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Abstract. The slow dynamics and linearized stability of a two-spike quasi-equilibrium solution
to a general class of reaction-diffusion (RD) system with and without sub-diffusion is analyzed.
For both the case of regular and sub-diffusion, the method of matched asymptotic expansions is
used to derive an ODE characterizing the spike locations in the absence of any O(1) time-scale
instabilities of the two-spike quasi-equilibrium profile. These fast instabilities result from unsta-
ble eigenvalues of a certain nonlocal eigenvalue problem (NLEP) that is derived by linearizing
the RD system around the two-spike quasi-equilibrium solution. For a particular sub-class of
the reaction kinetics, it is shown that the discrete spectrum of this NLEP is determined by the
roots of some simple transcendental equations. From a rigorous analysis of these transcendental
equations, explicit sufficient conditions are given to predict the occurrence of either Hopf bifur-
cations or competition instabilities of the two-spike quasi-equilibrium solution. The theory is
illustrated for several specific choices of the reaction kinetics.
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1. Introduction

The main goal of this paper is to characterize analytically the slow dynamics and the stability of localized
multi-pulse, or spike-type, solutions to the following class of reaction-diffusion (RD) system on the infinite
line:

vt = ε20vxx − v + g(u)vp , τut = uxx + (ub − u) + ε−1
0 f(u)vr , −∞ < x < ∞ , t > 0 . (1.1)

Here ε0 ≪ 1, ub is a constant, p > 1, r > 1, and the properties of g(u) and f(u) are given below. Since
(1.1) is posed on the infinite line, without loss of generality the diffusivity of u can be set to unity (as
we have done) by a spatial re-scaling. In the limit ε0 → 0, localized pulses or spikes in the v-variable
are represented by homoclinic solutions of spatial extent O(ε0) of the stationary problem for v, with the
interaction between the spikes mediated by the “global” component u that varies on an O(1) spatial
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scale. This asymptotic limit, where only one of the two components of the RD system is localized, is
called the semi-strong spike interaction limit (cf. [5]).

Reaction-diffusion systems of the general class (1.1) arise in various applications. In particular, Turing
[33] proposed that localized peaks in the concentration of a chemical substance, known as a morphogen,
could be responsible for the process of morphogenesis, which describes the development of a complex
organism from a single cell. Through the use of a linearized analysis, he showed how stable spatially
complex patterns can develop from small perturbations of spatially homogeneous initial data for a coupled
system of reaction-diffusion equations. Later, Gierer and Meinhardt [8] (see the more recent book [17]),
have demonstrated numerically the existence of stable spatially inhomogeneous equilibrium solutions for
activator-inhibitor systems of the type (1.1) with ub = 0 where the inhibitor u diffuses more slowly than
the activator v. A class of GM models is g(u) = u−q, f(u) = u−s, ub = 0, where qr/(p− 1)− (s+1) > 0
(see [12]). Another application of (1.1) is to the study of chemical patterns, involving two reactants in a
gel reactor where the reactor is maintained in contact with a reservoir of one of the two chemical species.
This leads to the source or feed term ub in (1.1). In this class of substrate-depletion models, a ubiquitous
model is the Gray-Scott (GS) model, which was introduced for continuously stirred systems in [10]. It
is given by setting ub = 1, g(u) = Au, p = r = 2, and f = −u in (1.1), where A > 0 is a bifurcation
parameter.

We will also consider the sub–diffusive counterpart of (1.1), formulated as

∂γ
t v = ε2γvxx − v + g(u)vp , τ ∂γ

t u = uxx + (ub − u) + ε−γf(u)vr , (1.2)

where the anomaly exponent γ is on the range 0 < γ < 1. The regular diffusion RD system (1.1) is
obtained by setting γ = 1. In (1.2), the sub-diffusive operator as applied to a function h(t) is defined by

dγ

dtγ
h(t) ≡ − 1

Γ (−γ)

∫ t

0

h(t)− h(t− ζ)

ζγ+1
dζ , 0 < γ < 1 , (1.3)

where Γ (z) is the Gamma function. Sub-diffusion has been observed in nature and in particular in
biological systems, where diffusion is often hindered due to crowding effects of the medium. For a survey
of anomalous diffusion and fractional calculus see [18], [27], and [28].

There have been many studies over the past decade of the stability and dynamics of spike-type patterns
in the semi-strong spike interaction limit in a one-dimensional domain for some specific RD systems of
the type (1.1) with regular diffusion including, the Gierer-Meinhardt (GM) model (cf. [39], [12], [4], [13],
[38], [37], [31], [6]), the Gray-Scott (GS) model (cf. [2], [3], [20], [14], [31], [1]), the Schnakenberg model
(cf. [7]), and more recently, the Brusselator model (cf. [35]), [36]) and a reaction-diffusion model of urban
crime (cf. [15]). However, much less is known about how these results for specific systems extend to more
general classes of RD systems. There have been only a few studies characterizing the slow dynamics and
stability of pulses for classes of RD systems (cf. [5], [29], [41], [25])), a few of which are discussed below.

In the presence of sub-diffusion, there are only a few studies of the stability and dynamics of localized
spike-type solutions. For the sub-diffusive GM model where g(u) = u−q, f(u) = u−s, and ub = 0 in (1.2),
the slow dynamics and stability of multi-spike solutions on a finite domain was analyzed in [24]. In [25],
the stability of a one-spike solution to the more general sub-diffusive problem (1.2) but with p = 2r − 3
and r > 1 was analyzed. For the related problem of super-diffusion, the stability and dynamics of an
interface with a piecewise linear kinetics was considered in [21], and the stability and dynamics of a spike
for the super-diffusive GM problem was studied in [26]. In contrast, for the simpler situation where the
RD system with diffusion anomaly admits a spatially homogeneous equilibrium state in a domain with
periodic boundary conditions, the stability of such states can be analyzed using a more conventional
approach based on dispersion relations as derived by Fourier transform techniques (cf. [11], [30], [9], [23],
[22], [34]).

In our study of (1.1) and (1.2), we will restrict our focus to the simplest scenario of interacting
spikes on the infinite line. Specifically, we shall consider symmetric two-spike quasi-equilibrium patterns,
corresponding to a pattern of two spikes of a common amplitude. By using the method of matched
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asymptotic expansions in the limit ε0 → 0, we readily show that the problem of constructing these
quasi-equilibrium patterns is reduced to solving for the roots of certain nonlinear algebraic equations.
In addition, for both (1.1) and (1.2), we derive a finite dimensional dynamical system characterizing the
slow evolution of the centers of the spikes, and we determine conditions on the nonlinearities f and g for
which spike-interactions are either attractive or repulsive. However, the primary emphasis in our analysis
is to characterize theoretically the linear stability properties of the symmetric two-spike quasi-equilibrium
pattern with respect to fast O(1) time-scale instabilities. Our analysis shows that there are two distinct
types of instabilities: competition instabilities leading to a symmetry breaking bifurcation of the two-
spike quasi-equilibrium pattern, and oscillatory temporal instabilities of the spike amplitudes resulting
from a Hopf bifurcation. In the absence of such instabilities, the two-spike quasi-equilibrium pattern for
the regular diffusion case (1.1) exhibits slow time-dependent spike dynamics, whereby the location of the
spikes drift with an asymptotically small speed of order O(ε20). For the sub-diffusive problem (1.2), the
speed of spike motion is found to be asymptotically slower.

Our study of the dynamics and stability of two-spike patterns for (1.1) is most closely related to the
analysis of [5] and [25]. In [5], techniques of geometric singular perturbation theory were used to analyze
the existence and slow dynamics of two-spike patterns for a class of RD system closely related to (1.1).
However, in [5], no analytical study of the stability properties of these two-spike quasi-equilibria to O(1)
time-scale instabilities was undertaken. In [25], the existence of a one-spike equilibrium solution on the
infinite line was analyzed for the class of RD system (1.1) and its fractional diffusive counterpart (1.2),
and rigorous stability results of this solution were obtained for the exponent relation p = 2r − 3 with
r > 1.

The main technical challenge for the study of the stability of symmetric two-spike quasi-equilibrium
patterns with regular diffusion in the semi-strong interaction limit is that one must rigorously analyze the
discrete spectrum of the following class of nonlocal eigenvalue problems (NLEP) for Φ(y) on the infinite
line −∞ < y < ∞:

L0Φ− C±(λ)a(w)
∫ ∞

−∞
b(w)Φdy = λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ . (1.4)

Here w(y) is the homoclinic of w′′−w+Q(w) = 0 for certain Q(w) with Q(0) = Q′(0) = 0, L0Φ = Φ′′−Φ+
Q′(w)Φ is the linearized operator around w, b(w) and a(w) are nonlinear functions with a(0) = b(0) = 0,
and C±(λ) are two different transcendental functions of λ, one for each of the two signs. The two different
choices of sign in (1.4) correspond to either a synchronous or an asynchronous instability of the spike
amplitudes. This latter instability is also referred to as a competition instability (cf. [31], [38]). Since
the NLEP (1.4) is non-self-adjoint and non-local, it is a difficult problem to find sufficient conditions to
guarantee that all discrete eigenvalues of (1.4) satisfy Re(λ) < 0. For simple power nonlinearities where
Q(w) = wp with p ≥ 2, a(w) = wm with m > 0, and b(w) = wr with r > 0, there are some rigorous results
for the spectrum of (1.4) for some range of the exponents p, m, and r (see the survey [40]). However, the
theory is intricate and still incomplete.

As shown for the one-spike problem in [25], the spectrum of the associated NLEP can be determined
explicitly for the sub-range of exponents p = 2r − 3 and r > 1 in the nonlinearity of (1.1). This was not
observed in previous stability analyses (cf. [39], [4], [38], [12], [37]). In this paper we extend this recent
result for the one-spike problem to the case of a symmetric two-spike quasi-equilibrium solution on the
infinite line. For the sub-range p = 2r − 3 and r > 1 of exponents, we will derive and then analyze
explicit transcendental equations for the discrete eigenvalues λ of the associated NLEP corresponding to
both the competition and synchronous instability modes. In this way, we will obtain an explicit stability
theory for symmetric two-spike quasi-equilibrium solutions of (1.1). Similar stability results are obtained
for the sub-diffusive problem (1.2).

The outline of this paper is as follows. In §2 a symmetric two-spike quasi-equilibrium solution for (1.1)
is constructed, and in §2.1 the bifurcation point for the birth of asymmetric two-spike quasi-equilibria is
calculated. In §3 a differential algebraic (DAE) system for the slow dynamics of spikes is derived for the
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regular diffusion model (1.1) and for its sub-diffusive counterpart (1.2). In §4 an NLEP characterizing
the stability on an O(1) time-scale of this solution is derived. For p = 2r − 3 and r > 1, it is shown
in §4.1 that the discrete spectrum of this NLEP can be obtained in terms of the roots of certain simple
transcendental equations. From a study of these transcendental equations in §4.2, rigorous results for
the stability and instability of symmetric two-spike quasi-equilibria for (1.1) are obtained. In §4.3, some
remarks are made about the stability properties of the corresponding sub-diffusive RD system (1.2).
Three explicit examples, each with qualitatively different phenomena, are given in §5 to illustrate the
theory. Finally, we conclude with a brief discussion in §6.

2. Two-Spike Quasi-Equilibrium Solutions on the Infinite Line

We first consider the existence of two-spike quasi-equilibria to (1.1) on the infinite line. For simplicity,
we consider a symmetric configuration for which the locations of the two spikes, with a common spike
amplitude, are at x = x0 > 0 and at x = −x0. By symmetry, we need only consider the half-range
0 ≤ x < ∞ and impose the symmetry boundary conditions ux = vx = 0 on x = 0 in (1.1). More generally,
in §2.1 below we determine the bifurcation point at which asymmetric two-spike quasi-equilibria bifurcate
off the symmetric two-spike quasi-equilibrium solution branch.

We now use the method of matched asymptotic expansions to construct a symmetric two-spike quasi-
equilibrium solution to (1.1) in the limit ε0 ≪ 1. In the inner region near x = x0 > 0, we introduce the
new variables y, V , and U , by

y = ε−1
0 (x− x0) , V (y) = v(x0 + ε0y) , U(y) = u(x0 + ε0y) .

Upon expanding U = U0 + ε0U1 + · · · and V = V0 + ε0V1 + · · · , and substituting into (1.1), we obtain
that U0 must be a constant and that V0 satisfies

V ′′
0 − V0 + g0V

p
0 = 0 , −∞ < y < ∞ , (2.1)

where g0 ≡ g(U0). When g0 > 0, there is a unique positive homoclinic solution for V0 given explicitly by

V0(y) =
w(y)

g
1/(p−1)
0

, (2.2)

where w(y) is the unique homoclinic satisfying

w′′ − w + wp = 0 , −∞ < y < ∞ ; w → 0 as |y| → ∞ ; w′(0) = 0 , w(0) > 0 . (2.3a)

The solution to (2.3a) is given explicitly by (cf. [4])

w(y) =

{(

p+ 1

2

)

sech2
(

(p− 1)

2
y

)}1/(p−1)

. (2.3b)

In the outer region, defined for |x − x0| ≫ O(ε0), we obtain to all orders in ε0 that v = 0, and that
the nonlinear term in the u-equation of (1.1) can be represented in terms of a Dirac mass as

ε−1
0 f(u)vr → f0

(
∫ ∞

−∞
[V0(y)]

r
dy

)

δ(x− x0) =
f0 br

g
r/(p−1)
0

δ(x− x0) , br ≡
∫ ∞

−∞
wrdy ,

where we have defined f0 ≡ f(U0). In this way, we obtain that the leading-order outer solution for u
satisfies

uxx − (u− ub) = − f0 br

g
r/(p−1)
0

δ(x− x0) , 0 ≤ x < ∞ ; ux(0) = 0 ; u → ub as |x| → ∞ .
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The solution for u can be written as

u = ub +
f0 br

g
r/(p−1)
0

G(x;x0) ,

where G(x;x0) is the Green’s function satisfying

Gxx −G = −δ(x− x0) , 0 < x < ∞ ; Gx = 0 on x = 0 ; G → 0 as x → ∞ . (2.4a)

The explicit solution for G(x;x0) is

G(x;x0) =

{

G(x0;x0) (coshx/ coshx0) 0 ≤ x ≤ x0 ,
G(x0;x0)e

−(x−x0) x ≥ x0 ,
G(x0;x0) =

1

2

(

1 + e−2x0
)

. (2.4b)

Then, to match inner and outer solutions for u we must set U0 = u(x0), which yields a nonlinear algebraic
equation for U0. We summarize our asymptotic result for the symmetric two-spike quasi-equilibrium
solution for (1.1) in the formal proposition as follows:

Proposition 2.1. Consider a symmetric two-spike quasi-equilibrium solution to (1.1), with spikes of a
common amplitude, and centered at x = x0 > 0 and x = −x0. Then, for ε0 → 0 this solution ve(x) and
ue(x) is given asymptotically on the range x ≥ 0 by

ve(x) ∼
1

g
1/(p−1)
0

w
(

ε−1
0 (x− x0)

)

, ue(x) ∼ ub + (U0 − ub)
G(x;x0)

G(x0;x0)
, (2.5)

where w(y) is the homoclinic of (2.3) and U0 = U0(x0) is a solution to the nonlinear algebraic equation

U0 − ub =
f0 br

g
r/(p−1)
0

G(x0;x0) , f0 ≡ f(U0) , g0 ≡ g(U0) , br ≡
∫ ∞

−∞
wr dy . (2.6)

Here G is the Green’s function satisfying (2.4). This construction is valid provided that g0 = g(U0) > 0
and x0 ≫ O(ε0). The solution is extended to x < 0 by an even reflection about x = 0.

The problem of characterizing the existence of a symmetric two-spike quasi-equilibrium solution to
(1.1) is thereby reduced to the problem of determining the solution structure to the nonlinear algebraic
problem (2.6) for different functions f(u) and g(u). This problem may have multiple solutions, a unique
solution, or no solution, depending on the range of parameters and the choices of the kinetics f(u) and
g(u). Explicit examples of the theory are given below in §5.

2.1. Bifurcation to Asymmetric Two-Spike Quasi-Equilibria

We remark that (1.1) also has asymmetric two-spike quasi-equilibrium solutions that bifurcate off the
symmetric two-spike quasi-equilibrium solution branch at certain critical values of the parameters. As
shown below in §4.2, these bifurcation points can also be found by linearizing (1.1) about the symmetric
two-spike quasi-equilibrium solution and seeking eigenvalues λ that cross into the right-half plane Re(λ) >
0 through the origin.

To investigate this issue, we now briefly outline the construction of asymmetric two-spike quasi-
equilibrium solutions for (1.1) with spikes of different amplitude that are centered at x = x0 > 0 and
x = −x0 < 0.

In the inner solution near x = x0 we have to leading-order that

y = ε−1
0 (x− x0) , u ∼ U01 , v ∼ w(y)

g
1/(p−1)
01

, g01 ≡ g (U01) ,
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with a similar analysis near x = −x0. The outer solution for u(x) now satisfies

uxx − (u− ub) = − f01 br

g
r/(p−1)
01

δ(x− x0)−
f02 br

g
r/(p−1)
02

δ(x+ x0) , −∞ < x < ∞ ; u → ub as |x| → ∞ .

(2.7)
The solution for u can be written as

u = ub +
f01 br

g
r/(p−1)
01

G∞(x;x0) +
f02 br

g
r/(p−1)
02

G∞(x;−x0) ,

where G∞(x; ξ) = e−|x−ξ|/2 is the Green’s function satisfying G∞xx−G∞ = −δ(x− ξ) on −∞ < x < ∞
with G∞ → 0 as |x| → ∞. Then, to match inner and outer solutions for u we must set U01 = u(x0) and
U02 = u(−x0), which yields the two nonlinear algebraic equations for U01 and U02 given by

M1(U01, U02) ≡ ub +
f01br

g
r/(p−1)
01

G∞(x0;x0) +
f02br

g
r/(p−1)
02

G∞(x0;−x0)− U01 = 0 , (2.8a)

M2(U01, U02) ≡ ub +
f01br

g
r/(p−1)
01

G∞(−x0;x0) +
f02br

g
r/(p−1)
02

G∞(−x0;−x0)− U02 = 0 . (2.8b)

By calculating the Jacobian of the nonlinear system in (2.8), we now determine whether the symmetric
two-spike equilibrium solution with U0j = U0 for j = 1, 2, where U0 satisfies (2.6), can undergo a
bifurcation to a pattern with spikes of different height. We evaluate the Jacobian matrix for (2.8) when
U0 = U0j for j = 1, 2 to obtain

J ≡
(

a b
b a

)

, a ≡ ∂M1

∂U01
=

∂M2

∂U02
=

1

2

(

d0 −
d1
β

)

− 1 , b ≡ ∂M1

∂U02
=

∂M2

∂U01
=

e−2x0

2

(

d0 −
d1
β

)

,

(2.9a)
where d0, d1, and β, are defined by

d0 =
f ′
0br

g
r/(p−1)
0

, d1 =
r2g′0
2g0

(

f0br

g
r/(p−1)
0

)

, β ≡ r2 − 2r . (2.9b)

The matrix J is singular when a − b = 0, with eigenvector v− = (1,−1)t, and when a + b = 0, with
eigenvector v+ = (1, 1)t. From (2.9a), this yields

d0 −
d1
β

=
2

1± e−2x0
, with eigenvector v± = (1,±1)t . (2.10)

When p = 2r − 3 and r > 2, it is shown below in Remark 3 of §4 that the two-spike symmetric quasi-
equilibrium solution loses its stability when (2.10) is satisfied. At this point an asymmetric two-spike
quasi-equilibrium solution bifurcates off the symmetric solution branch.

3. Slow Dynamics of Symmetric Two-Spike Quasi-Equilibria

For ε0 → 0, we now use the method of matched asymptotic expansions to derive a differential equation for
x0 that characterizes the slow dynamics of the two-spike quasi-equilibrium solution for (1.1) constructed
in Proposition 2.1.

In the inner region, we introduce the inner expansion and the slow time-scale σ defined by

v ∼ V0 + ε0V1 + . . . , u ∼ U0 + ε0U1 + . . . , y = ε−1
0 [x− x0(σ)] , σ = ε20t .
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Upon substituting this expansion into (1.1), we obtain that U0 is independent of y and that V0 satisfies
(2.1). For τ = O(1), we obtain at next order that U1 and V1 satisfy

L0V1 = − g′0

g
p/(p−1)
0

wpU1 −
1

g
1/(p−1)
0

w′ẋ0 , U ′′
1 = − f0

g
r/(p−1)
0

wr , (3.1)

on −∞ < y < ∞, where ẋ0 ≡ dx0/dσ. Here L0 is the local operator defined by

L0Φ ≡ Φ′′ − Φ+ pwp−1Φ . (3.2)

Since L0w
′ = 0, the solvability condition for the V1 equation yields that

(
∫ ∞

−∞
(w′)

2
dy

)

ẋ0 = −g′0
g0

∫ ∞

−∞
U1 w

pw′ dy . (3.3)

Upon integrating the right-hand side of (3.3) by parts twice, and then using the fact that U ′′
1 is an even

function by (3.1), we obtain after a short calculation that

ẋ0 =
g′0

2(p+ 1)g0

(
∫∞
−∞ wp+1 dy
∫∞
−∞(w′)2 dy

)

[U ′
1(+∞) + U ′

1(−∞)] . (3.4)

The ratio of the two integrals in (3.4) was evaluated in §2 of [13], with the result

∫∞
−∞ wp+1 dy
∫∞
−∞(w′)2 dy

=
2(p+ 1)

p− 1
. (3.5)

To calculate U ′
1(±∞), as needed in (3.4), we must match the inner expansion for U to the outer solution

for u. The outer solution for u is quasi-steady, and hence is given asymptotically by the expression for
ue given in (2.5). Therefore, the matching condition between the inner and outer solutions for u is that
U ′
1(±∞) = uex(x

±
0 ), which yields

U ′
1(±∞) = (U0 − ub)

Gx(x
±
0 ;x0)

G(x0;x0)
. (3.6)

Upon substituting (3.6) and (3.5) into (3.4), we obtain that

ẋ0 =
g′0

(p− 1)g0
(U0 − ub)

[

Gx(x
+
0 ;x0) +Gx(x

−
0 ;x0)

]

G(x0;x0)
.

Finally, we use (2.4) to calculate the required Green’s function ratio in this expression. In this way, we
obtain the following formal result:

Proposition 3.1. For ε0 → 0 and τ = O(1), consider a symmetric two-spike quasi-equilibrium solution
to the regular diffusion RD system (1.1) with spikes at x = x0 > 0 and x = −x0, and having a common
spike amplitude. Then, provided that there are no fast O(1) instabilities of the quasi-equilibrium profile,
the slow dynamics of the spike location x0(σ) with σ = ε20t satisfies the ODE

dx0

dσ
∼ − 2

p− 1

(

g′0
g0

)

(U0 − ub)
e−2x0

1 + e−2x0
= − g′0

(p− 1)g0

f0br

g
r/(p−1)
0

e−2x0 . (3.7)

Here g0 = g(U0), g′0 = g′(U0), f0 = f(U0), br ≡
∫∞
−∞ wrdy, and U0 = U0(x0) satisfies the nonlinear

algebraic equation in (2.6).
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3.1. Slow Dynamics of Symmetric Two-Spike Quasi-Equilibria with Sub-Diffusion

In this subsection we derive an ODE system for the dynamics of a two-spike quasi-equilibrium solution
for the sub-diffusive system (1.2). This analysis is an extension of that in [24], where an ODE system for
the sub-diffusive Gierer-Meinhardt (GM) model was derived.

We consider a symmetric two-spike quasi-equilibrium solution with spikes centered at x = x0(σ) > 0
and x = −x0(σ) < 0, where σ = εαt and α > 0 is the slow time-scale to be found. In the inner region
near x0, we introduce the inner coordinate y ≡ ε−γ [x− x0(σ)], and the inner expansion

V (y, σ) = v(x0 + εγy, ε−ασ) = V0 + εγV1 + . . . , U(y, σ) = u(x0 + εγy, ε−ασ) = U0(σ) + εγU1 + . . . .
(3.8)

From the definition (1.3) of the fractional derivative, it follows that if we change variables as f(t) ≡
f(ε−ασ) ≡ F (σ), the fractional derivative satisfies ∂γ

t f(t) = εγα∂γ
σF (σ). Upon using this fact, and

substituting (3.8) into (1.2), we obtain that

εγα∂γ
σ (V0 + · · · ) = V0yy − V0 + g0V

p
0 + εγ

(

V1yy − V1 + pg0V
p−1
0 V1 + g′0V

p
0 U1

)

+O(ε2γ) , (3.9a)

εγατ∂γ
σ (U0 + · · · ) = ε−2γU0yy + ε−γ (U1yy + f0V

r
0 ) +O(1) . (3.9b)

Here we have defined g0 = g(U0), g
′
0 = g′(U0), and f0 = f(U0).

Assuming that τ = O(1), and recalling that 0 < γ ≤ 1 and α > 0, we obtain to leading order from
(3.9) that U0 = U0(σ) is independent of y and that V0 is the homoclinic of (2.1) given by

V0(y, σ) =
w(y)

g
1/(p−1)
0

, (3.10)

where g0 depends on σ through U0. With y = ε−γ [x − x0(σ)] we then must calculate the term ∂γ
σV0 on

the left-hand side of (3.9a). Normally this is done by differentiating V0(y(σ), σ) with respect to the first

argument together with an application of the chain rule involving
dx0

dσ
. The derivative with respect to

the second argument is of order of magnitude smaller than the first as ε → 0. This procedure requires
care in the case of fractional derivatives and is done with the following Lemma of [24]:

Lemma 3.2. (From [24]): Let A(y(σ)) ∈ C∞ with y ≡ ε−γ [x− x0(σ)], x0 ∈ C∞ and 0 < γ < 1. Then,
in the limit ε → 0, the chain rule of differentiation is given by

∂γ
σA (y(σ)) ∼ −ε−γ2

sgn

(

dx0

dσ

) ∣

∣

∣

∣

dx0

dσ

∣

∣

∣

∣

γ

D
γ
yA(y) ,

where D
γ
yA(y) is defined by

D
γ
yA(y) ≡ sgn

(

dx0

dσ

)

1

Γ (−γ)

∫ ∞

0

{

A(y)−A

(

y + sgn

(

dx0

dσ

)

ξ

)}

dξ

ξγ+1
, (3.11)

and Γ (z) is the Gamma function.

Proof: : This is Lemma 2.1 of [24]. We repeat the proof of this result here for the convenience of the
reader. From (1.3) we get

∂γ
σA(y(σ)) = − 1

Γ (−γ)

∫ σ

0

{

A

(

x− x0(σ)

εγ

)

−A

(

x− x0(σ − ζ)

εγ

)}

dζ

ζγ+1
. (3.12)

We then define a new variable ξ in terms of ζ by

ξ ≡ ε−γ [x0(σ − ζ)− x0(σ)] . (3.13)
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Since x0 ∈ C∞, x0 can be Taylor-expanded in order to solve for ζ in terms of ξ when ε ≪ 1. We calculate

x0(σ − ζ) = x0(σ)−
dx0

dσ
ζ +

1

2

d2x0

dσ2
ζ2 − . . . ,

so that (3.13) becomes

ξ = ε−γ

(

−dx0

dσ
ζ +

1

2

d2x0

dσ2
ζ2 −+ . . .

)

.

Away from the fixed points, the series is reverted to leading order to get

ζ = −
(

dx0

dσ

)−1(

εγξ − 1

2

d2x0

dσ2
ζ2 + . . .

)

,
dx0

dσ
6= 0 ,

and, thus, by a recursive substitution into higher powers of ζ we derive that

ζ ∼ εγ
(

−dx0

dσ

)−1

ξ +O
(

ε2γ
)

.

Therefore, for ε ≪ 1, (3.12) becomes

∂γ
σA(y(σ) ∼ − ε−γ2

Γ (−γ)

(

−dx0

dσ

)−1
−∞·sgn( dx0

dσ )
∫

0

(

A (y)−A (y − ξ)
)

(

−dx0

dσ

1

ξ

)γ+1

dξ .

Finally, upon splitting this result into the two cases
dx0

dσ
≶ 0, and after changing variables to have the

upper integration bound positive, the desired result is obtained. �

In this way, we obtain for ε → 0 that

∂γ
σV0 ∼ −g

−1/(p−1)
0 ε−γ2

sgn

(

dx0

dσ

)
∣

∣

∣

∣

dx0

dσ

∣

∣

∣

∣

γ

D
γ
yw(y) +O(1) , (3.14)

where the negligible O(1) term involves fractional σ derivatives of g0. Upon substituting (3.14) into
(3.9a), we observe that we must choose the slow time-scale as α = γ+1 in order to balance terms for V1.

With this choice for the slow time-scale α, we obtain that

L0V1 = − g′0

g
p/(p−1)
0

wpU1 −
1

g
1/(p−1)
0

sgn

(

dx0

dσ

) ∣

∣

∣

∣

dx0

dσ

∣

∣

∣

∣

γ

D
γ
yw , (3.15a)

U ′′
1 = − f0w

r

g
r/(p−1)
0

, (3.15b)

where L0 is the local operator defined in (3.2). In obtaining (3.15b) from (3.9b) we neglected the fractional
time derivatives on the left-hand side of (3.9b), which is valid when τ = o(ε−γ(2+γ)). Since 0 < γ < 1,
this condition on τ holds for our assumed range τ = O(1).

Since L0w
′ = 0, the solvability condition for the V1 equation of (3.15a) yields that

sgn

(

dx0

dσ

) ∣

∣

∣

∣

dx0

dσ

∣

∣

∣

∣

γ ∫ ∞

−∞
w′

D
γ
yw dy = −g′0

g0

∫ ∞

−∞
U1 w

pw′ dy . (3.16)

Upon integrating by parts twice on the right-hand side of (3.16), and using the fact from (3.15b) that
U ′′
1 is even, we obtain that

sgn

(

dx0

dσ

) ∣

∣

∣

∣

dx0

dσ

∣

∣

∣

∣

γ ∫ ∞

−∞
w′

D
γ
yw dy =

g′0
2(p+ 1)g0

(
∫ ∞

−∞
wp+1 dy

)

[U ′
1(∞) + U ′

1(−∞)] . (3.17)

Finally, we use (3.6) to calculate U ′
1(±∞) in terms of the Green’s function of (2.4). We summarize our

result in the following formal proposition as follows:
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Proposition 3.3. For ε → 0 and τ = O(1), consider a symmetric two-spike quasi-equilibrium solution
to the sub-diffusive RD system (1.2) with spikes at x = x0 > 0 and x = −x0, and having a common spike
amplitude. Then, provided that there are no fast O(1) instabilities of the quasi-equilibrium profile, the
slow dynamics of the spike location x0(σ) with slow time-scale σ = εγ+1t satisfies the ODE

sgn

(

dx0

dσ

)
∣

∣

∣

∣

dx0

dσ

∣

∣

∣

∣

γ

= − g′0
(p+ 1)g0

h(p; γ) (U0 − ub)
e−2x0

1 + e−2x0
= − g′0

2(p+ 1)g0
h(p; γ)

f0br

g
r/(p−1)
0

e−2x0 ,

(3.18)
where U0 = u0(x0) satisfies the nonlinear algebraic equation (2.6). In (3.18), the anomaly-dependent
factor h(p; γ) is defined by

h(p; γ) ≡
(
∫ ∞

−∞
wp+1 dy

)

/

(
∫ ∞

−∞
w′(y)Dγ

yw dy

)

, (3.19)

where the derivative D
γ
y is defined in (3.11).

From (3.18), the dynamics of the spikes depends on the anomaly dependent factor h(p; γ). Some key
properties of h(p; γ), as derived in §2.1 of [24], are that

h(p; γ)

∣

∣

∣

∣

∣

x′

0>0

= h(p; γ)

∣

∣

∣

∣

∣

x′

0<0

p > 1 , 0 < γ ≤ 1 ; h(p; 1) =

∫∞
−∞ wp+1 dy
∫∞
−∞ (w′)2 dy

= 2

(

p+ 1

p− 1

)

. (3.20)

Upon using the result for h(p; 1) in (3.18) it readily follows that (3.18) recovers the result (3.7) of
Proposition 3.1 for slow spike dynamics with regular diffusion. We refer the reader to §2.1 of [24] for the
derivation of (3.20) and for the numerical method to compute h(p; γ).

In Fig. 1 we plot h(p; γ) versus γ for p = 3 and for p = 5. The reason for these special choices of
p is given below in §4, when we study the nonlocal eigenvalue problem associated with O(1) time-scale
instabilities of the quasi-equilibrium solution. For p = 3, we observe from Fig. 1 that the minimum of
h(p; γ) is obtained when γ is very close to γ = 1. However, for p = 5 the curve h(p; γ) appears to be
monotone. For γ = 1, for which h(p; 1) = 2(p+ 1)/(p− 1), h(p; 1) is a monotone decreasing function of p
with limiting value lim

p→∞
h(p; 1) = 2. The numerical results in [24] support the conjecture that h(p; γ) > 0

for all 0 < γ < 1 and p > 1.
Remark 1: The slow time scale for the evolution of the spikes is σ = εγ+1t, and, consequently, the
motion of the spikes is slower under the effect of sub-diffusion than with regular diffusion. To see this,

define ε0 = εγ so that the diffusion coefficient of v is ε20, and the spikes have speed O(ε
1+1/γ
0 ). Since

0 < γ < 1 and 1 + 1/γ > 2, this speed is slower than the speed O(ε20) found in (3.7) of Proposition 3.1
for spike motion with regular diffusion.
Remark 2: As long as 0 < γ < 1, the ODE in (3.18) comprises two separate equations, governing the

motion of the spikes according to
dx0

dσ
≶ 0. For γ = 1 the fractional operators in the definition of h(p; γ)

approach
d

dy
regardless of sgn

(

dx0

dσ

)

, and the fractional power on the left-hand side of (3.18) becomes

unity, merging the two equations into a single equation for both the leftward and rightward motion of the
spike.

4. NLEP Stability Theory of the Quasi-Equilibrium Solutions

Next, we analyze the linear stability of the symmetric two-spike quasi-equilibrium solution constructed
in Proposition 2.1. More specifically, we will determine whether it can be unstable to any O(1) time-
scale instabilities. If such instabilities are present they occur on a much faster time-scale than the slow
dynamics of the spikes. As such, in our stability analysis we will “freeze” the locations of the spikes.
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γ

h
(p
;γ

)

0 1
3

8

Figure 1. The function h(p; γ) for p = 3 (solid curve) and for p = 5 (dashed curve).

To analyze the linearized stability of the symmetric two-spike quasi-equilibrium solution we introduce
the perturbation

v = ve + eλtφ , u = ue + eλtη . (4.1)

Upon substituting (4.1) into (1.1) and linearizing, we obtain the eigenvalue problem

ε20φxx − φ+ pg(ue)v
p−1
e φ+ g′(ue)v

p
eη = λφ , (4.2a)

ηxx − (1 + τλ)η = −ε−1
0

[

f ′(ue)v
r
eη + rf(ue)v

r−1
e φ

]

. (4.2b)

For our symmetric two-spike case, we need only consider the half-line 0 < x < ∞, while imposing
either of the two boundary conditions

φx = ηx = 0 on x = 0 (symmetric) ; φ = η = 0 on x = 0 (asymmetric) . (4.3)

In particular, the imposition of φx = ηx = 0 on x = 0 implies that we are seeking instabilities that
are even in x, i.e. an in-phase or synchronous instability. In contrast, the choice φ = η = 0 on η = 0
implies that we are seeking an out-of-phase or asymmetric instability. Such an instability is also called a
competition instability, since the spike amplitudes are subject to a sign-fluctuating perturbation.

Since ve is localized near x = x0 > 0, we look for a localized eigenfunction for φ(x) in the form φ = Φ(y)

where y = ε−1
0 (x − x0). Upon using ve ∼ g

−1/(p−1)
0 w and ue ∼ U0 for x − x0 = O(ε0), we obtain from

(4.2a) that Φ(y) satisfies

L0Φ+
g′0

g
p/(p−1)
0

wpη(x0) = λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ , (4.4)

where we have labelled g′0 ≡ g′(U0). Here L0 is the local operator defined in (3.2).
To derive our NLEP we must calculate η(x0) in (4.4). Since φ is localized near x = x0, for ε0 → 0

the right-hand side of (4.2b) can be calculated in the sense of distributions by using ue ∼ U0 and

ve ∼ g
−1/(p−1)
0 w as

ε−1
0

[

f ′(ue)v
r
eη + f(ue)rv

r−1
e φ

]

→
[

η(x0)f
′
0

g
r/(p−1)
0

∫ ∞

−∞
wr dy +

rf0

g
(r−1)/(p−1)
0

∫ ∞

−∞
wr−1Φdy

]

δ(x− x0) ,
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where we have defined f ′
0 ≡ f ′(U0). In this way, we obtain that the outer approximation for η satisfies

ηxx − (1 + τλ) η = −η(x0)f
′
0 br

g
r/(p−1)
0

δ(x− x0)−
rf0

g
(r−1)/(p−1)
0

(
∫ ∞

−∞
wr−1Φdy

)

δ(x− x0) , −∞ < x < ∞ ,

(4.5)
with η → 0 as x → ∞. At x = 0, we impose either ηx(0) = 0 or η(0) = 0.

To represent the solution to (4.5) we introduce two new Green’s functions G
(+)
λ (x;x0) and G

(−)
λ (x;x0),

corresponding to synchronous and competition instabilities, respectively. For x0 > 0, they satisfy

G
(+)
λxx − (1 + τλ)G

(+)
λ = −δ(x− x0) , 0 < x < ∞ ; G

(+)
λx = 0 on x = 0 ; G

(+)
λ → 0 as x → ∞ ,

(4.6a)
and

G
(−)
λxx − (1 + τλ)G

(−)
λ = −δ(x− x0) , 0 < x < ∞ ; G

(−)
λ = 0 on x = 0 ; G

(−)
λ → 0 as x → ∞ .

(4.6b)

A simple calculation then determines G
(±)
λ (x0;x0) and the ratio G(x0;x0)/G

(±)
λ (x0;x0) as

G
(±)
λ (x0;x0) =

1

2
√
1 + τλ

(

1± e−2x0

√
1+τλ

)

,
G(x0;x0)

G
(±)
λ (x0;x0)

=
√
1 + τλ

(

1 + e−2x0

1± e−2x0

√
1+τλ

)

, (4.6c)

where we must take the principal value of
√
1 + τλ. For this branch we have Re(

√
1 + τλ) > 0, which

ensures that G
(±)
λ → 0 as x → +∞. The second result in (4.6c) for the Green’s function ratio is needed

below for the explicit evaluation of the multiplier of the nonlocal term in the NLEP.

In terms of G
(±)
λ , the solution to (4.5) is

η(x) =
η(x0)f

′
0 br

g
r/(p−1)
0

G
(±)
λ (x) +

rf0

g
(r−1)/(p−1)
0

(
∫ ∞

−∞
wr−1Φdy

)

G
(±)
λ (x) . (4.7)

We then set x = x0 in (4.7) and solve for η(x0). Finally, upon substituting η(x0) into (4.4) and re-writing
the resulting expression by using (2.6), we obtain an NLEP for Φ(y). The result is summarized formally
as follows:

Proposition 4.1. For 0 < ε0 ≪ 1, the stability on an O(1) time-scale of the symmetric two-spike
quasi-equilibrium solution to (1.1), as given in (2.5), is determined by the spectrum of the NLEP

L0Φ− χwp

(
∫∞
−∞ wr−1Φdy
∫∞
−∞ wr dy

)

= λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ . (4.8a)

Here L0 is the local operator, as defined in (3.2), and the multiplier χ = χ(λ) of the nonlocal term has
the two possible forms

χ = χ± ≡ rg′0
g0

[

f ′
0

f0
− 1

U0 − ub

G(x0;x0)

G
(±)
λ (x0;x0)

]−1

, (4.8b)

corresponding to either synchronous or competition instabilities of the spike amplitudes. In (4.8b), the
ratio of the two Green’s functions at x = x0 is given explicitly in (4.6c). Here U0 = U0(x0) is obtained
from the solution to the nonlinear algebraic problem (2.6).

The continuous spectrum for (4.8a) consists of the portion λ < −1 of the negative real axis. A
symmetric two-spike quasi-equilibrium solution to (1.1) is linearly stable on an O(1) time-scale provided
that all the discrete eigenvalues of the NLEP (4.8) satisfy Re(λ) ≤ 0. A rigorous analysis of the spectrum
of the NLEP in (4.8a) is very difficult owing to the fact that it is non-self-adjoint, non-local, and that χ
also depends on λ.

However, as shown recently in [25], the NLEP of (4.8) is explicitly solvable for the case where p = 2r−3
and r > 2. For this sub-range of exponents in the RD system (1.1), we will derive a transcendental
equation for the discrete eigenvalues of (4.8a).
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4.1. An Explicitly Solvable NLEP Problem

We first summarize some of the known spectral properties of the local operator L0 as obtained in [16]
and [4].

Lemma 4.2. (From [4]): Let p > 1 and suppose that J = J(p) is a positive integer such that J <
(p+ 1)/(p− 1) ≤ J + 1. Then, for φl ∈ H1(R), the local eigenvalue problem L0φl = νφl on R has J + 1
discrete eigenvalues given by

νj =
1

4
[(p+ 1)− j(p− 1)]

2 − 1 , j = 0, . . . , J . (4.9)

The continuous spectrum of L0 lies in the range −∞ < ν < −1.

This result is Proposition 5.6 of [4]. Notice that ν0 > 0, ν1 = 0, and νj ∈ (−1, 0) for 2 ≤ j ≤ J .
However, J = 1 when p ≥ 3, so that there are no discrete eigenvalues in the interval (−1, 0) when p ≥ 3.
The uniqueness of a positive eigenvalue was also proved in [16].

For the special case where p = 2r − 3 and r > 2, it was shown recently in [25] that φl0 ≡ wr−1 is the
principal eigenfunction of L0 associated with the unique positive eigenvalue ν0 = β ≡ r2 − 2r. For the
convenience of the reader we give the simple proof of this result.

Lemma 4.3. (From [25]): Let p = 2r − 3 and r > 2 so that p > 1. For this range of p and r, we have

L0w
r−1 = βwr−1 , where β ≡ r2 − 2r > 0 . (4.10)

Proof: We use w′′ = w − wp and (w′)2 = w2 − 2wp+1/(p+ 1) to calculate

L0w
r−1 =

(

wr−1
)′′ − wr−1 + pwp+r−2 ,

= (r − 1)(r − 2)wr−3(w′)2 + (r − 1)wr−2w′′ − wr−1 + pwp+r−2 ,

= (r − 1)(r − 2)wr−3

(

w2 − 2

p+ 1
wp+1

)

+ (r − 1)wr−2 (w − wp)− wr−1 + pwp+r−2 ,

= wr−1
(

r2 − 2r
)

+ wr+p−2

(

p− (r − 1)− 2(r − 1)(r − 2)

p+ 1

)

.

Therefore, L0w
r−1 = (r2 − 2r)wr−1 when the factor multiplying wr+p−2 vanishes. This condition yields

p(p+1) = (r−1) [2(r − 2) + (p+ 1)], which can be written as (p− (2r − 3)) (p− (1− r)) = 0. Therefore,
p = 2r − 3 or p = 1− r. Finally, we must take p = 2r − 3 for r > 2 in order to ensure that p > 1. �

By using the identity (4.10), we now show that the discrete spectrum of the NLEP in Proposition 4.1
can be found explicitly.

Lemma 4.4. Let p = 2r − 3 and r > 2, so that p > 1, and consider the NLEP

L0Φ− χwp

∫∞
−∞ wr−1Φdy
∫∞
−∞ wr dy

= λΦ , −∞ < y < ∞ ; Φ → 0 , |y| → ∞ , (4.11)

with χ = χ(λ). Then, for eigenfunctions Φ for which
∫∞
−∞ wr−1Φdy 6= 0, the discrete eigenvalues must

satisfy the transcendental equation

λ = β −
(r

2

)

χ , (4.12)

where χ = χ(λ). The remaining eigenfunctions Φ, for which
∫∞
−∞ wr−1Φdy = 0, belong to the set of

eigenfunctions of L0 consisting of the zero eigenvalue and any negative real eigenvalues.
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Proof: To establish (4.12) we use Green’s identity on wr−1 and Φ. Since L0 is self-adjoint, we integrate
by parts and use the decay at infinity to conclude that

∫∞
−∞

(

wr−1L0Φ− ΦL0w
r−1
)

dy = 0. From (4.10)
and (4.11) with p = 2r − 3 we then calculate that

0 =

∫ ∞

−∞

(

wr−1L0Φ− ΦL0w
r−1
)

dy =

(

χ

∫∞
−∞ w3r−4 dy
∫∞
−∞ wr dy

+ λ− β

)

∫ ∞

−∞
wr−1Φdy .

Therefore, for eigenfunctions for which
∫∞
−∞ wr−1Φdy 6= 0, we get

λ = β − χ

∫∞
−∞ w3r−4 dy
∫∞
−∞ wr dy

. (4.13)

To calculate the integral ratio in (4.13), we multiply w′′ −w+w2r−3 = 0 by wr−1 and L0w
r−1 = βwr−1

by w. Upon subtracting the resulting two expressions we obtain

w
(

wr−1
)′′ − wr−1w′′ + (2r − 4)w3r−4 = βwr .

Upon integrating this expression over −∞ < y < ∞ and using w → 0 as |y| → ∞, we obtain that
(2r − 4)

∫∞
−∞ w3r−4 dy = β

∫∞
−∞ wr dy. Therefore, since β = r2 − 2r, the integral ratio in (4.13) is simply

∫∞
−∞ w3r−4 dy =

(

∫∞
−∞ wr dy

)

(r/2). This yields (4.12).

Next, consider the eigenfunctions for which
∫∞
−∞ wr−1Φdy = 0. From (4.11), the facts that wr−1

is the unique and one-signed principal eigenfunction of L0, and that any eigenfunctions of the self-
adjoint operator L0 must be orthogonal, it follows that these other eigenfunctions must belong to the set
eigenfunctions of L0 corresponding to the zero eigenvalue and any negative real eigenvalues of L0. �

This result shows that when p = 2r−3 and r > 2, the zero eigenvalue and any negative real eigenvalues
of L0 remain at fixed locations in Re(λ) ≤ 0 independent of the multiplier χ of the nonlocal term.
Therefore, to analyze whether (4.11) has any eigenvalues in Re(λ) > 0, we only need to analyze the roots
of (4.12).

4.2. NLEP Stability Theory with Regular Diffusion

By combining (4.6c), (4.8b), and (4.12), we obtain explicit transcendental equations for the discrete
eigenvalues of (4.8) corresponding to either synchronous or competition instabilities. The result is as
follows.

Lemma 4.5. Let p = 2r − 3 and r > 2. Then, any discrete eigenvalue λ of (4.8) with eigenfunction
satisfying

∫∞
−∞ Φwr−1 dy 6= 0, must be a root of either of the two transcendental equations

F±(λ) = G(λ) , (4.14a)

where the + and − signs correspond to synchronous and competition instabilities, respectively. In (4.14a),
G(λ) and F±(λ) are defined by

G(λ) ≡ d0 −
d1

β − λ
, F±(λ) ≡

2
√
1 + τλ

1± e−2x0

√
1+τλ

, (4.14b)

while the λ-independent constants d0, d1, and β, are defined by

d0 ≡ f ′
0br

g
r/(2r−4)
0

, d1 ≡ r2g′0
2g0

(

f0br

g
r/(2r−4)
0

)

, β = r2 − 2r > 0 . (4.14c)

Here f0 ≡ f(U0), g0 ≡ g(U0), f
′
0 ≡ f ′(U0), g

′
0 ≡ g′(U0), br ≡

∫∞
−∞ wr dy, and U0 = U0(x0) is the solution

to the nonlinear algebraic equation (2.6). For the range of x0 with x0 > 0 for which the roots λ to (4.14b)

219



“Ward˙mmnp” — 2013/9/17 — 17:10 — page 220 — #15
i

i

i

i

i

i

i

i

Y. Nec, M. J. Ward The Stability and Dynamics of Two-Spike Patterns for a Reaction-Diffusion System

are in the stable left-half plane Re(λ) < 0, the slow two-spike dynamics (3.7) of Proposition 3.1 is valid.
In terms of d1, the dynamics (3.7) for r > 2 can be written as

dx0

dt
= − ε20d1

r2(r − 2)
e−2x0 . (4.15)

If d1 < 0 for any sub-range of 0 < x0 < ∞, the two-spike dynamics is repulsive on this sub-range.
Moreover, if d1 < 0 is defined for x0 → ∞ with a finite limiting value limx0→∞ d1 = d1∞, then for t → ∞
we obtain from (4.15) that

x0 ∼ 1

2
log

(

2ε20 t |d1∞|
r2(r − 2)

)

. (4.16)

Next, we analyze the roots of (4.14a). Our first result is for the case τ = 0.

Proposition 4.6. Let τ = 0 in (4.14). For a given x0 > 0, suppose that (2.6) has a solution U0(x0).
Then, (4.14a) has no roots in Re(λ) > 0 whenever

d1 < 0 and d0 < F±(0) < G(0) = d0 −
d1
β

. (4.17)

As a consequence, the NLEP (4.8) has no unstable eigenvalues at x0 when (4.17) holds. If (4.17) holds
for all x0 on some sub-range of 0 < x0 < ∞, there are no O(1) time-scale instabilities of the two-spike
quasi-equilibrium solution on this sub-range. Consequently, the slow repulsive spike dynamics (4.15) is
valid on the sub-range of x0 > 0 for which (4.17) holds.

Proof: We first note that since F±(λ) depends on the product τλ, we have F±(λ) = F±(0) =
2/(1± e−2x0) when τ = 0. We first prove that (4.14a) has no real positive roots. Since d1 < 0, then
G(λ) in (4.14b) satisfies G′(λ) > 0 for all λ > 0 with G(λ) → +∞ as λ → β−. In addition, G(λ) → −∞
as λ → β+ with G(λ) → d0 as λ → ∞. Therefore, when d0 < F±(0) < G(0), then (4.14a) has no real
positive roots.

Next, we show that there are no complex-valued roots to (4.14a) in Re(λ) > 0. This is done by
using a winding number criterion to count the number N of roots of (4.14a) in Re(λ) > 0. We define
K±(λ) = F±(0) − G(λ), and note that G(λ) has a simple pole in Re(λ) > 0 at λ = β. We then
calculate the winding number of K±(λ) over the counterclockwise contour consisting of the imaginary
axis −iR ≤ Im(λ) ≤ iR and the semi-circle ΓR, given by |λ| = R > 0, for −π/2 ≤ argλ ≤ π/2. Since
K±(λ) ∼ F±(0) as |λ| → ∞ on ΓR, it follows that there is no change in the argument of K± over ΓR as
R → ∞. By using the argument principle, together with K±(λ) = K±(λ), we obtain that

N = 1 +
1

π
[argK±]ΓI

, (4.18)

where [argK±]ΓI
denotes the change in the argument of K± along the semi-infinite imaginary axis ΓI =

iλI , 0 ≤ λI < ∞, traversed in the downwards direction.
To calculate [argK±]ΓI

we set λ = iλI in K±(λ) = F±(0) − G(λ) and separate real and imaginary
parts to get

K±(iλI) = KR±(λI) + iKI±(λI) ; KR±(λ) ≡ F±(0)− d0 +
d1β

β2 + λ2
I

, KI±(λ) ≡
d1λI

β2 + λ2
I

.

From (4.17), we calculate K±(0) = F±(0) − G(0) < 0 and K±(i∞) = F±(0) − d0 > 0. Moreover,
KI±(λI) < 0 for all λI > 0 since d1 < 0. Therefore, it follows that [argK±]ΓI

= −π. This gives N = 0
from (4.18), so that the NLEP (4.8) has no unstable eigenvalues. �

The second result is for the case τ ≥ 0 and guarantees the existence of a positive real root of (4.14a).
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Proposition 4.7. Let τ ≥ 0 in (4.14) and suppose d1 < 0. For a given x0 > 0, suppose that (2.6) has a
solution U0(x0) at which either

F+(0) > G(0) = d0 −
d1
β

or F−(0) > G(0) = d0 −
d1
β

. (4.19)

Then, for any τ ≥ 0, the NLEP (4.8) has an unstable real positive eigenvalue at the given x0 > 0.

Proof: For any τ ≥ 0, it is readily shown from (4.14b) that F±(λ) is a monotone increasing function of
λ in λ > 0. In addition, for d1 < 0 we have G(λ) → +∞ as λ → β−. Therefore, if F±(0) > G(0), (4.14a)
must have a root in 0 < λ < β. �

Remark 3: The NLEP has a zero eigenvalue for all τ ≥ 0 when F±(0) = G(0). This coincides precisely
with the bifurcation point, given in (2.10) of §2, for which an asymmetric two-spike quasi-equilibrium
solution bifurcates off the symmetric two-spike quasi-equilibrium solution branch.

The next result establishes sufficient conditions for the existence of a Hopf bifurcation of the two-spike
quasi-equilibrium solution as τ is increased.

Proposition 4.8. For a given x0 > 0, suppose that (2.6) has a solution U0(x0) at which (4.17) holds.
Then, both the synchronous and competition modes must each undergo a Hopf bifurcation at some (min-
imum) critical values τH+(x0) and τH−(x0), respectively. For 0 < τ < τHm = min(τH+, τH−) there are
no roots of (4.14a) in Re(λ) > 0.

Proof: Suppose that (4.17) holds. Then, as shown in the proof of Proposition 4.6, (4.14a) has no roots
in Re(λ) > 0 when τ = 0. In contrast, for τ > 0 sufficiently large, we now show for either the synchronous
or competition mode, i.e. for either choice of sign in (4.14a), that (4.14a) has exactly two roots on the
sub-range 0 < λ < β of the positive real λ axis. This is established by readily verifying that F±(λ) in
(4.14b) satisfies F ′

±(λ) > 0 and F ′′
±(λ) < 0 with F ′

±(λ) → +∞ as τ → ∞ for any λ > 0. Since G′(λ) > 0
and G′′(λ) > 0 on 0 < λ < β, it follows that when F±(0) < G(0) the transcendental equation (4.14a)
has exactly two roots on 0 < λ < β for either the synchronous or competition mode. Finally, we notice
that a root of (4.14a) cannot enter Re(λ) > 0 by crossing through the origin as τ is increased. Therefore,
it follows from continuity that, for either the synchronous or competition mode, there must be critical
values τH± of τ > 0 for which (4.14a) has a complex conjugate pair of pure imaginary roots, with the
property that Re(λ) < 0 for all τ < min(τH+, τH−). �

Although Proposition 4.8 proves the existence of a Hopf bifurcation for the NLEP (4.8), it does not
prove that τH± are uniquely determined. All that one can guarantee is that there must be an odd number
of transversal crossings of the imaginary axis Re(λ) = 0 as τ ranges over 0 < τ < ∞.

Our final result rules out the possibility of attractive two-spike dynamics that are stable to O(1)
time-scale instabilities when τ > 0.

Proposition 4.9. For a given x0 > 0, suppose that (2.6) has a solution U0(x0). Then, if d1 > 0 at the
given x0, the NLEP (4.8) has an unstable real eigenvalue for any τ > 0 at x0. However, if τ = 0, d1 > 0,
and G(0) < F±(0) < d0, then the NLEP (4.8) has no eigenvalues in Re(λ) > 0.

Proof: When d1 > 0, we conclude that G(λ) in (4.14b) satisfies G′(λ) < 0 on 0 < λ < β with G(λ) → −∞
as λ → β−. On the range λ > β, we have G′(λ) < 0 with G(λ) → +∞ as λ → β+ and G(λ) → d0 as
λ → ∞. Therefore, if τ = 0 and G(0) < F±(0) = 2/(1± e−2x0) < d0, there are no roots of (4.14a) on
the positive real axis. By a slight modification of the winding number proof of Proposition 4.6, it readily
follows that there are no complex-valued eigenvalues in Re(λ) > 0 when τ = 0 and G(0) < F±(0) < d0.
However, since F ′

±(λ) > 0 for all λ > 0 and F±(λ) → ∞ as λ → ∞ for any τ > 0, it follows that (4.14a)
must have a root in λ > β regardless of the initial value F±(0). Therefore, if d1 > 0 at a given x0, the
NLEP (4.8) must have an unstable real eigenvalue for any τ > 0. �
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4.3. NLEP Stability Theory with Sub-Diffusion

In this subsection we make some remarks on the stability of a two-spike quasi-equilibrium solution to the
sub-diffusive RD system (1.2).

In the context of fractional differential equations, perturbations of a steady-state solution do not grow
exponentially in time with a constant growth rate. Therefore, the linearized “eigenvalue problem” no
longer has its classical meaning. Instead, it should be regarded as an asymptotic theory of perturbations
that evolve exponentially in time to leading order as

v ∼ ve + eλtφ(x) , u ∼ ue + eλtη ; λ(t) ∼ λ(0) + εγλ(1)(t) + · · · . (4.20)

For convenience, we shall refer to λ(0) as an “eigenvalue” for the linearization of the sub-diffusive system
(1.2).

Upon substituting (4.20) into (1.2), and then collecting the leading order terms, we obtain the following
expression involving the fractional derivative:

S ≡ e−λ(0)t d
γ

dtγ
eλ

(0)t = − 1

Γ (−γ)

∫ t

0

1− e−λ(0)ζ

ζγ+1
dζ . (4.21)

In the limit t → ∞ the integral converges if and only if Re(λ(0)) ≥ 0. In the sub-diffusive case with

0 < γ < 1 and λ(0) > 0 the derivative
dγ

dtγ
eλ

(0)t diverges exponentially at t → ∞, but the factor

exp(−λ(0)t) makes the expression finite. However for λ(0) < 0 the derivative
dγ

dtγ
eλ

(0)t decays only

algebraically, and with the exponential factor exp(−λ(0)t) the expression is divergent. Therefore, since
we require that Re(λ(0)) ≥ 0, we can only study the onset of an instability, i.e. the limit Re(λ(0)) → 0+,
but are unable to track any eigenvalues in the left half of the complex plane. This is summarized in the
following lemma.

Lemma 4.10. In the limit t = σε−(γ+1) ≫ 1 with ε → 0 and σ ∼ O(1) the asymptotic relation

S ≡ e−λ(0)t d
γ

dtγ
eλ

(0)t ∼ λ(0)γ +O
(

εγ(γ+1)
)

,

holds if and only if Re(λ(0)) ≥ 0.

The proof of this result follows from a detailed contour integration and was given in Lemma 3.1 of [24]
(and also Lemma 2.16 of [25]). From this Lemma, it follows that the spectrum of the NLEP associated
with the linearization of (1.2) is determined by the roots of (4.14) where λ is now replaced by λ(0)γ .

The results above in §4.2 for the roots of (4.14) can then be readily used to infer stability or instability
for the sub-diffusive case. More specifically, if we write λ = |λ| exp(ıφ) with φ = arg λ ∈ (−π, π], then
the map λ(0)γ = λ yields that

λ(0) = |λ|1/γeıφ/γ , (4.22)

where the constraint −π < φ/γ < π must hold in order to remain on the principal branch in the λ(0) plane.
From Lemma 4.10, the derivation of the NLEP for the sub-diffusive system required that Re(λ(0)) ≥ 0
and |λ(0)| ≫ O(ε). Therefore, in terms of the spectral λ plane associated with the regular NLEP, the
sub-diffusive system will be unstable if the regular NLEP (4.8) has an eigenvalue in the wedge-shaped
domain of instability defined by

−πγ

2
≤ φ ≤ πγ

2
, |λ| ≫ O(ε) . (4.23)

This subset of the right half-plane Re(λ) ≥ 0 becomes narrower as γ decreases, and concentrates on the
positive real axis in the λ-plane as γ → 0+. A schematic plot of the wedge of instability is shown in
Fig. 2.
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Re(λ)

Im
(λ
)

|λ| ∼ o(ε)

πγ/2

πγ

0

0

Figure 2. Admissibility and instability region in the λ plane ( shaded ) corresponding
to the asymptotics validity constraint |λ| ∼ O(ε) or larger. The dashed lines show the
region conforming to the principal branch.

In this way, we conclude that if the regular NLEP admits a positive real eigenvalue λ∗ > 0, this
eigenvalue must lie in the wedge of instability for the sub-diffusive NLEP for any γ in 0 < γ < 1. Such
an eigenvalue λ(0) = (λ∗)1/γ > 0 then yields an exponentially growing perturbation (to leading order)
to the symmetric two-spike quasi-equilibrium solution of (1.2). Consequently, the instability results of
Propositions 4.7 and 4.9 above, which result from a positive real eigenvalue of the regular diffusion NLEP,
still hold for the sub-diffusion problem for all γ in 0 < γ < 1.

Next, we consider Hopf bifurcations associated with the sub-diffusive RD system (1.2) under the
conditions (4.17) on d0 and d1. The key observation is that an unstable eigenvalue of the regular NLEP
only generates an instability for the sub-diffusive NLEP when it lies within the wedge of instability (4.23).
As remarked above, this wedge of instability becomes narrower as γ decreases, and concentrates on the
positive real axis in the λ-plane as γ → 0. The anomaly-dependent Hopf bifurcation thresholds for the
competition and synchronous instability modes, labelled by τH±γ , are computed numerically from the
implicit condition that

arg λ =
πγ

2
, (4.24)

which involves the eigenvalue path λ± = λ±(τ) of the roots of (4.14) with Re(λ) > 0 and Im(λ) > 0.
The eigenvalue path, for each choice of sign, crosses the border of the wedge of instability at the point
where the condition (4.24) is satisfied. In this sense, we conclude that the sub-diffusive RD system (1.2)
undergoes an oscillatory instability at a larger value of τ than for the case of regular diffusion.

A more explicit result for the sub-diffusive Hopf bifurcation under the condition (4.17) is difficult to
obtain because of two factors: the possible non-uniqueness of values τH± of τ for which (4.14) has a
complex conjugate pair of imaginary eigenvalues, and the possible non-monotonicity of Re(λ±(τ)) and
Im(λ±(τ)) as τ increases. More specifically, it is theoretically possible that an eigenvalue path can first
enter the wedge of instability at some critical value of τ , then leave at some later value, only to re-appear
within the wedge for some sufficiently large value of τ . An explicit result for the sub-diffusive Hopf
bifurcation is available under the assumption that, for each choice of sign, there is a unique value τH±
of τ for which (4.14) has a complex conjugate pair of imaginary eigenvalues, and that the corresponding
eigenvalue path λ±(τ) satisfies a monotonicity condition in the sense that Re(λ±(τ)) is increasing, while
Im(λ±(τ)) is decreasing, as τ increases beyond τH±. Under these assumptions, we can readily conclude
for all γ in 0 < γ < 1, and for each of the two possible signs, that the Hopf bifurcation threshold τHγ±
for the sub-diffusive system (1.2) must lie in the interval τH± < τHγ± < τt±. Here τH± is the Hopf
bifurcation threshold for the regular diffusion case, and τt± is the value of τ where the complex conjugate
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eigenvalue pair for the regular NLEP merges onto the positive real axis. This critical value τt± is the
unique value of τ where the curves F±(λ) and G(λ) in (4.14) intersect tangentially at some point λ∗ on the
positive real axis under the condition (4.17). In particular, τHγ± −→ τH± as γ −→ 1− and τHγ± −→ τt±
as γ −→ 0+.

5. Three Examples of the Theory

Three explicit examples, each with qualitatively different behaviour, are now given to illustrate our main
stability and instability results for RD systems of the form (1.1) with regular diffusion.

GM Model: We first consider the GM model where g(u) = u−q, f(u) = u−s, ub = 0, with q > 0. Then,
from the definitions in (4.14c), we calculate d0, d1, and G(0), as

d0 = − 2s

1 + e−2x0
, d1 = − qr2

1 + e−2x0
, G(0) ≡ 2

1 + e−2x0
(ξ + 1) , ξ ≡ qr

2r − 4
−(s+1) . (5.1)

Since d1 < 0, the two-spike dynamics is repulsive for all x0 and the Propositions 4.6–4.8 apply. From the
nonlinear algebraic equation (2.6), we determine U0 as U−ξ

0 = br(1 + e−2x0)/2 where br =
∫∞
−∞ wr dy.

For τ = 0, the criterion d0 < F+(0) < G(0) from (4.17) for stability with respect to synchronous
perturbations is satisfied when −2s < 2 < 2(ξ + 1). We conclude that the synchronous mode is stable
when s > −1 and ξ > 0.

With regards to the competition mode when τ = 0, the stability criterion of (4.17) holds when both
F−(0) > d0 and F−(0) < G(0) are satisfied. When s > −1, the first inequality holds for all x0 > 0, but
the second inequality holds only if coth(x0) < ξ + 1. This implies that for τ = 0, we have stability with
respect to the competition mode when x0 > x0−, where

x0− ≡ 1

2
log

(

2 + ξ

ξ

)

, ξ ≡ qr

2r − 4
− (s+ 1) > 0 . (5.2)

For τ = 0, we conclude that a two-spike quasi-equilibrium solution to the GM model is stable when the
inter-spike separation exceeds 2x0−, where x0− > 0 is given in (5.2).

From Proposition 4.7, a two-spike quasi-equilibrium solution is unstable for all τ ≥ 0 when 0 < x0 <
x0−. For the range x0 > x0−, Proposition 4.8 proves that both the synchronous and competition modes
must undergo a Hopf bifurcation as τ is increased. At each x0 on x0 > x0−, the Hopf bifurcation
threshold τHm(x0) is the minimum of these two thresholds. For r = 3, q = 2, and s = 0, we use (4.14a)
to numerically compute the Hopf bifurcation thresholds τH± and the imaginary parts λIH± > 0 of the
corresponding eigenvalue for both the competition and synchronous modes as a function of x0. The
results are shown in Fig. 3. Our numerical results strongly suggest that, for either mode of instability
and for any x0 > x0−, there is a unique value of τ at which there is a Hopf bifurcation. From Fig. 3, we
observe that the synchronous mode sets the Hopf bifurcation threshold τHm(x0) for a large range of x0,
but that there is some range of x0 where the Hopf bifurcation threshold τH− for the competition threshold
is marginally lower than that of the synchronous mode. For x0 large, the two thresholds approach the
common Hopf bifurcation threshold of a one-spike solution. When x0 > x0− and τ < τHm(x0), the slow
repulsive spike dynamics (4.15) is valid, and we obtain

dx0

dt
=

ε20q

r − 2

e−2x0

1 + e−2x0
, (5.3)

for an initial value satisfying x0(0) > x0−.
Generalized GS Model: Next, we consider a generalization of the Gray-Scott model where p = r = 3,
ub = 1, f = −u, and g = Au with A > 0. For this choice, the nonlinear algebraic equation (2.6) for U0

reduces to
√
U0 (1− U0) =

(

b3/A3/2
)

G(x0;x0) where b3 ≡
∫∞
−∞ w3 dy. Since b3 =

√
2π, we can write the
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Figure 3. Hopf bifurcation results for the GM model with q = 2, r = 3, and s = 0. Left
panel: Plot of the Hopf bifurcation thresholds τH− and τH+ for the competition mode
(solid curve) and the synchronous mode (heavy solid curve), respectively, as a function
of x0 on x0 > x0−. On the range 0 < x0 < x0−, where the competition mode is unstable
due to a positive real eigenvalue for any τ ≥ 0, only the synchronous instability threshold
τH+ exists (dotted curve). Right panel: Plot of the imaginary parts of the corresponding
eigenvalue λIH± versus x0 for both modes, with the same labelling as in the left panel.
Observe that λIH− → 0 as x0 → x+

0−.

nonlinear algebraic equation for U0 = U0(x0) as

H(U0) ≡
√

U0 (1− U0) =
2

3
√
3

(Am

A

)3/2

where A = Am(x0) ≡
[

3
√
6π

4

(

1 + e−2x0
)

]2/3

. (5.4)

Since A > 0, any root to (5.4) must satisfy 0 < U0 < 1. Moreover, on 0 < U0 < 1 the function H(U0)
attains its maximum value of 2/(3

√
3) at U0 = 1/3, with H′(U0) > 0 on 0 < U0 < 1/3 and H′(U0) < 0

on 1/3 < U0 < 1. Therefore, it follows that the graph of U0 versus A has a saddle-node bifurcation
structure, with two solutions U0± for U0 in the range 0 < U0− < 1/3 < U0+ < 1 when A > Am(x0), and
no solutions when A < Am(x0).

Since Am(x0) is a decreasing function of x0, there are three cases that need to be considered in the
construction of the two-spike quasi-equilibrium solution.

Case I: A < Am(∞). In this case, A < Am(x0) for all x0 > 0, so that (5.4) has no solutions for any
x0 > 0. Therefore, on this range of A there are no symmetric two-spike quasi-equilibria.

Case II: Am(∞) < A < Am(0). In this case, (5.4) has two solutions only when x0 > x0e, where

x0e ≡ −1

2
log

(

4

3
√
6π

A3/2 − 1

)

> 0 . (5.5)

Therefore, in this case a two-spike quasi-equilibrium solution exists only when the spikes are sufficiently
well-separated. A graphical representation of this case is shown in the left panel of Fig. 4.

Case III: A > Am(0). Then, (5.4) has two solutions for all x0 > 0.
In terms of any roots U0± of (5.4), the amplitudes v±(0) of the two possible spikes at x0, as obtained

from (2.5), are

v±(0) =
w(0)
√

AU0±
, w(0) =

√
2 . (5.6)

Therefore, a root U0− on 0 < U0− < 1/3 generates a “large” amplitude spike, whereas U0+ on 1/3 <
U0+ < 1 generates a small amplitude spike.
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Figure 4. Left panel: Graphical representation of the solution to (5.4) for Case II
of the generalized Gray-Scott model where Am(∞) < A < Am(0) and A = 4.20. The
heavy solid curve is H(U0) while the top, middle, and bottom, dotted horizontal lines are
the right-hand side of (5.4) when x0 = 0.15, x0 = x0e ≈ 0.3553 and x0 = 2, respectively.
Only when x0 > x0e are there two roots to (5.4). Right panel: Plot of the competition
instability threshold x0− (heavy solid curve) and the existence threshold x0e (solid curve)
versus A for a two-spike pattern. Here x0− is the unique root of B(x0) = 0 in (5.8), and
x0e is given in (5.5). When the initial spike location x0(0) satisfies x0(0) > x0− and
τ > 0 is below a Hopf bifurcation threshold, the two-spike quasi-equilibrium solution
exhibits slow dynamics.

Next, we will consider the stability properties of the quasi-equilibrium solutions for Case II and Case

III. To do so, we use (4.14c) to calculate d0, d1, and G(0) as

d0 = − 2(1− U0)

U0 (1 + e−2x0)
< 0 , d1 = − 9(1− U0)

U0 (1 + e−2x0)
< 0 , G(0) = (1− U0)

U0 (1 + e−2x0)
> 0 , (5.7)

where U0 is any solution to (5.4).
We first consider the synchronous mode. Suppose that x0 > x0e for Case II and x0 > 0 for Case III.

Then, since d0 < 0 and F+(0) > 0, Propositions 4.6 and 4.7 prove that the synchronous mode is stable
for τ = 0 when F+(0) < G(0), and is unstable for any τ ≥ 0 when F+(0) > G(0). Upon using (5.7),
we conclude that we have stability for τ = 0 when 2 < (1− U0) /U0 and instability for all τ ≥ 0 when
2 > (1− U0) /U0. Therefore, the synchronous mode is unstable for all τ ≥ 0 for the small amplitude
spike where 1/3 < U0 < 1, but is stable when τ = 0 for the large amplitude spike corresponding to
0 < U0 < 1/3.

Next, we consider the competition mode when 0 < U0 < 1/3. Suppose that x0 > x0e for Case II

and x0 > 0 for Case III. From Propositions 4.6 and 4.7, the competition mode is stable for τ = 0
when F−(0) < G(0) and is unstable for any τ ≥ 0 when F−(0) > G(0). From (5.7), the condition
F−(0) < G(0) is satisfied when cothx0 < (1− U0)/(2U0). We conclude that a large amplitude two-spike
quasi-equilibrium solution is stable for τ = 0 when B(x0) < 0, and is unstable for all τ ≥ 0 when
B(x0) > 0, where B(x0) is defined by

B(x0) ≡
1

2
log (κ(U0) + 1)− 1

2
log (κ(U0)− 1)− x0 , κ(U0) ≡

(1− U0)

2U0
. (5.8)

Here U0 = U0(x0) on 0 < U0 < 1/3 satisfies (5.4).
For Case II, we now show that B(x0) = 0 has a unique root on x0e < x0 < ∞. To prove this, we note

that as x0 → x+
0e, U0 → 1/3

−
and κ(U0) → 1+. Thus, B(x0) → +∞ as x0 → x+

0e. Moreover, as x0 → ∞,
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we have B(x0) → −∞. Therefore, by the intermediate value theorem there is a root to B(x0) = 0 in
x0 > x0e. Furthermore, from (5.8) we calculate B′(x0) as

B′(x0) = −2κ′(U0)U
′
0

κ2 − 1
− 1 .

Since κ′(U0) = −1/(2U2
0 ) < 0 and U ′

0(x0) < 0 on 0 < U0 < 1/3, then B′(x0) < 0. Thus, B(x0) = 0 has a
unique root x0− with x0− > x0e. The proof that there is a unique root x0− for B(x0) = 0 in x0 > 0 for
Case III follows from the facts that B(0) > 0, B(x0) → −∞ as x0 → ∞, and B′(x0) < 0 for x0 > 0. In
the right panel of Fig. 4 we plot the numerically computed existence threshold x0e and the competition
instability threshold x0− versus A.

In summary, our main conclusions from Propositions 4.6–4.8 are as follows. Case I: There are no
two-spike quasi-equilibrium solutions when A < Am(∞). Case II: Let A satisfy Am(∞) < A < Am(0).
Two different symmetric two-spike quasi-equilibrium solutions exist only when x0 > x0e, where x0e is
defined in (5.5). The solution with the small spike amplitude is unstable for all τ ≥ 0 to a synchronous
instability of the spike amplitude. On the range x0e < x0 < x0−, where x0− is the unique root of (5.8),
the quasi-equilibrium solution with the large spike amplitude is unstable to a competition instability
for all τ ≥ 0. On the range x0 > x0−, the large amplitude two-spike quasi-equilibrium solution is
stable when τ = 0 and both the competition and synchronous modes undergo a Hopf bifurcation at some
τ = τH− > 0 and τ = τH+ > 0 respectively. For A = 4.0, we use (4.14a) to numerically compute τH± and
the imaginary parts λIH± > 0 of the corresponding eigenvalue for both the competition and synchronous
modes as a function of x0. The numerical results shown in Fig. 5 suggest that, for any x0 > x0− and for
either mode of instability, there is a unique value of τ where a Hopf bifurcation occurs. From Fig. 5, we
observe that the synchronous mode sets the Hopf bifurcation threshold τHm(x0) for intermediate values
of x0 with x0 > x0−, and that the thresholds for the synchronous and competition modes are essentially
indistinguishable for x0 > 1.0. Case III: Let A > Am(0). The same qualitative stability results hold as
in Case II, provided we simply define x0e = 0.

When there are no O(1) time-scale instabilities, the slow spike dynamics, as obtained from (4.15) and
(5.7), is

dx0

dt
=

ε20
1 + e−2x0

(

1− U0

U0

)

,

where U0(x0) on 0 < U0 < 1/3 satisfies (5.4).
Generalized GM Model: Finally, we consider a generalization of the GM model where p = r = 3,
ub = 0, f = 1, and g = u−1 + α, where α > 0 is a parameter. This choice for the nonlinearities is
closely related to the example in §5.2 of [5] where the prototypical GM nonlinearities with p = r = 2 was
considered. In [5] the slow spike dynamics was analyzed, but no NLEP stability analysis was undertaken.
For our slightly different choice p = r = 3 of exponents we are able to provide this stability theory.

For this example, the nonlinear algebraic equation (2.6) for U0 = U0(x0) is

C(U0) ≡
(

U
−1/3
0 + αU

2/3
0

)

=
[√

2πG(x0;x0)
]2/3

, G(x0;x0) ≡
1

2

(

1 + e−2x0
)

. (5.9)

The function C(U0) has a global minimum on U0 > 0 at the point U0m = 1/(2α), with C′(U0) > 0 for
U0 > U0m and C′(U0) < 0 for 0 < U0 < U0m. The minimum value is Cmin = C(U0m). Since the right-hand
side of (5.9) is a decreasing function of x0, there are three cases to be considered.

Case I:
[√

2πG(0; 0)
]2/3

< Cmin, which holds when α > αmax, where

αmax =
2π2

(

21/3 + 2−2/3
)3 . (5.10)

In this case (5.9) has no solutions for any x0 > 0, and so there are no symmetric two-spike quasi-equilibria.
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Figure 5. Hopf bifurcation results for the GS model with A = 4.0, which corresponds
to Case II since 3.218 ≈ Am(∞) < A < Am(0) ≈ 5.101. Left panel: Plot of the
Hopf bifurcation thresholds τH− and τH+ for the competition mode (solid curve) and
the synchronous mode (heavy solid curve), respectively, as a function of x0 on x0 >
x0− ≈ 0.5946. On the range 0.4758 ≈ x0e < x0 < x0−, where the competition mode is
unstable due to a positive real eigenvalue for any τ ≥ 0, only the synchronous instability
threshold τH+ exists (dotted curve). Right panel: Plot of the imaginary parts of the
corresponding eigenvalue λIH± versus x0 for both modes, with the same labelling as in
the left panel. Observe that λIH− → 0 as x0 → x+

0− and λIH+ → 0 as x0 → x+
0e.

Case II:
[√

2πG(∞;∞)
]2/3

< Cmin <
[√

2πG(0; 0)
]2/3

, which holds for α on the range αmax/4 <
α < αmax. Then, (5.9) has two solutions U0± with 0 < U0− < U0m and U0m < U0+ < ∞ only when x0

satisfies 0 < x0 < x0e, where

x0e = −1

2
log

(√
2

π
C3/2
min − 1

)

, Cmin ≡ α1/3
(

21/3 + 2−2/3
)

. (5.11)

There are no two-spike quasi-equilibria when x0 > x0e, and a one-spike equilibrium solution does not
exist. A graphical illustration of this case is shown in Fig. 6. This qualitative behaviour, whereby a
two-spike quasi-equilibrium pattern does not exist when the spikes are too far apart, is in direct contrast
to Case II for the generalized GS model, considered above, where the two-spike pattern exists only when
the spikes are sufficiently well-separated.

Case III: Cmin <
[√

2πG(∞;∞)
]2/3

, which holds for α < αmax/4. Then, (5.9) has two solutions U0±
with 0 < U0− < U0m and U0m < U0+ < ∞ for any x0 > 0.

To determine the stability properties of the quasi-equilibrium solutions for Case II and Case III, we
first use (4.14c) to calculate d0, d1, and G(0) as

d0 = 0 , d1 = − 9

(1 + αU0) (1 + e−2x0)
< 0 , G(0) = 3

(1 + αU0) (1 + e−2x0)
> 0 , (5.12)

where U0 is any solution to (5.9).
We first consider the synchronous mode on the range 0 < x0 < x0e for Case II and on x0 > 0 for Case

III. Then, since d0 = 0 and F+(0) > 0, Propositions 4.6 and 4.7 show that the synchronous mode is stable
for τ = 0 when F+(0) < G(0), and is unstable for any τ ≥ 0 when F+(0) > G(0). Upon using (5.12), it
follows that the two-spike quasi-equilibrium solution is stable for τ = 0 when 0 < U0 < U0m = 1/(2α)
and is unstable for all τ ≥ 0 when U0 > U0m.
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Figure 6. Graphical representation of the solution to (5.9) forCase II of the generalized
GM model where αmax/4 < α < αmax and α = 1. The heavy solid curve is C(U0) while
the top, middle, and bottom, dotted horizontal lines are the right-hand side of (5.9) when
x0 = 0.40, x0 = x0e ≈ 0.887 and x0 = 2, respectively. Only when x0 < x0e are there two
roots to (5.9).

Next, consider the competition mode on the range 0 < U0 < U0m. Suppose that x0 < x0e for Case

II and x0 > 0 for Case III. From Propositions 4.6 and 4.7, the competition mode is stable for τ = 0
when F−(0) < G(0), and is unstable for any τ ≥ 0 when F−(0) > G(0). From (5.12), the condition
F−(0) < G(0) is satisfied when cothx0 < 3/[2(1 + αU0)]. This motivates introducing D(x0) defined by

D(x0) ≡
1

2
log (κ(U0) + 1)− 1

2
log (κ(U0)− 1)− x0 , κ(U0) ≡

3

2(1 + αU0)
. (5.13)

On the range 0 < U0 < U0m, where U0(x0) satisfies (5.9), we conclude that a two-spike quasi-equilibrium
solution is stable for τ = 0 when D(x0) < 0, and is unstable for all τ ≥ 0 when D(x0) > 0.

In contrast to the case of the generalized GS model (see equation (5.8)), the function D(x0) is not
guaranteed to be monotone decreasing. As such, we will consider Case II and Case III separately.

For Case III, where α < αmax/4 ≈ 0.731 and a two-spike quasi-equilibrium solution exists for all
x0 > 0, it is easily shown that D(0) > 0 and D(x0) → −∞ as x0 → +∞. Therefore, D(x0) = 0 has
a root x0− > 0. Our numerical results given in the left panel of Fig. 7 show that this root x0− to
D(x0) = 0 is unique. Therefore, for x0 > x0− and τ below a Hopf bifurcation threshold, the two-spike
quasi-equilibrium exhibits slow dynamics. From (4.15) and (5.12), this slow dynamics is characterized by

dx0

dt
=

ε20
(1 + αU0)

e−2x0

(1 + e−2x0)
, (5.14)

where U0(x0) on 0 < U0 < 1/(2α) satisfies (5.9). On the range 0 < x0 < x0e, the two-spike quasi-
equilibrium solution is unstable for all τ ≥ 0.

For Case II, where 0.731 ≈ αmax/4 < α < αmax ≈ 2.924, a two-spike quasi-equilibrium solution exists
only when 0 < x0 < x0e, where x0e is given in (5.11). We calculate that x0e → 0 as α → 2.924−, while
x0e → +∞ as α → 0.731+. For this case, we have D(0) > 0, but D(x0) → +∞ as x0 → x−

0e. This latter
limit follows from the facts that U0 → U−

0m and κ(U0) → 1+ as x0 → x−
0e. Our numerical computations

of the roots of D(x0) = 0 show for α > 0.778 that D(x0) > 0 for all x0 in 0 < x0 < x0e. Therefore, on
0.778 < α < 2.924, a two-spike quasi-equilibrium solution is unstable for all τ ≥ 0 (see Fig. 7). However,
as also shown in Fig. 7, there is a narrow range 0.731 < α < 0.778, where D(x0) < 0 on some intermediate
range 0 < x0−l < x0 < x0−r < x0e of x0.
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Figure 7. Plot of α versus the competition instability threshold x0− (heavy solid curve)
and the existence threshold x0e (solid curve) given in (5.11). The existence threshold is
defined only on 0.731 = αmax/4 < α < αmax ≈ 2.924. The threshold(s) x0− are the roots
of (5.13). For α < αmax/4 ≈ 0.731, x0− is unique and the two-spike pattern is unstable
for all τ ≥ 0 when x0 < x0−, and is stable for τ = 0 when x0 > x0−. On the narrow
range 0.731 = αmax/4 < α < 0.778, there are two roots to (5.13). These roots are shown
more clearly in the right panel where we display a zoom of the left panel on this range.
Since D(x0) < 0 between these roots, the two-spike pattern is stable for τ = 0 on this
range of x0, and is unstable for any τ ≥ 0 for x0 outside this range. For α > 0.778,
D(x0) > 0 on 0 < x0 < x0e, and a two-spike quasi-equilibrium solution is unstable for
all τ ≥ 0.

Therefore, when 0.731 < α < 0.778, it is only on this intermediate range of x0 that a two-spike
quasi-equilibrium solution will exhibit slow spike dynamics for τ ≥ 0 sufficiently small. For an initial
location x0(0) = x00 within this range, the slow dynamics is given by the repulsive interaction (5.14)
and, consequently, x0 increases slowly in time. However, as t increases, eventually x0 exceeds the upper
endpoint x0−r of this range, and the two-spike pattern becomes unstable to a fast O(1) time-scale
competition instability. This instability, which results from the slow passage of x0 above the stability
threshold x0−r, corresponds to a dynamically triggered bifurcation event. Our stability theory for Case

II, where a one-spike solution does not exist, shows how the two-spike quasi-equilibrium solution loses its
stability before x0 reaches the existence threshold x0e. The full numerical computations in §5.2 of [5] of
a closely related RD system show that the amplitudes of the two spikes become very large and unequal
as t increases, with the RD system eventually exhibiting a finite time blow-up phenomena at later times.

6. Discussion

We have characterized the existence, slow dynamics, and linear stability of a symmetric two-spike quasi-
equilibrium solution to the class of RD systems with regular diffusion (1.1) on the infinite line. A similar
analysis has been done for the corresponding sub-diffusive system (1.2). This analysis is an extension of
the results obtained in [25] for one-spike solutions. Although the construction of these symmetric two-
spike quasi-equilibria and their associated slow dynamics was done for arbitrary p ≥ 2 and r > 1, for the
linear stability theory we considered only the sub-range p = 2r− 3 and r > 2 of exponents for which the
determination of the discrete spectrum of the associated NLEP can be reduced to the problem of locating
the roots of certain relatively simple transcendental equations in the eigenvalue parameter. There are
two such transcendental equations, which depend on the two possible modes of instability, consisting of
either a synchronous instability or a symmetry-breaking (competition) instability of the spike amplitudes.
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These transcendental equations involve two key parameters d0 and d1 related to the specific choices of
the nonlinearities f(u) and g(u) in (1.1) and (1.2).

There are two further directions that would be of interest to investigate. Firstly, in the context of an
explicitly solvable NLEP, it would be interesting to characterize explicitly delayed bifurcation effects on
the exchange of stability of localized pulses that results either from the intrinsic slow drift of the pulse
locations or from slowly varying extrinsic control parameters, such as τ or the length of the domain.
Although the study of delayed bifurcation effects, and in particular delayed Hopf bifurcations, in the
context of ODE models is well-advanced, there are only very limited analytical results of this nature in
a genuine PDE context. One main theoretical obstacle for an analysis of delayed bifurcations in PDE’s
is to be able to locate accurately the spectrum of the linearization for the problem with “frozen” control
parameter. In the context of RD systems in the semi-strong limit with an explicitly solvable NLEP, this
spectrum is readily available. Secondly, it would be interesting to investigate whether more general, other
than power-law, nonlinearities can also lead to an explicitly solvable NLEP’s. Results in this direction
are given in [32].
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