extremum. Furthermore, the
first one should be a maximum and the second one – a minimum. If there are
any more extrema, they should come in such pairs. Therefore it is possible
to take three points that satisfy

c1 < c2 < c3 : a(c1) = a(c2) = a(c3),

i.e. c1 is located before the maximum, c2 – between the two extrema and c3
– after the minimum. Evaluating the derivative at these three points, the
following must hold ∫ ∞

0

A2 −B2
1

(A2 + B2
1)

2dq > 0,

∫ ∞

0

A2 −B2
2

(A2 + B2
2)

2dq < 0,

∫ ∞

0

A2 − B2
3

(A2 + B2
3)

2dq > 0. (A.4)
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The function B is linear in c and thus

B2
1 < B2

2 < B2
3 .

Then at every integration point q

A2 −B2
2

(A2 + B2
2)

2 >
A2 −B2

3

(A2 + B2
2)

2 >
A2 −B2

3

(A2 + B2
3)

2 .

Therefore it is impossible that both inequalities in (A.4) hold simultaneously.
Hence such a non-monotonous behavior cannot exist, and the lower bound
can be modified to a weak positiveness

0 6
da

dc
6

1

π
.
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