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Abstract. The stability of a one-spike solution to a general class of reaction-diffusion (RD)
system with both regular and anomalous diffusion is analyzed. The method of matched asymp-
totic expansions is used to construct a one-spike equilibrium solution and to derive a nonlocal
eigenvalue problem (NLEP) that determines the stability of this solution on an O(1) time-scale.
For a particular sub-class of the reaction kinetics, it is shown that the discrete spectrum of this
NLEP is determined in terms of the roots of certain simple transcendental equations that involve
two key parameters related to the choice of the nonlinear kinetics. From a rigorous analysis of
these transcendental equations by using a winding number approach and explicit calculations,
sufficient conditions are given to predict the occurrence of Hopf bifurcations of the one-spike
solution. Our analysis determines explicitly the number of possible Hopf bifurcation points as
well as providing analytical formulae for them. The analysis is implemented for the shadow
limit of the RD system defined on a finite domain and for a one-spike solution of the RD system
on the infinite line. The theory is illustrated for two specific RD systems. Finally, in parameter
ranges for which the Hopf bifurcation is unique, it is shown that the effect of sub-diffusion is to
delay the onset of the Hopf bifurcation.
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1. Introduction

In the singularly perturbed limit, many two-component reaction-diffusion (RD) systems allow for the
existence of steady-state, or time-dependent, spatially localized solutions. In this class of solutions, spike
patterns are those where one or both of the solution components concentrate, or localize, at certain points
in the domain. For the situation where only one of the two solution components is localized, the spikes
are said to exhibit semistrong interactions. In this semi-strong interaction limit, over the past decade
there have been many studies of the stability and dynamics of spike-type patterns in a one-dimensional
domain for specific reaction-diffusion systems, including the Gierer-Meinhardt (GM) model (cf. [39], [12],
[13], [5], [8], [14], [38], [37], [36], [31], [7]), the Gray-Scott (GS) model (cf. [3], [4], [20], [15], [31], [1]),
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the Schnakenberg model (cf. [30],[9]), and more recently, the Brusselator model (cf. [34]), [35]) and a
reaction-diffusion model of urban crime (cf. [17]).

In these studies, a wealth of different analytical techniques have been used such as the method of
matched asymptotic expansions, Lyapanov-Schmidt reductions, geometric singular perturbation theory,
the study of nonlocal eigenvalue problems, and renormalization methods. In a multi-dimensional domain,
there is also a growing literature on the stability and dynamics of localized spots (see [2] and the references
therein), but the results and available analytical techniques are to a large extent rather different in nature
than for the 1-D case.

Although there is now much analytical theory for the existence, stability, and dynamics of spike
patterns in specific RD systems in 1-D, much less is known about how the results can extend to more
general classes of RD systems. In this direction, there have been a few studies on the slow dynamics of
pulses in a class of RD systems (cf. [6], [28], [41]). However, to date, there has been no comprehensive
study of the stability of the pulse solutions in these more general systems. The main technical challenge
is that for the stability analysis one must rigorously analyze the discrete spectrum of the following class
of nonlocal eigenvalue problems (NLEP) for &(y) on the infinite line —oo < y < oo:

Lo® — C()\)a(w)/ b(w)Pdy = A\, —00 <y < 00; & —0 as |y — 0. (1.1)
Here w(y) is the homoclinic of w”’ —w+Q(w) = 0 for certain @Q(w) with Q(0) = Q'(0) =0, Lo® = "' — D+
Q' (w)® is the linearized operator around w, b(w) and a(w) are nonlinear functions with a(0) = b(0) = 0,
and C()) is a transcendental function of A. Since this NLEP is non-self-adjoint and non-local, it is very
difficult to find sufficient conditions for which all discrete eigenvalues of (1.1) satisfy Re(A) < 0. For
simple power nonlinearities where Q(w) = w? with p > 2, a(w) = w™ with m > 0, and b(w) = w" with
r > 0, there are some rigorous results for the spectrum of (1.1) (see the survey [40]), but the theory is
intricate and still incomplete.

Within this context, the main goal of this paper is to characterize analytically the stability of a one-
spike solution to a class of reaction-diffusion systems with either regular or sub-diffusion for which the
spectrum of the associated NLEP can be found explicitly. The class of reaction-diffusion systems with
regular diffusion that we will consider is formulated as

1
Vi = ERVpe — v+ g(u)v? TUE = Ugy + (up — u) + g—f(u)v’" . (1.2)
0

Here ¢g < 1, up, > 0 is a constant, p > 2, r > 1, and the properties of g(u) and f(u) are given below.
Since (1.2) is posed on an infinite domain, by scaling we can set the diffusivity of u to unity (as we have
done). The sub-diffusive counterpart of (1.2) is

0] v = ey — v + g(u)ov?, T U = Uy + (up —u) + 7 fu)o", (1.3)

where the anomaly exponent v is on the range 0 < v < 1. In (1.3), the definition of the sub-diffusive
operator as applied to a function h(t) is (see [24])

dY 1 L h(t) — h(t —¢)
0= e

Sub-diffusion has been observed in nature and in particular in biological systems, where diffusion is
often hindered due to crowding effects of the medium. For a survey of anomalous diffusion and fractional
calculus see [27], [19], and [26]. In the study of the stability of spatially uniform equilibria of RD
systems with anomalous diffusion, using both dynamical systems method and Fourier transform analysis,
somewhat counter-intuitive stability characteristics have been reported (cf. [11], [29], [10], [23], [22], [33])).
However, much less is known about the stability of localized structures in the presence of sub-diffusion.
For the case of super-diffusion, the stability and dynamics of an interface with a piecewise linear kinetics

ac, 0<y<l1. (1.4)
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has been studied in [21]. More closely related to this work is the recent study of the stability and dynamics
of spike patterns for a sub-diffusive GM model (cf. [24]) where g(u) = v~ ¢ and f(u) =« "% in (1.3).

In this paper we show that the spectrum of the NLEP associated with (1.2) can be determined explicitly
for the sub-range of exponents where p = 2r — 3 with r > 2. This parameter range was not observed in
previous stability analyses (cf. [39], [5], [38], [37], [13], [36]). Recently, the specific case p = r = 3 was
observed and used in [17] to solve explicitly the NLEP associated with the stability of hot-spot patterns
for an RD system of urban crime. For this new sub-range p = 2r—3 of exponents with r > 2, we will derive
an explicit transcendental equation for the discrete eigenvalues A that governs the stability of a one-spike
solution for (1.2) on an O(1) time-scale. From a detailed analysis of the roots of this transcendental
equation by graphical considerations, a winding number approach and analytical manipulations, we will
obtain an explicit and rigorous stability theory for one-spike equilibrium solutions of (1.2) for general
f(u) and g(u). It is then shown that this stability analysis is easily extended to incorporate the effect of
sub-diffusion in (1.3).

We remark that for a one-spike solution to (1.2) on the infinite line, the translation-invariance mode
A = 0 is always an eigenvalue in the spectrum of the linearization. This is the only “small” eigenvalue
in the spectrum of the linearization. As such, our NLEP stability theory will completely determine the
linearized stability properties of a one-spike equilibrium solution for (1.2) on the infinite line. However,
in the more general context of one- or multi-spike patterns on a finite domain, a separate analysis is
typically required to determine additional stability thresholds regarding the small eigenvalues of order
O(g3) in the spectrum of the linearization. Explicit calculations of these small eigenvalues, and their
associated stability thresholds, have been done for some specific RD systems such as the GM (cf. [13]),
the GS (cf. [16]), and the Brusselator (cf. [34]) RD models. However, such results are not currently
available for general RD systems. The exponent set restriction p = 2r —3 and r > 2 in (1.2), which allows
for an explicitly solvable NLEP, does not aid in the calculation of the small eigenvalues associated with
a multi-spike pattern of (1.2) on a finite domain.

In previous studies for the GM RD model, either a functional-analytic approach coupled to a numerical
discretization of a BVP (cf. [37]) or an approach based on numerical computations of certain complicated
hypergeometric functions (cf. [8]) was used to determine the spectrum of the NLEP and the Hopf bifur-
cation threshold for 7. To date, as discussed in §6 of [37], with the exception of the GM shadow problem
(cf. [38]), there have been no rigorous results (without computer assistance) proving the existence of a
unique Hopf bifurcation threshold for the GM model. For the specific case p = 2r — 3 and r > 2 of the
GM model, for which the spectrum of the NLEP is explicitly available, our theory is able to provide
rigorous results for the uniqueness of the Hopf bifurcation threshold. In addition, our results prove the
uniqueness of the Hopf bifurcation threshold for the more general system (1.2) under certain conditions
on f and g.

The outline of this paper is as follows: In §2 we analyze the existence of a one-spike solution to (1.2)
in the corresponding shadow limit where the RD system reduces to a PDE coupled to an ODE (see [38]
for the shadow GM system). We then derive an NLEP that determines the stability of this solution on
an O(1) time-scale. In contrast to the case of a one-spike solution on the infinite line where A = 0 is
in the spectrum of the linearization, the shadow problem admits an exponentially small in ¢y eigenvalue
not captured by NLEP theory. As such, our NLEP analysis only provides conditions to ensure the
metastability of a one-spike solution of the shadow problem. In §2.1 we show that the discrete spectrum
of the associated NLEP is explicitly available for the special case where p = 2r — 3 and r > 2. In §2.2
rigorous metastability and instability results are given, and an explicit formulae for the unique Hopf
bifurcation threshold of 7 is provided. The theory is illustrated for two specific RD systems in §2.3.
In §2.4 it is shown how to easily extend these results to the case of sub-diffusion. In §3 we extend the
analysis of §2 to consider the existence and stability of a one-spike solution to (1.2) on the infinite line.
The stability analysis is undertaken for the case p = 2r — 3 for which the NLEP is solvable. Rigorous
and explicit results are given to predict the occurrence of Hopf bifurcations in terms of the bifurcation
parameter 7 for general f(u) and ¢g(u). Finally a brief concluding discussion is given in §4.
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2. NLEP Stability Theory for the Shadow System

In this section, we consider the limiting system obtained by letting D — oo in the following class of
reaction-diffusion system defined on a finite domain:

Vp = Vg — v+ g(u)v? x| <1; v, =0 on z==1, (2.1a)
1
Tup = Dugy + (up —u) + — f(u)o"™; |z] <1; uy =0 on x==l. (2.1b)
€o
Without loss of generality we have taken the domain to have length two. The limiting system for

D — oo, called the shadow system, is the nonlocal problem for v = v(z,t) and u = wu(t) given by (see
[38], [12] for the shadow GM system)

Uy = EaUzz — U+ g(u)o? |z] <1; vy =0 on z==I1, (2.2a)
du 1 !
- — " d. 2.2
T =—(u Ub)+250f(u)11v da (2.2b)

The sub-diffusive counterpart of this shadow problem is

07 v = Mgy — v + g(u)v?, lz] < 1; v, =0 on =441, (2.3a)
dmu 1 ! .
T%:—(u—ub)—i—gf(u)/_lv dx, (2.3b)

where the fractional time-derivatives are defined by (1.4).

In this section we study the metastability properties of a one-spike equilibrium solution centered at
2 =0 to (2.2). The theory is then extended to treat the sub-diffusive shadow problem (2.3). It is readily
shown that this equilibrium solution of (2.2) is given asymptotically for e — 0 by

go_l/(p_l)w (x/eo) , ue ~ Uy, (2.4)

Ve ~
where w(y) > 0 is the unique homoclinic solution of
w' —w4+wP =0, —oco<y<oo; w—0 as |yl — oo; w'(0)=0, w(0)>0, (2.5a)

which is given explicitly by (cf. [5])

ot = { (2ot (252 )V s

In addition, we readily obtain from the steady-state of (2.2b) that Uy satisfies the nonlinear algebraic
equation
fO b'r

Up—up = —F—,
296‘/(17*1)

fo=f(Uo), 90 = g(Uo) br = / w"dy. (2.6)
Remark 2.1. The problem of determining the existence of a one-spike equilibrium solution to (2.2) is
reduced to the problem of determining the solution structure to the nonlinear algebraic problem (2.6) for
different functions f(u) and g(u). This problem may have multiple solutions, a unique solution, or no
solution, depending on the range of parameters and the choices of the kinetics f(u) and g(u). Explicit
examples of the theory are given below in §2.3.

To determine the metastability properties of this solution for the regular diffusion problem (2.2), we
look for a localized eigenfunction in the form

v = v, + MNP (x/e) | u = u, + e,
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where 7 is a constant. By linearizing (2.2), we obtain that

90
—1
gg/ (p—1)

(1+7A\)n = % [fén (/_11 vl d:c> +7fo </_11 v D (1 /e0) dxﬂ , (2.7b)

where Lg is the local operator defined by

Lo® + wPn=A0, —oo<y<oo; & —0 as |yl — oo, (2.7a)

Lod =" — D+ puP'd. (2.8)

Next, we substitute v, from (2.4) into the two integrals in (2.7b), and then solve (2.7b) for n. Upon
substituting the result for n into (2.7a) we obtain, after re-expressing the result using (2.6), the following
nonlocal eigenvalue problem (NLEP) governing O(1) time-scale instabilities of the shadow problem (2.2).

Proposition 2.2. For 0 < ¢y < 1, the linearized metastability properties of the one-spike equilibrium
solution of the shadow problem (2.2) is determined by the spectrum of the NLEP

LO@—pr< >:)\§Z5, —00 <y < 00; b —0 as |yl — . (2.9a)

7 wrdy
Here Ly is the local operator, as defined in (2.8), and the multiplier x of the nonlocal term is given by

_ g [fé_ (HM)T'

- LT (2.9b)

fo Up—wp

Remark 2.3. The continuous spectrum for (2.9a) consists of the portion A < —1 of the negative real
axis. A one-spike solution to the shadow problem (2.2) is metastable, i.e. is linearly stable on an
O(1) time-scale, provided that all discrete eigenvalues of the NLEP (2.9) satisfy Re(A) < 0. A rigorous
analysis of the spectrum of the NLEP is very difficult owing to the fact that it is non-self-adjoint and
that y also depends on \. Rigorous results for the spectrum of the NLEP associated with the GM model
corresponding to g(u) = u~? and f(u) = u~* for specific ranges of the exponents p and r were given
in [39], [38], [37], and [13]. However, to date, there are no rigorous results for the spectrum of (2.9)
for arbitrary exponents p > 1 and r > 1. Although the NLEP determines O(1) time-scale instabilities,
there is also the possibility of a very weak translational instability resulting from an exponentially small
eigenvalue of the form A\ = O(e~¢/€0), where ¢ > 0. This eigenvalue arises from the interaction of the
tail of the spike with the boundaries of the domain (see [12] for an analysis of these instabilities for the
shadow GM model). We will not consider these instabilities here. Thus, if all discrete eigenvalues of
the NLEP (2.9) satisfy Re(A\) < 0, we say that the one-spike solution is stable on an O(1) time-scale, or
equivalently, is metastable.

Next, we show that the NLEP in (2.9) is explicitly solvable when p = 2r — 3 and r > 2. This fact
was not observed in the previous stability analyses. For this sub-range of exponents, we will derive
a transcendental equation for the discrete eigenvalues of (2.9). The resulting equation is then readily

analyzed to provide detailed metastability and instability results for a one-spike equilibrium solution of
the shadow problem (2.2).

2.1. An Explicitly Solvable NLEP Problem

Lemma 2.4. (From [18]): Consider the local eigenvalue problem Log, = v¢; on R for ¢, € H*(R). This
problem admits the eigenvalues vy > 0, v1 =0, and v; < 0 for j > 1. The eigenvalue vy is simple, and
the corresponding eigenfunction ¢;9 has one sign.
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Thus, there is exactly one unstable eigenvalue vy > 0 for the infinite-line local eigenvalue problem. By
solving this local eigenvalue problem in terms of certain hypergeometric functions, a more explicit result
for the spectrum of Ly was obtained in [5].

Lemma 2.5. (From [5]): Let J = J(p) be a positive integer such that J < (p+1)/(p—1) < J + 1.
Then, for ¢; € H*(R), the local eigenvalue problem Log; = vgy on R has J + 1 discrete eigenvalues given
by

v= o+ ) i1, =0, (210)

The continuous spectrum of Lg lies in the range —oo < v < —1, with v real.

This result is Proposition 5.6 of [5]. Notice that vy > 0, v1 = 0, and v; € (—1,0) for 2 < j < J.
However, when p > 3, then J = 1, and there are no discrete eigenvalues in the interval (—1,0).

For the special case where p = 2r — 3 and r > 2, we now show that ¢, = w" ! is the principal
eigenfunction of L associated with the unique positive eigenvalue vy = 8 = r% — 2r.

Lemma 2.6. Let w satisfy w” — w + wP = 0 with p > 1, and let Ly be the local operator Lo¢ =
¢" — ¢+ pwP~to. Then, when p=2r —3 and r > 2, we have

Low" ' = w1, B=r2—2r>0. (2.11)
Proof. We use w” = w — w? and (w')? = w? — 2wP™/(p + 1) to calculate

- —1\/ — —
Lowr 1 _ (’LUT 1) —w" 1+pwp+r 27

= (=1 —2w 3 W)+ (r — D" 2w” —w" " + pwPT2,

=(r—-1(r—-2uw 3 <w2 - wp+1) +(r—Dw" % (w —wP) —w" " pwPTT2,
p

Therefore, Low" ! = (r? — 2r)w”~! when the factor multiplying w""P~2 vanishes. This implies that
p(p+1) = (r—1)[2(r — 2) + (p + 1)], which can be factored as (p — (2r — 3)) (p — (1 — r)) = 0. Therefore,
p=2r—3orp=1-—r. Since p > 1 is needed, the only relevant root is p = 2r — 3 for r > 2. ]

Remark 2.7. In the analysis of [17] of the stability of hot-spot patterns for a reaction-diffusion model
of urban crime it was observed for p = 3 that Low? = 3w?. This identity, which allowed for an explicit
determination of the spectrum of an NLEP in [17], corresponds to the special case r = 3 in Lemma 2.6.
Therefore, our result in Lemma 2.6 is a generalization of this result of [17].

Remark 2.8. Since the derivation of the result in Lemma 2.6 relies on the determination of an explicit
first integral of the ground-state problem w” — w + w? = 0, this result is essentially a 1-D result and
cannot be extended to the study of radially symmetric homoclinic spots of Aw — w + wP = 0 in two
spatial dimensions. However, the framework of Lemma 2.6 can be extended to treat non power-law
nonlinearities. In particular, upon replacing vP and v" in (1.2) with more general functions Q(v) and
h(v), the resulting NLEP is explicitly solvable provided that a certain differential relation between Q(v)
and h(v) is satisfied. Details of this extension are given in [32].

By using the identity (2.11), we now show that the discrete spectrum of the NLEP in Proposition 2.2
can be found explicitly.

Lemma 2.9. Let p=2r —3 and r > 2, so that p > 1, and consider the NLEP
[ wtedy
Lo® — yuP —%—— = \D, —00 < Y < 00} d—0, |yl — o0, (2.12)
oo wrdy
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with x = x(\). Then, for eigenfunctions ® for which ffooo w' P dy # 0, the discrete eigenvalues must
satisfy the transcendental equation

A=f— (g)x (2.13)

The remaining eigenfunctions @, for which ffooo w'lddy = 0, are simply the eigenfunctions of Lg
corresponding to the zero eigenvalue and any negative real eigenvalues.

Proof. To establish (2.13) we use Green’s identity on w”~! and ®. Since Ly is self-adjoint, we integrate
by parts and use the decay at infinity to conclude that ffooo (w’"*lLoQj — @LowT’l) dy = 0. From (2.11)
and (2.12) with p = 2r — 3 we then calculate that

o0 Sy w3’l‘—4d o0
0= / (w''Lo® — PLow" ") dy = (Xf‘":joy +A— B) / w" P dy .
o o wrdy oo

Therefore, for eigenfunctions for which ffooo w'@dy # 0, we get

A=0—x (2.14)

ffooo w” dy

To calculate the integral ratio in (2.14), we multiply w” — w + w?" =2 = 0 by w"~! and we multiply
Low™ ! = pw"~! by w. Upon subtracting the resulting two expressions we obtain

w (wr_l)” —w T + (2r — HwP T = pw”.

Upon integrating this expression over —oo < y < oo and using w — 0 as |y| — oo, we obtain that
(2r —4) [7_w3=*dy = B [7°_w" dy. Therefore, since 3 = r* — 2r, the integral ratio in (2.14) is simply
[ wrtdy = (f_oooo w” dy) (r/2). This yields (2.13).

Next, consider the eigenfunctions for which ffooo w'tPdy = 0. From (2.12), the facts that w"*
is the unique and one-signed principal eigenfunction of Ly, and that any eigenfunctions of the self-

adjoint operator Ly must be orthogonal, it follows that these other eigenfunctions must belong to the set
eigenfunctions of Ly corresponding to the zero eigenvalue and any negative real eigenvalues of Lg. |

This result shows that when p = 2r—3 and r > 2, the zero eigenvalue and any negative real eigenvalues
of Lo remain at fixed locations in Re(A) < 0 independent of the multiplier x of the nonlocal term.
Therefore, to analyze whether (2.12) has any eigenvalues in Re(A) > 0, we only need to analyze the roots
of (2.13).

2.2. NLEP Stability Theory for the Shadow Problem: Regular Diffusion

For the explicitly solvable case of the NLEP where p = 2r — 3 and r > 2, we obtain that the discrete
eigenvalues of the NLEP (2.9) are the roots of (2.13) where y is given in (2.9b). By using the expressions
(2.9b) for x and (2.6) for Uy, we can write (2.13) more conveniently as follows:

Proposition 2.10. For p = 2r—3 and r > 2, the discrete eigenvalues A of the NLEP in Proposition 2.2
are the roots of the transcendental equation

2(1+7)) = G(\ zdo—L, 2.15a
8-
where dy and dy are defined by
_ Jobr _ (9% Jobr
o= e 1= g )\ e ) (2.15b)

Here 3 = 1% —2r > 0.
61



Y. Nec, M. J. Ward An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike

Remark 2.11. In terms of dy and dy, the multiplier y of the NLEP in (2.9a) is

2d;
do —2(1+7)\)] '

= 2.16
X=17 (2.16)
Notice that for the parameter range where dy > 2, the multiplier x of the NLEP is not analytic in
Re(A) > 0, but rather has a simple pole at A\ = (dy — 2)/(27) > 0.

By determining conditions for which (2.15a) has real positive roots, we readily obtain some simple
sufficient conditions, valid for any 7 > 0, for the instability of the equilibrium spike solution. Below, we
shall refer to the roots of (2.15a) and the eigenvalues of the NLEP in Proposition 2.2 interchangeably.

Proposition 2.12. Suppose that either

(I) di <0 and G(0) < 2; or (II) dy >0 and G(0) > 2; or (III) dy >0 and do < 2.

(2.17)
Then, for any 7 > 0, (2.15a) has at least one root with A\ > 0 and X real. Thus, the NLEP has at least
one unstable real eigenvalue and the equilibrium spike solution for (2.2) is unstable.

Proof. The proof is immediate. For (I), since di < 0, we have that G'(A\) > 0 for all A # 8. Then, since
2(1+7)) > G(\) at A=0, and G(\) = +o00 as A — 7, by the intermediate value theorem (2.15a) must
have a root in 0 < A < 8. For (1), since dy > 0 then G'(A\) < 0 for all A # 3. Thus, if G(0) > 2, (2.15a)
has a unique positive root in 0 < A < . For (I1T), since G(0) < 2 and G'(\) <0 on 0 < A < f3, there is
no root to (2.15a) on 0 < A < 3. However, since G(\) — 400 as A — S with G’(\) < 0, (2.15a) must
have a positive root in A > g for any 7 > 0. (]

The next result is for the case dy < 0 and G(0) > 2 for two different ranges of dy.

Proposition 2.13. Suppose that di < 0, G(0) > 2 and dy < 2. Then, when 7 > 7 > 0, (2.15a) has
exactly two real positive roots located on the sub-range 0 < A < B, while for 0 < T < 7, there are no
positive roots to (2.15a) in X > 0. Here 7, > 0 is given uniquely by

dq dq (2—do)s
=___ % = 1o 145 =%)P
=B N2 MEB+ S T4

<B. (2.18)

Neat, if di < 0 and dg > 2, so that necessarily G(0) > 2, then (2.15a) has two roots in A\ > [3 when
0 <7 <74, where

d d
= 71 >\+Eﬁ+ !

(2 —do)B
(Wil 1414+ 2200

2 dy d;

> 8. (2.19)

For 7o < 17 <1, (2.15a) has no positive real roots. Finally, for 7 > 1, (2.15a) has two real positive
roots on 0 < A < 3.

Proof. The proof is a simple calculus exercise. We first let 7 > 0 and suppose that d; < 0, G(0) > 2 and
dp < 2. Since d; < 0, then G()) is an increasing and convex function of A on 0 < A < 8, with G(A\) — +oo
as A — B7. Since 2(1 + 7)) < G(A\) at A = 0 and 2(1 4+ 7)) is monotone increasing in 7 for each fixed
A > 0, it follows that (2.15a) will have exactly two real roots in 0 < A < 8 for 7 sufficiently large, and
no real roots when 7 is sufficiently small. The threshold value of 7 occurs when 2(1 + 7)) is tangent to
G()M). This condition for tangency is that

d, . d
B=A’ o B=N
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has a solution on 0 < A < . Since G(0) = dy — dy/8 > 2, it is readily shown that 0 < A\, < 8. This
yields (2.18). When dy < 2, we have 2(1 + 7)) > G(A) for all A > /3, and hence (2.15a) has no real roots
in A > . A graphical illustration of this result is shown in the left panel of Fig. 1.

Next, we let 7 > 0 and suppose that d; < 0, G(0) > 2 and dy > 2. For 7 = 0 there is a root to (2.15a)
located at A = 8+ d1/(2 —dp) > 8. For 7 > 0 sufficiently small, a new second real positive root to
(2.15a) emerges from A = co. It is readily shown that two roots merge into a double root on the interval
B < A < oo at the tangency point where 7 = 7. At the second tangency point where 7 = 7 > 7,
two new real positive roots to (2.15a) on 0 < A < [ emerge, and they persist for all 7 with 7 > 7. A
graphical illustration of this result is shown in the right panel of Fig. 1. ]

1.0

A A

FIGURE 1. Left panel: Plot of G(X) (solid curve) and 2(1 + 7A) for 7 = 1.0 (heavy solid
line) and for 7 = 0.2 (dotted line) versus A for dg = 1.5, dy = —3.0, and S = 3.0, for
which G(0) = 2.5 > 2. There are two roots to (2.15a) when 7 = 1.0 and none when
7 = 0.2. Right panel: Plot of G(\) (solid curve) and 2(1 4+ 7A) for 7 = 1.0 (heavy solid
line) and for 7 = 0.1 (dotted line) versus A for dyg = 4.0, dy = —1.0, and S = 3.0, for
which G(0) ~ 4.33 > 2. There are two roots to (2.15a) when 7 = 1.0 and when 7 = 0.1.

Propositions 2.12 and 2.13 characterize the real positive roots of (2.15a), and suggest that a Hopf
bifurcation may be possible for the case where d; < 0, dy < 2, and G(0) > 2. More specifically,
Proposition 2.13 suggests that a complex conjugate pair of eigenvalues merges onto the positive real axis
when 7 = 73 > 0, raising the possibility that a Hopf bifurcation occurred for some 7 = 75 > 0 with
TH < Tt.

To investigate this possibility, we first determine whether (2.15a) can have any pure imaginary roots.
To this end, we set A = iA\; and 7 = 7 in (2.15a), where A\; > 0. Upon separating the real and imaginary
parts of the resulting expression, we obtain a pure imaginary complex conjugate pair of eigenvalues when
G(0) > 2, d; <0 and dy < 2, given by

TH:@;*;O), Afﬂ\/ﬁ(d;h_mlﬂ\/w- (2.20)

Notice that the extra condition dy < 2 is in fact needed. As dy — 27, then \; — 400 and 7, — 0.
Therefore, in the case where G(0) > 2, d; < 0, and dy < 2, we have a pure imaginary complex conjugate
pair of roots to (2.15a).

Next, we use a winding number criterion to establish a Hopf bifurcation result and to count precisely
the number N of roots of (2.15a) in Re(A\) > 0. We define F(A) = 2(1 + 7A) — G()), and note that
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G(X) has a simple pole in Re(A) > 0 at A = 3. Next, we calculate the winding number of F(\) over the
counterclockwise contour consisting of the imaginary axis —¢R < ImA < iR and the semi-circle I'p, given
by [A| = R >0, for —7/2 < argA < /2. For 7 > 0, we have that F(\) ~ 27\ as |A\| = oo on I'g, so that
the change in the argument of F over I'r as R — oo is w. By using the argument principle, together
with F(X) = F(\), we obtain for 7 > 0 that

3 1
N = 3 + - [arg]—'}n , (2.21)
where [arg F| r, denotes the change in the argument of F along the semi-infinite imaginary axis I't = iAr,
0 < A7 < oo, traversed in the downwards direction. From a direct calculation of (2.21) we obtain the
following main result:

Proposition 2.14. Let N denote the number of roots to (2.15a) in Re(\) > 0. Suppose that dy < 0,
G(0) > 2, and dy < 2. Then, N =2 for 7 > 1y, and N = 0 for 7 < Ty, where Ty is given in (2.20).
Hence, the equilibrium spike solution for (2.2) undergoes a Hopf bifurcation at 7 = 7. Alternatively,
when dy < 0, G(0) > 2 but dy > 2, there is no Hopf bifurcation and N =2 for all 7 > 0.

Proof. On I't we set A = iA; with A; > 0. We use (2.15a) to separate the real and imaginary parts of
F(iAr) as

F(irr) = Fr(Ar) +iFr(Ar) FrA\r)=2—do+ _hb Fr(Ar) = 2X; (T T dl) ,

| Fx 25+ X0)
(2.22)

We first consider the case dyp < 2. Then, for any 7 > 0, we get Fr(A;) = 2 —dp > 0 and F;(A\;) = 27A;
as A\; — +oo so that Fr/Fr — 400 as A\ — +o0. In addition, we calculate Fr(0) =2 —do +di /8 =
2—-G(0) < 0 and F;(0) = 0. Moreover, for dy < 2, there is a unique point A} in 0 < A\; < oo where
Fr(A1) = 0, given by A\ = 81/(G(0) —2)/(2 — do). At this point we calculate F;(\}) = 2X\i (1 — 7u),
where 7y is given in (2.20). Thus, F;(A}) > 0 for 7 > 7 and F;(A\}) < 0 if 7 < 7. Consequently,
larg F]p, = m/2 when 7 > 7y and [arg F|, = —37/2 when 7 < 7p7. Thus, from (2.21), we conclude that
N=0forTr<7g and N =2 for 7 > 7g.

Next, we suppose that dy > 2. In this case, Fr(A;) < 0 for all \; > 0 and Fr(0) =2—dy+dy1 /8 < 0.
Therefore, [arg |, = m/2 for all 7 > 0, and (2.21) gives N = 2 for all 7 > 0. O

Remark 2.15. For the range dy > 2 and d; < 0, it follows that G(0) > 2 by necessity. For this range,
our results have proved that there are exactly two unstable eigenvalues in Re(\) > 0 for any 7 > 0. For
7 > 0 and sufficiently small, there are two positive real roots to (2.15a) on the range A > (3, with one
root tending to 400 while the other tending to A = f+dy /(2 — do) > B as 7 — 0F. For 7 > 0 sufficiently
large, there are two positive real roots to (2.15a) on the interval 0 < A\ < 3. For intermediate values of
7, Proposition 2.14 proves that there is a pair of complex conjugate roots in Re(A) > 0, and that the
eigenvalues can never enter the stable left half-plane Re(X) < 0. We recall from (2.16) that for the range
where dy > 2, the multiplier x of the NLEP has a simple pole in Re(A\) > 0 at A = (do — 2)/(27) > 0.

2.3. Two Examples of the Theory

We now illustrate our main results for two specific RD systems.
GM Model: We first consider the GM model where g(u) = u™ 9, f(u) = v~ ® and up, = 0. Then, from
the definitions of dy and dy in (2.15b), we have

do = —2s, di = —qr?, B=r%—2r. (2.23)

We remark that the condition G(0) > 2 is equivalent to the usual assumption (cf. [13]) on the GM
exponent sets (p, ¢, r, s) given by
qr
p—1

—(s4+1)>0 where p=2r—3. (2.24)
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From (2.6) we conclude that there is a unique one-spike solution and that UOC = 2/b,, where ( =
qr/(2r —4) — (s +1).

We first suppose that ¢ < 0 so that d; > 0. Then, (II) and (III) of Proposition 2.12 hold, and hence
the equilibrium spike solution is unstable for all 7 > 0 due to a positive real eigenvalue. From (I) of
Proposition 2.12, a similar instability occurs for ¢ > 0 but ¢r/(2r —4) — (s + 1) < 0, so that G(0) < 2.

Next, suppose that ¢ > 0, s > —1 and that the usual assumption (2.24) holds on the GM exponent
set (p,q,7,s). Then, dy < 2, di < 0, and G(0) > 2, so that Proposition 2.14 and (2.20) proves that
an equilibrium spike solution to the GM shadow problem with p = 2r — 3 has a Hopf bifurcation when
T =71 with A = i\, where

1+ qr
TH = ) A ZT(T—Q)\/2( —1. (2.25)

r(r—2 1+ s)(r—2)
Since N = 2 for 7 > 7y, we conclude that for 7y < 7 < 7 there is a pair of complex conjugate eigenvalues

in Re(A\) > 0 that merge onto the positive real axis at A = A\; when 7 = 7. From (2.18) of Proposition
2.13, we calculate

et (| [aae-2)
Tt—2(r2_2r_)\t)27 A= ( 2r) 2(1+8)<1 \/1 o > (2.26)

For 7 > 1, Proposition 2.13 shows that there are two real eigenvalues in 0 < A < .

50 45
40
30r - 35
3.0
10+ - 25
)\I )\| I

1ol ~ 20
15
=30+ - 1.0
05

- 50 1 l 1 l 1 1
0.0 05 1.0 15 20 25 3.0 00

FIGURE 2. Plot of the complex conjugate pair of roots of (2.15a) in the complex A-plane
for the GM model with exponent set (p,q,r,s) = (3,2,3,0). Left panel: Plot of Im(\)
versus Re()) for 7 on the range 7y < 7 < 7. Right panel: plot of Im(\) > 0 versus 7
on the range 74 < 7 < 7. The endpoints of this curve are given analytically by (2.27).

For the particular exponent set (p,q,r,s) = (3,2,3,0), we calculate from (2.25) and (2.26) that

H=1/3, Ag=3V2~4242, X\ =3-9 (1 - \/§> ~1.348, 1= ﬁ ~ 3.300.
(2.27)
For this exponent set, in Fig. 2 we plot the numerically computed path of the roots of (2.15a) in the
complex A-plane on the range 7y < 7 < 73, and we also plot Im(\) versus 7 on this range. The results in

this figure are seen to agree with (2.27).
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As a partial confirmation of our analytical theory, we next consider the exponent set (p,q,r,s) =
(3,2, 3,1) for which numerical results for the Hopf bifurcation threshold, as computed from a discretization
of the associated NLEP, were given in the fourth row of Table 3 of [38]. From (2.25) and (2.26), our
analytical theory predicts that

TH =2/3, At = 37\/5 ~ 2.121, At = @ ~ 1.098, T = ﬁ A~ 2.488. (2.28)
The numerical results given in the fourth row of Table 3 of [38] closely agree with these values. To
further validate our theory, we numerically solved the full PDE (2.2) for the GM model by using the
numerical method described in [38]. The initial condition for (2.2) was taken to be a 1% perturbation
of the quasi-equilibrium solution, so that v(x,0) = Upw (2 /o) (1 +0.01) and u(0) = Uy(1 + 0.01), where
Up = 2/bs. Here w(y) = v/2sech(y) and Uy = 2/bs, with b3 = v/27. For g9 = 0.02, in Fig. 3 we plot the
numerically computed spike amplitude vy, (t), defined by vy, = v(0,t), versus t for 7 = 0.64 (dotted curve)
and for 7 = 0.72 (solid curve). For the smaller value of 7, the amplitude oscillation decays, whereas an
oscillatory instability occurs for the larger value of 7. For 7 = 0.72, the numerical results yield that the
period of the oscillation is approximately 0.32. In comparison, the theoretical result (2.28) gives a Hopf
bifurcation threshold of 77 = 2/3, while the period of small-scale oscillations is 27 /Arg ~ 0.29.

0.75 T T T T T T T
0.70
0.65

vm
0.60

0.55 |- -

050 | 1 | | | | |
25 50 75 100 125 150 175 200

t

FIGURE 3. Plot of the spike amplitude vy, (0) = v(0, ) versus ¢ as numerically computed
from the shadow PDE (2.2) with ¢y = 0.02 for a GM model corresponding to setting
p=r=23,g(u)=u"2 f(u) =u"!and u, = 0 in (2.2). The dotted curve is for 7 = 0.64,
while the solid curve is for 7 = 0.72. The theoretical prediction for the Hopf bifurcation
threshold is 77 = 2/3, which is between these two values.

Generalized GS Model: Next, we consider the shadow limit D — +oo for a generalization of the GS
model formulated as

1
V= EVpe — v 4+ Auv? Tus = Dugy — (u—1) — —uv®. (2.29)
€0

on |z| < 1. Here A > 0 is a parameter. This corresponds to setting
p=r=23, flu) =—u, g(u) = Au, up, =1, (2.30)

in the shadow problem (2.2). This model is a generalization of the usual GS model with p = r = 2, where
pulse solutions have been analyzed in [3], [4], [20], [15], [31], and [1] (see also the references therein).
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For this model, the nonlinear algebraic equation (2.6) for Uy reduces to

b o0
H(Uy) = Uo (1 =Up) = 2./473/2, where b3 = / w dy = V2r, (2.31)

and w = v/2sech(y) is the homoclinic of w” — w + w® = 0. Since A > 0, we must have 0 < Uy < 1. In
addition, since H(Up) attains it maximum value on 0 < Uy < 1 of 2/(3v/3) when Uy = 1/3, it follows
that the graph of Uy versus A has a saddle-node bifurcation structure, with two solutions Uy for Uy
when A > A,,, which satisfy 0 < Up— < 1/3 < Up; < 1. Here, A,, is given by

2/3
A = <3‘fﬂ> . (2.32)

A plot of the bifurcation diagram of Uy versus A is shown in Fig. 4. In terms of Uys, the amplitude
v4(0) of the spike, as obtained from (2.4), is
w(0)

v.(0) = T w(0) = V2. (2.33)

We refer to the root Up— on 0 < Up_ < 1/3 as generating the “large” amplitude spike, while Up
on 1/3 < Upy < 1 generates the small amplitude spike. This classification follows from (2.33) since
v_(0) > v4(0). In summary, there are two one-spike equilibrium solutions when A > A,,, and none
when 0 < A < A,,.

To determine the metastability properties of these solutions, we first identify that 3 = 72 — 3r = 3 and

then we calculate dy and d; from (2.15b) as
dy = — b3 :_2(1—U0)<07 dy = 9b3 :_9(1—Uo)<0’ g(o):(l_UO).
[AUGJ*/ Uo 2 [AU*/? Uo Uo
(2.34)
Since G(0) = (1 — Up) /Uy < 2 when Uy > 1/3, we conclude from (I) of Proposition 2.12 that the entire
upper Upy branch of Fig. 4 is unstable due to a positive real eigenvalue for any 7 > 0. Consequently, the
small amplitude spike for v is unstable for all 7 > 0.

In contrast, along the lower Uy_ branch of Fig. 4 where 0 < Uy < 1/3, we have G(0) > 2, dy < 2 and
dy < 0. Therefore, from Propositions 2.13 and 2.14 we conclude that the one-spike solution is stable on
an O(1) time-scale when 0 < 7 < 7y, and that there is a Hopf bifurcation at 7 = 7 and A = iA;. From
(2.20) we obtain

(2 —dp) 1 (1 —3U)

—_— = Ar =3\ ——. 2.35
23 30, ! 2 (2.35)

For the range of 7 where 7y < 7 < 7, there is a complex conjugate pair of eigenvalues in Re(\) > 0.

These eigenvalues merge onto the real axis at A = A\; when 7 = 7. From (2.18), we obtain that

TH —

(2.35b)

9 1—3U 9(1 — Up)
M=3—--(1-Uy) |1 —y|o—7c =
i 5 ) ( 3(1— Uo)> C T o3 )2

In the left panel of Fig. 5 we use (2.35a) and (2.35b) to plot 77 and 73 versus Uy on the large amplitude
spike branch 0 < Uy < 1/3 of Fig. 4. Then, by using (2.31) which relates Uy to A, in the right panel of
Fig. 5 we correspondingly plot 77 and 74 versus A on this solution branch.

2.4. NLEP Stability Theory with Sub-Diffusion

In this subsection we study the metastability of a one-spike solution to the sub-diffusive shadow system
(2.3). In the context of fractional differential equations, perturbations of a steady-state solution do not
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FIGURE 4. Plot of the bifurcation diagram of Uy versus A, as given in (2.31), charac-
terizing the solution multiplicity of a one-spike solution for the generalized GS model
(2.30). The upper branch of this curve where 1/3 < Uy < 1 is unstable for all 7 > 0,
whereas solutions on the lower branch, where 0 < Uy < 1/3, undergo a Hopf bifurcation
at some 7 = 177 (Up).
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FIGURE 5. Plot of the thresholds 7; (dotted curve) and 7x (heavy solid curve), defined
in (2.35), versus Uy (left panel) and versus A (right panel). These correspond to the
lower branch in Fig. 4. The lower curve is the Hopf bifurcation threshold, and the upper
curve is where the complex conjugate pair of eigenvalues merge onto the positive real
axis in the A-plane.

grow exponentially in time with a constant growth rate. Therefore, the linearized “eigenvalue problem” no
longer has its classical meaning. Instead, it should be regarded as an asymptotic theory of perturbations
that evolve exponentially in time to leading order:

v~ v+ eMp(x), U~ e + e M) ~ A0 XD () 4 (2.36)

In the discussion below A(?) is referred to as the eigenvalue for convenience, yet one must bear in mind
that only at the limit v = 1 does it in fact correspond to the classical notion. Upon substituting (2.36)
into (2.3), and then collecting the leading order terms, we obtain the following expression involving the
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fractional derivative:

(0)
_ a0y dV o, o 1 L R S
S=e € Ty /0 o dc . (2.37)

In the limit + — oo the integral converges if and only if Re(A(?)) > 0, which is rather different from
the behaviour with an integer derivative. With v = 1 and A(®) > 0 the derivative %e/\(o)t diverges
exponentially at ¢ —» oo, and then the factor exp(—\(®)t) makes the expression finite. With v = 1 and
A < 0 the factor exp(—)\(o)t) diverges exponentially, but the derivative %6)‘<O)t decays exponentially,

again resulting in a finite expression. In the sub-diffusive case with 0 < v < 1 and A(®) > 0 the derivative
a7
dt—yeA(o)t diverges exponentially at ¢ — oo, and the factor exp(—A(®t) makes the expression finite.

d7
However for A(9) < 0 the derivative %e/\

@ decays only algebraically, and with the exponential factor

exp(—A©¢t) the expression is divergent. Therefore the derivation below is valid for Re(A(®)) > 0. This
nuance adds a certain subtlety to the interpretation of the stability theory, rendering it sufficient to study
the onset of instability, i.e. the limit Re(A(?)) — 07, yet impossible to trace eigenvalues in the left half
of the complex plane. This is summarized in the following lemma.

Lemma 2.16. In the limit t = ce~ Y > 1 with e — 0 and o ~ O(1) the asymptotic relation

S = e—)\(o)t%e)\(())t ~ )\(O)"/ +0 (gfy('y-}—l)) ,

holds if and only if Re(A(®)) > 0.

Proof. The proof of this result was given in Lemma 3.1 of [24]. We repeat it here for the convenience of
the reader. We integrate (2.37) by parts and let ¢ = O(e~(7*1)) > 1 to obtain

Oy t
lim e_’\(o)tﬂexw)t = ot lim lme? 7 )‘(0)/ 6_)‘(0)%—76[( ~
€0 dt I'l—+~)e—o [ 0

A7 A
Py, )t (0m).
- 0

The error order in this expression arises from the algebraic decay of t =7 regardless of the value of A(%). To
evaluate the last integral in this expression we use contour integration. We consider the closed contour
consisting of the line segment from 0 to A(?¢, an arc of radius R = |\t ( corresponding to R — oo
at the limit ¢ — 0 ), the interval (J, R) on the real axis and an arc of radius 6 — 0 ( ¢ is independent
of € ). The contour is depicted in Fig. 6. Upon using the residue theorem one gets

0)7 arg A(®)
5lirno eiA(O)t%eAm)t = F(Al()) Rlim {lev/ e~ Re' i(1-7)8 gp
- - — 00 0

6—0

arg A©) R
_151—7/ e8¢ cu(1-7)0 g9 +/ e—&g—vdg} ~ N7 Lo (57(7+1)) ’
0 5
where the first integral exists if and only if Re(A(?)) > 0. O

Remark 2.17. Since v < y(y + 1) for any 0 < v < 1, the asymptotic estimate above for the time scale
t = O~ D) shows that S ~ A7 provided that A(©) satisfies Re(A(?)) > 0 and is not too close to the
origin in the sense that |)\(O)| must satisfy |)\(0)| ~ O (e) or larger.
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R= x|
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F1GURE 6. Closed integration contour in the evaluation of e_’\(o)t%e’\m)75

From this Lemma, it follows that the spectrum of the NLEP associated with the shadow problem
(2.3) is determined by the roots of (2.15a) where X is now replaced by A®”. By using the mapping
A0 = A, the previous results for the roots of (2.15a) given in Propositions 2.12-2.14 can be used to
infer metastability or instability for the sub-diffusive case. More specifically, writing A = || exp(2¢) with
¢ = arg X € (—m, 7], the map A©”7 = X\ yields that

MO = |\ (2.38)

where the constraint —m < ¢/ < 7 must hold in order to remain on the principal branch in the A(®)
plane. Recall from Lemma 2.16, that the derivation of the NLEP for the sub-diffusive shadow problem
required that Re(A\(?)) > 0 and A9 > O(g). Therefore, in terms of the spectral A plane associated with
the regular NLEP, the sub-diffusive system will be unstable if the regular NLEP has an eigenvalue in the
wedge-shaped region with cutout near the origin defined by

—Sr<e< T, N> 0. (2:39)

This subset of the right half-plane Re(A) > 0 is shown in Fig. 7. We refer to the set (2.39) as the wedge
of instability of the sub-diffusive NLEP. This wedge becomes narrower as 7y decreases, and concentrates
on the positive real axis in the A-plane as v — 0T.

A simple consequence of this result is that if the regular NLEP admits a positive real eigenvalue \* > 0,
then this eigenvalue must lie in the wedge of instability for the sub-diffusive NLEP for any 0 < v < 1.
Such an eigenvalue A(9) = (A*)1/7 > 0 then yields an exponentially growing perturbation ( to leading
order ) to the one-spike equilibrium solution of (2.3). Consequently, Propositions 2.12 and 2.13 also apply
to the sub-diffusive case.

Proposition 2.18. Under the conditions of Propositions 2.12 and 2.13, there is an exponentially growing
perturbation to the one-spike equilibrium solution of the sub-diffusive shadow problem (2.3).

Next, we consider Hopf bifurcations associated with the sub-diffusive shadow problem (2.3). The key
observation is that an unstable eigenvalue of the regular NLEP only generates an instability for the
sub-diffusive NLEP when it lies within the wedge of instability (2.39). This wedge of instability becomes
narrower as the anomaly exponent v decreases. The anomaly dependent Hopf threshold, labelled by 7g,
is computed numerically from the implicit condition that

™

arg A = 5 (2.40)
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Im())

Re(A)

FIGURE 7. Admissibility and instability region in the A plane ( shaded ) corresponding
to the asymptotics validity constraint |A| ~ O(g) or larger. The dashed lines show the
region conforming to the principal branch.

which involves the eigenvalue path A = A(7) of the roots of (2.15a) with Re(A) > 0 and Im(X) > 0. The
condition (2.40) corresponds to the minimum value of 7 for which this eigenvalue path enters the wedge
of instability of the sub-diffusive NLEP shown in Fig. 7. In this sense, it follows that the perturbation of
a one-spike solution for the sub-diffusive shadow model (2.3) is oscillatory at a larger value of 7 than for
the case of regular diffusion. In this sense, the effect of sub-diffusion is to stabilize the one-spike solution.
This leads to the following result.

Proposition 2.19. Suppose that the assumptions dy < 2, d1 < 0 and G(0) > 2, of Proposition 2.1/ hold.
Then, for all v in 0 < v < 1, the Hopf bifurcation threshold Ty~ for the sub-diffusive NLEP must lie
in the interval Ty < Ty < T¢. Here Ty is the Hopf bifurcation threshold for the reqular diffusion case,
as gwen in (2.20), and 7 is the value of T, as given in (2.18), where the complex conjugate eigenvalue
pair for the reqgular NLEP merge onto the positive real axis. In particular, Tgy — T as y — 17
and Ty — 7 as v — 01, In addition, if the path X\ = X(T) of the complex eigenvalue in the first
quadrant Re(\) > 0, Im(\) > 0 for the reqular NLEP is such that Re(\) (Im(\)) increases (decreases)
monotonically as T increases, then T increases as 7y decreases.

The proof of this result follows immediately from the concept of the wedge of instability of the sub-
diffusive NLEP together with our explicit results in Propositions 2.12-2.14 for the the behaviour of the
roots of (2.15a) in the right half-plane Re(\) > 0 as a function of 7.

In particular, consider the GM and generalized GS models studied in §2.3. For the generalized GS
model with sub-diffusion, we conclude that the Hopf bifurcation threshold 7g. must lie between the two
curves in Fig. 5 for any anomaly index . Moreover, for the sub-diffusive GM model with s > —1 and
g > 0, the Hopf bifurcation threshold must be in the interval 7y < 7y < 7¢, where 75 and 7, are given
in (2.25) and (2.26), respectively.

3. A One-Spike Solution on the Infinite Line

For g9 — 0, we use the method of matched asymptotic expansions to construct a steady-state one-spike
solution to (1.2), centered at 2 = 0, on the infinite line. Since the asymptotic construction is standard
we will only briefly highlight the main steps of the analysis.

In the inner region near x = 0, we introduce the new variables y, V', and U, by

y=z/eo, V(y) =v(eoy), U(y) = u(eoy) -
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Upon expanding U = Uy +eoUy + -+ and V = Vi + e9Vj + - - -, and substituting into (1.2), we obtain
that Uy must be a constant and that Vj satisfies

Vo = Vo+ g V¥ =0, —-co<y<oo, (3.1)

where go = g(Up). When gg > 0, there is a unique positive homoclinic solution for Vj given explicitly by

A0 ——ny (3:2)
9o

where w(y) is the homoclinic satisfying (2.5).
In the outer region, defined for |x| > O(ep), we obtain to all orders in gy that v = 0 and that the
nonlinear term in the u-equation of (1.2) can be represented in terms of a Dirac mass as

g0 - fw)e” = fo ( / T W) dy) 5a) = L0

. gg/(p—l)

(),

where we have defined b, = ffooo w"dy and fo = f(Up). In this way, we obtain that the leading-order
outer solution for u satisfies

b,
umf(u—ub):ffoié(x), —o<r<o0; u—up as |zr] — 0.
r/(p—1)
90
The solution for u can be written as
_ fO br
u=up+ —7r G(x),
90

where G(z) is the Green’s function G(x) satisfying
Gor —G=—6(x), —oc0o<z<00; G—0 as |z|— o0, (3.3)

which is given explicitly by G(z) = eIl /2.
Then, to match inner and outer solutions for u we must set Uy = u(0), which yields a nonlinear
algebraic equation for Uy given by

b,
Vo — D0

= W? fo=f(Uo), 90 = 9(Uo) , by = / w'dy. (3.4)

o0

We summarize the construction of the steady-state one-spike solution for (1.2) as follows:

Proposition 3.1. For g9 — 0, a one-spike equilibrium solution to (1.2), which we label by v.(x) and
ue(x), is given asymptotically by

1
Ve() ~ W w(z/e0) , ue(x) ~ up + (Up — up)
0

Q

(z)
(0

; (3.5)

Q

where Uy is a solution to the nonlinear algebraic equation (3.4) and where G(z) = eIl is the Green’s
function satisfying (3.3). This construction is valid provided that go = g(Up) >

To analyze the linearized stability of this one-spike solution we set
v =1, + e, u = ue + . (3.6)
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Upon substituting (3.6) into (1.2) and linearizing, we obtain the eigenvalue problem

Eo0za — & +Pg(uc)vE 6 + ' (ue)vln = Ao, (3.7a)
Moo — (L+7A)n = —e5 [ (ue)vin +rf(uc)vi "] - (3.7b)

Since v, is localized near x = 0, we look for a localized eigenfunction for ¢(z) in the form ¢ = &(y) where
y = x/eo. Upon using v, ~ go_l/(p_l)w and u, ~ Uy for x = O(gg), we obtain from (3.7a) that @(y)
satisfies ,

90
gg/ (r—1)

Lo? + wPn(0) =P, —oco<y<oo; & —0 as |yl = oc0. (3.8)
Here we have labelled g = ¢'(Up). In addition, Lg is the local operator defined by (2.8).

To derive our NLEP we must calculate 7(0) in (3.8). Since ¢ is localized near x = 0, then for g — 0
the right-hand side of (3.7b) can be calculated in the sense of distributions by using u. ~ Uy and

v ~ g Py g

_ _ 0)f} o r o
i [ et + T 1¢]%[75<ﬁf%/ wrdy+ e [ 1“@] @),
) —o0 90 —o0

where we have defined f} = f'(Up). In this way, we obtain that the outer approximation for n satisfies

0)f) b, r <o
nm_(1+7-)\)77:_%5(x)—% (/ w” 1d5dy> o(z), —co<z<oo, (3.9a)
90 90 -
n—0 as |z|— 0. (3.9b)

We represent the solution to (3.9) in terms of the A-dependent Green’s function G (z) satisfying
Gaze — (L+TANGA = —d(z), —o0o<z<00; Gyx—0 as |z|— oo, (3.10a)

which has the explicit solution

1
G (2) = e~ lzlVIFTX 3.10b
= (3.10b)
provided that we take the principal branch of the square root function to guarantee that Re (\/ 1+ 7'/\) >0
and, hence, ensure decay of G\ (z) as |z| — oo for any complex .
In terms of G (z), the solution to (3.9) is

1(0) fo br 7 fi R
n(z) = g(r/)(pgl) Ga(z) + 7g(r_1)/0(p_1) / w" o dy ) Ga(x). (3.11)
0 0 o0

We then set = 0 in (3.11) and solve for 7(0). Finally, upon substituting 1(0) into (3.8) and re-writing

the resulting expression by using (3.4), we obtain an NLEP for &(y). The result is summarized as follows:

Proposition 3.2. For 0 < ¢y < 1, the stability of the one-spike steady-state solution of Proposition 3.1
is determined by the spectrum of the NLEP (2.9a), where the multiplier of the nonlocal term is given by

/ / -1
=1 GO (3.12a)

go [fo  Us—up GA(0)

In this expression, the ratio of the two Green’s functions at x = 0 is simply

GO) _ =
RO VI+7A. (3.12b)
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3.1. NLEP Stability Theory with Regular Diffusion

In this section we obtain explicit stability results for the NLEP of Proposition 3.2 for the explicitly
solvable case where p = 2r — 3 and r > 2. For this case, we need only analyze the roots of (2.13) where
X(A) is defined in (3.12a). By using (3.12a) for x and (3.4) for Uy, we can write (2.13) more conveniently
in the following form:

Proposition 3.3. For p=2r —3 and r > 2, the discrete eigenvalues \ of the NLEP in Proposition 3.2
are the roots of the transcendental equation

_d
B—=X
where 3 =12 —2r > 0. Here dy and dy are defined in (2.15b). In (3.13), /1 + T denotes the principal
branch of the square root. In terms of dy and dy, the multiplier x of the NLEP in Proposition 3.2 is

2VI+71A=G\) =dy — (3.13)

r

2 dy
=—|— . 3.14
X (d02\/1+m> (3-14)
When do > 2, this multiplier has a simple pole at A = 7' (=1 + d3/4), which lies in Re(\) > 0.

Remark 3.4. The transcendental equation (3.13) has precisely the same form as for the one-spike case
for the shadow problem given in (2.15a), provided that we simply replace v/1 + 7A in (3.13) with (1+7AX).

We first determine sufficient conditions for instability by characterizing the roots of (3.13) on the
positive real axis. Since the proofs of these results parallel that of Propositions 2.12 and 2.13 for the
shadow problem (2.2), they are omitted.

Proposition 3.5. Suppose that either

(I) di <0 and G(0)<2; or (II) di >0 and G(0)>2; or (III) dy >0 and dy <?2.
(3.15)
Then, for any T > 0, (8.13) has at least one root with A > 0 and X real. Thus, the NLEP of Proposition
3.2 has at least one unstable real eigenvalue and the equilibrium spike solution for (1.2) is unstable.

Proposition 3.6. Suppose that dy < 0, G(0) > 2 and dy < 2. Then, when 7 > 0 is sufficiently large,
(8.13) has two real positive roots in 0 < A < B, while for 7 > 0 sufficiently small (3.13) has no positive
real roots. Next, if di < 0 and dy > 2, so that necessarily G(0) > 2, then (5.13) has two real roots in
A > B when T > 0 is sufficiently small, and two real roots in 0 < A < B when T > 0 is sufficiently large.

Next, we count the number N of roots of (3.13) in Re(\) > 0. We define F(\) = 21 + 7A—G()\), where
G(\) has a simple pole in Re(A\) > 0 at A = 8. We take the counterclockwise contour consisting of the
imaginary axis —iR < Im\ < ¢R and the semi-circle I'g, given by |A\| = R > 0, for —7/2 < arg\ < 7/2.
For 7 > 0, we have that F(\) ~ 2v/7\ as |A\| = co on Iy, so that the change in the argument of F over
I'r as R — 0o is /2. By using the argument principle, together with F()\) = F()), we obtain for 7 > 0
that

5 1
N = 1 + - larg Flp, (3.16)

where [arg F| r, denotes the change in the argument of F along the semi-infinite imaginary axis I't = iAr,
0 < A7 < o0, traversed in the downwards direction. Now along the imaginary axis A = i\ for A\; > 0,
we can readily separate F(iA;) in terms of real and imaginary parts as F(iA;) = Fr(Ar) + iFr(Af), to
obtain that

dlﬁ dl)\l

‘FR()\[):IC+(T>\])*dQ+m, ‘F[(A]):,C_(T)\])+m, (317&)
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where we have defined K4 (¢) by
1/2
Ki(¢)=V2 [ 112+ 1} . (3.17b)

For any 7 > 0, we have that Fr ~ 27\ and F; ~ /27A; as \; — +00, so that arg (F(i\;)) — 7/4 as
A1 — +o0. Alternatively, for A\; = 0, we obtain

Fr(0)=2-6(0),  F1(0)=0. (3.18)
For 7 > 0, we calculate that

d e 2d1 A1 B8
TAI]:R()\Z) = T’C+(T)\]) W .

(3.19)
By using these preliminary results, we can calculate [arg F] , and thus obtain N from (3.16). Our
first result is as follows:

Proposition 3.7. Letd; < 0 and G(0) > 2, and let N denote the number of roots to (3.13) in Re(\) > 0.
Then, for all 7 > 0, we have either N = 0 or N = 2. Moreover, if dy < 2, then N =2 for 7 > 1 and
N =0 forT < 1.

Proof. Since d; < 0 and K/, (¢) > 0, then from (3.19) we conclude that &]-'R()q) > 0. Next, since
G(0) > 2, we have from (3.18) that Fr(0) < 0, while Fr(+00) = +00. Therefore, there exists a unique
root A7 >0, with A7 = A7(7), for which Fr(A7) = 0. It then follows that [arg F| = 37/4 if F7(A7) >0
and [arg F], = —5m/4 if Fr(A7) > 0. We conclude from (3.16) that either N =2 or N = 0 depending
on whether (A7) is positive or negative, respectively. To determine whether N =0 or N = 2, we must
calculate the root A} to Fr(A;) = 0. From using (3.17a) for Fr(Ar), we obtain that A} is the unique
root of
di8

B2+ AT
Suppose that dy < 2, d; < 0, and G(0) > 2. Then, for 7 < 1, (3.20) has a root with A} ~ A;g = O(1),
where \jq satisfies

Ki(tAr) = R(\;) = do — (3.20)

i
2—dot g3 5m v = 0, (3.21)
so that
% Gg)—2
)\I(O):AIOEB (2(—)d0 )

For 7 < 1, we conclude from (3.17a) that Fr(Aro) = diA10/(8% + A%y) + O(7?) < 0. Therefore, N = 0
when 7 <« 1. Alternatively, for 7 > 1, the unique root of (3.20) satisfies \} ~ Ao /7, where A\jo is the
unique root of K4 (Ajeo) = G(0) > 2. From (3.17a), we conclude that F7(\}) ~ K_ (A1) + O(771) > 0.
We conclude that N = 2 when 7> 1. O

Remark 3.8. For the case where d; < 0, G(0) > 2 and dyp < 2, Proposition 3.7 proves the existence of
a value of 7 for which a one-spike solution of (1.2) undergoes a Hopf bifurcation. Under these conditions
on dy and d;, N =0 for 7 < 1, and N = 2 for 7 > 1. respectively. Therefore, by continuity of the path
of eigenvalues as a function of 7, there must be a value 75 of 7 for which (3.13) has a complex conjugate
pair of roots A = +iA; with A\; > 0.

The next result gives a sufficient condition for the existence of a unique value 7z > 0 of 7 for which
(3.13) has a complex conjugate pair of roots. These roots cross transversally into Re(\) > 0 when 7 > 7.
This leads to a rigorous Hopf bifurcation result for one-spike solutions of (1.2).

(0]
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Proposition 3.9. Suppose that d; < 0, dy < 2 and 2 < G(0) < 4 — dy where G(0) = dy — d1/8. Then,
there is a unique value T = 7 > 0 at which the NLEP of Proposition 3.2 undergoes a Hopf bifurcation.
The one-spike solution is spectrally stable if 0 < T < T and is spectrally unstable if T > 7.

Proof. We write Fg in (3.17a) as Fr(Ar; 7). Since G(0) > 2 and dy < 0, then as shown in the proof of
Proposition 3.7, there is a unique root A}(7) to Fr = 0, so that Fr(A\5(7); 7) = 0. At this root, we define
N(7) = Fr(Nj(7); 7). In the proof of Proposition 3.7 we showed that N'(7) < 0 for 0 < 7 < 1 when
do < 2, and N (1) = +00 as 7 — +00. We will now show that N’(7) > 0 for all 7 > 0 when dy < 2 and
2 < G(0) < 4 —dy. Such a monotonicity result would establish the existence of a unique Hopf bifurcation
value 7y > 0 at which NV (7g) = 0, with AN (7) > 0 for 7 > 75 and N (7) < 0 for 0 < 7 < 7. Therefore,
N =2 when 7 > 7y and N = 0 when 0 < 7 < 7. Thus, to complete the proof we need only find
sufficient conditions that guarantee that N’(7) > 0 for all 7.
To determine the sign of N”(7), we set - Fr(A\j(7);7) = 0, and then use (3.17a) for Fp to get
dFg/dr —\iKl,

Np=— = -
T dFR/dAr 7K - 24BN (B2 + (A\)?) 7

Then, we use (3.17a) for F; to calculate N'(7) = AJ'dF;/dN\; + dFy/dr. After a short calculation, we

obtain

L d (B2 + A7) [ (8% = A7) + 280K ]
TK(B% + Ar)? — 2d18A;

Since d; < 0 and K. > 0, a sufficient condition to ensure that N’(7) > 0 for all 7 > 0 is that Aj(7) < 8
for all 7 > 0. Since A} (7) < 0, this condition holds for all 7 > 0 when Aj(0) < . Finally, we recall from
(3.21) that when d; < 0 and dy < 2 we have (A\3(0))* + 8% = d13/(do — 2) > 0. Therefore, X3(0) < 8
when d;8/(dy — 2) < 2%, This implies that G(0) = dy — d1/8 < 4 — dy. This completes the proof of the
result. O

N'(1) =

. 3.22
- (3.22)

Remark 3.10. The previous NLEP stability analyses for the GM and GS models have not been success-
ful in providing a rigorous proof for the existence of a unique Hopf bifurcation value of 7 (see §6 of [37]).
Only for the special case of the shadow GM system is such a result available for certain exponent sets of
the GM nonlinearities (cf. [38]). Our Proposition 3.9 provides sufficient conditions on the nonlinearities
f(u) and g(u) for the uniqueness of the Hopf bifurcation point for a one-spike solution of the general
system (1.2) for the case p = 2r — 3 and r > 2 for which the associated NLEP is explicitly solvable.

We remark that the proof of Proposition 3.9 does not require detailed knowledge of the functions
K4 (¢) with ¢ = 7A;. It only requires that K/ > 0 and that £ (0) = 2.

Proposition 3.9 provides sufficient conditions on dy and d; for the existence of a unique Hopf bifurcation
point. However, by using detailed properties of the functions K4, we now show that the conditions in
Proposition 3.9 are in fact not necessary, and that a unique Hopf bifurcation point occurs for any G(0)
with G(0) > 2. Our result is as follows:

Proposition 3.11. Suppose that d; < 0, dg < 2 and G(0) > 2. Then, the NLEP of Proposition 3.2
undergoes a Hopf bifurcation at T = 7 > 0, where

di dog
=—A A=p-— 2
TH aez where B 4 (3.23a)
and where £ is the smallest root of the quadratic equation
M(&) = (df —4) & — (df + 2Bdody) € +28°d; =0, (3.23b)

on the interval € > B2. In terms of this root, the corresponding eigenvalue is X = i\rg, where

>\1H = \/é~ - 52 . (323(?)
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For the special case dy = 0, T s given explicitly by

2 / c?
1+ — 1+ —
+2+c +4

while the corresponding eigenvalue is X = iArg, where

AIH:ﬁ,/l—B%H. (3.24D)

Proof. In (3.17a), we set Fr = Fr = 0 to obtain

1
TH — —
B

’ c=— > (324&)

dir
5 )

\@[ﬁﬁ]l“:dr%, V2 [Va—-1]"* =

Upon dividing the resulting two expressions we get

Va+ 1\ _14va B deg
()"

a=1+712N2, ¢=p2+)2. (3.25)

)\]T N )\[ - dl)\[ ’

which reduces to

Va+1=T1A, where Azﬂf@. (3.26)

dy
Since the first equation of (3.25) is v/2 [v/a + 1]1/2 = —dy A/€, we obtain from using (3.26) that v/27 A2 =

—dyA/¢. Upon solving for 7, and recalling that A = 8 — dp&/dy, we obtain
di ,_di (B do
== (@ dr) 20

which is (3.23a). Equation (3.27) determines 7 in terms of £. To obtain the quadratic equation (3.23b)
for &, we square and add the two expressions in (3.25) to obtain

1 diB\° 2N
== e . 2
va 4[(% f) e (3.28)
Then, by using v/a = —1+7A, A2 = £ — 32, and (3.27) for 7 in terms of A, (3.28) becomes
A%d? 1 [ad?A%2 a2
R (€ - BQ) .
262 41 & &

Upon solving for A% and recalling that A = 8 — do&/d;, we obtain

ie 2= A% = (B —do&/dy)*

7%+5—5— = (B —do§/d1)" .
By rewriting this last expression we conclude that ¢ > 3% must be a root of the quadratic equation of
(3.23b).

We must now carefully examine the roots of M(§) =0 when dy < 2, dy <0, and G(0) =do—d1 /8 > 2.
There are three sub-cases that must be considered: Case 1: |dy| < 2; Case 2: dy = —2; Case 3: dy < —2.
For each of these cases we calculate that

M(B%) = (d — 4)8* — (df + 2Bdody) B° + 2673 (3.292)
d?  2dyd
= —4p" + p* (Bé - ; Ly dé) = g ([g(o)]2 - 4) . (3.29b)
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Since G(0) > 2, we conclude that M(5?) > 0.

For Case I where |dy| < 2, we have that M(§) — —oc as £ — +oo. Therefore, by the intermediate
value theorem there exists a unique root £ to M(£) = 0 in 82 < & < oo, while the other root is in
—00 < & < 3%, Since £ = 32+ A2, the relevant root is £_. Next, we must show that A = 8 —dpé_/d; > 0,
so that 77 > 0 from (3.23a). If 0 < dy < 2, then A > 0 since dy > 0, &£ > 0 and d; < 0. For
—2 < dy < 0, we use G(0) > 2 to obtain dy /8 < dy — 2. Therefore, since dy < 0 and £_ > 0, we estimate
—do&_/dy > —doé—/(B(dy — 2). By using this inequality we obtain

o doé- do(&- — B?) + 252
P - - Be—d) "

since —2 < dyp < 0 and £_ > B2. Therefore, when |doy| < 2, (3.23b) has a unique root in & > 32, for which
T > 01in (3.23a).

For the degenerate Case II where dy = —2, we have M(§) = —(d? — 48d1)€ + 282d?. Since d; < 0,
then M(¢) — —oo as £ — +oo, while M(%) > 0 from (3.29b). Therefore, the unique root & =
28%d;/(dy — 4B) to M(&) = 0is in & > 2. At this root we calculate A as

_ _ _ 4% Bdy
L R N T B . R

_ do§—
dq

A=p

since d; < 0. Thus, 77 > 0 in (3.23a).

Finally, we consider Case III where dy < —2. This case is more delicate since M(£) — +o0 as & — 400
and M(B?) > 0. Therefore, the behaviour of the roots in & > 2 is not immediately clear. However, we
now show that M(&.) < 0 where £, = d13/dy is the unique root of A = 0. For £ < & we have A > 0,
while for € > &, we have A < 0. We readily find that £. > 82 since dy — dy /3 > 2. To establish the sign
of M (&) we calculate

d3 82 di 3

M(E) = (d5 = 4) =z~ = (di + 2o B) == + 28°d7,
0
44282 BB d2p2 dy1dy
— d2 2 1 et — 1 d2 _4— .
18 a2 do a2 8

Since dy — d1/ > 2 and dy < 0, we have —dod1 /8 < do (2 —dp). By using this estimate in the last

expression above, we obtain

@7
dg

d262
[df — 4 +2dy — df] = ;2 [2do — 4] .
0

M(&.) <

Thus, since dy < 0, we have M(£.) < 0. By the intermediate value theorem, it follows that M(&) = 0
must have two real roots {4, which satisfy 82 < ¢ < & and €. < &,. However, since A > 0 for
E=¢ <& and A<O0for & =& > &, only the smaller of the two roots yields a 74 > 0 from (3.23a).
Therefore, the smaller root £ gives the Hopf bifurcation, and this root determines A\; as \; = \/&{_ — 2.
This completes the proof of (3.23).
For the special case where dy = 0, M(&) = 0 has a unique root in & > 32 given by

a3 i pd3
I VRS

§=co++c1, co = (3.30)

Then, from (3.27) with dy = 0, we get

& 1 &
T= 18 <CO+\/a) :2( 21B )(Cg—FCl—QCO\/a).

Chp —C1

2
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Since ¢ — ¢; = —(%d? /2, we obtain
BB 2 \°|dt B & [df i 1| & d 4
T_15<22> 71+5 1, 4 714_5 i _ 2+ 12+1_ 1 i 12
2\ p%dy 32 2 4V 64 2 B 1165 28v2 3208
This last expression is equivalent to (3.24a). i

Remark 3.12. Recall from Proposition 3.6 that for the case where d; < 0 and dy > 2, so that necessarily
G(0) > 2, we have N = 2 when both 7 < 1 and 7 > 1. However, the behaviour of the eigenvalues for
intermediate values of 7 is unclear, since Proposition 3.7 only proves that either N = 0 or N = 2. This
leaves open the possibility that at some intermediate range of values of 7 a pair of complex conjugate
eigenvalues can cross into the negative half-plane Re(\) < 0, and then only re-appear in Re(\) > 0 at
some sufficiently large value of 7. Our last result below, given in Proposition 3.13, rules out this possibility
when dy > do. > 2, where dj. is some explicit threshold. It also gives a range of values of dy > 2 that
guarantee that a stabilization of the spike will occur for some intermediate range of value of 7.

Proposition 3.13. Suppose that di < 0 and that dy > do. > 2, where dy. is given by

d —min(d d ) d :ﬁ—i— 8—|—d7% do.o = 4_|_d7% (331)
Oc — Ocl, %0c2) » Ocl = 26 262, 0c2 = 4ﬂ2 .

Then, for any T > 0, there are exactly two eigenvalues in Re(\) > 0. Hence, the NLEP of Proposition 3.2
does not admit a Hopf bifurcation, and a one-spike solution to (1.2) is spectrally unstable for all T > 0.
Moreover, on the range

. oy / 3d3
2 <dy < dym = mln(docl,doH), dog = % +4/4+ E , (332)

there are exactly two Hopf bifurcation values of T, labelled by T— and Tg 4, with Tg— < Ty. The spike
is spectrally unstable when 0 < 7 < Ty and when T > Ty, but is stable on the intermediate range
TH- < T < Ty. Finally, if dog < do < doe1 then the quadratic M(£) = 0 has two real roots {1, but they
both satisfy £+ < 0, and so are not in the region & > 3%2. Hence in this range of dg there are no Hopf
bifurcations.

Proof. We first show from the winding number criterion leading to (3.16) that N = 2 when dy > do.2,
where dy.o is defined in (3.31). To obtain this result, it is sufficient to show that F; > 0 at the root of
Fr =0 when dy > doez. We first set Fr =0 in (3.17a) to get

d
\/5[\/6+1]1/2:d0—1?5, where a=1+72)2 and €=p82+\2. (3.33)

From (3.33) we calculate

A2 d
Va="-1, where Azdofl—ﬂ.
2 £
We can then evaluate F; in (3.17a) at this root of Fr to get
1/2 di\p di A1 9 1/2
]:] = \/5 [\/&— 1] + Bz T )\% = H(A) + m 5 Where H(A) = (A — 4) . (334)

We note that #(2) = 0 and H'(A) > 0 for A > 2. In addition, for dy > 2 and d; < 0, we have A > dy > 2
for all £ > B2. Therefore, since d; < 0, we calculate a lower bound for F; as

A1 0 12 di
> H(do) + dy max 1 = (dj —4)"/* 4+ 5L
Fr 2 H(do) +dy oo 23~y = (d —4) 7+ 55
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We conclude that F; > 0 at the root of Fr = 0, when dy is sufficiently large, so that (d3 — 4)'/? >
—dy1/(28). This yields that N = 2 for any 7 > 0 when dy > doco.

To obtain the second result that N = 2 when dy > dge1, where doq is defined in (3.31), we proceed
by examining the roots of the quadratic polynomial M(£) = 0 given in (3.23b) on the range ¢ > 32
when dy > 2. When dy > 2, we have M — +00 as £ — oo and M(3?) > 0 from (3.29b). Therefore,
a sufficient condition for M > 0 on & > 2 is that the discriminant associated with the polynomial is
negative, i.e. that

(42 + 2Bd1ds)° — 88%d2 (d3 — 4) < 0.

A simple calculation from this inequality yields that dg > dp.1 where dp1 is defined in (3.31).

The last step of the proof is to determine sufficient conditions for which M(£) = 0 has two roots
in & > B2. Since dy > 0 and d; < 0, then A > 0 in (3.23a), and so these roots determine two Hopf
bifurcation points 7y and 7g4 with 7y— < 7y4. A necessary and sufficient condition for this is that
the discriminant associated with the quadratic is positive, and that the minimum point of M(€) versus
€ occurs in the region ¢ > 32. This occurs when both

(dF + 25d1d2)2 —88%d7 (dg —4) >0  and  d} +2Bdody > 257 (df — 4) (3.35)

hold simultaneously. A simple manipulation of these inequalities yields 2 < dy < do,, = min(dom, doc1),
where dop is defined in (3.32).
O

Next, we illustrate Proposition 3.13 graphically by plotting the regions in the parameter space dy > 2
versus t = —d; /(23) where we can guarantee the number of Hopf bifurcation points. In terms of ¢ we
have from (3.31) and (3.32) that

d061:t+\/8+2t2, dOCQZ 4+t2, dOH:t+\/4+3t2. (336)

We first consider the range ¢ < —2. On this range, it is readily shown that dog > doe1 and doeo > doer -
Therefore, when t < —2, we conclude that if dy > dy.1 there are no Hopf bifurcations, while for 2 < dy <
dpc1 we have two Hopf bifurcation points. The curve dy = dp.1 for t < —2 is where M(€) = 0 has a double
root in the region ¢ > 2. Next, consider the range —2 < t < 0. A simple calculation shows that do.; <

doeo for —2 < t < t,, whereas dyeo < doe1 on ty <t < 0. Here t, = —1/2(v/2 — 1) &~ —0.910. In addition,
we readily calculate that dog < 2 on —2 <t < 0. Thus, on —2 < t < 0, where do < 2 < dg < dpe it
follows that M (&) = 0 has two real roots, with neither in the region ¢ > 82. For dy > min(d.1,d.2), there
are no Hopf bifurcations. We conclude that there are no Hopf bifurcations possible in the region where
—2 <t < 0. These considerations yield the phase diagram of Fig. 8 characterizing Hopf bifurcations in
the entire parameter plane dy > 2 versus t = —d; /(26) < 0.

Remark 3.14. The parameter plane shown in Fig. 8 predicts either zero or two Hopf bifurcation points
in the entire parameter plane where dyp > 2 and d; < 0. To use this result for arbitrary kinetics f and g,
we need only solve the nonlinear algebraic problem (3.4) for Uy, and then compute dy and d; in terms of
Uy from (2.15b). If dy > 2 and d; < 0, this determines a point in the parameter space of Fig. 8.

3.2. Two Examples of the Theory

Since the instability results for eigenvalues on the positive real axis for the infinite line problem are
essentially the same as for the shadow system studied in §2.2, we will only illustrate the Hopf bifurcation
results contained in Propositions 3.11 and 3.13.

GM Model: Consider a one-spike solution on the infinite line for the GM model where g(u) = v,
f(u) =u~*% and up = 0. Then, dy = —2s, d; = —qr?, and 3 = r?> — 2r, as were given in (2.23).
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FIGURE 8. Plot of the region in the dy > 2 versus t = —d; /(25) parameter illustrating
Proposition 3.13. For ¢ < —2, there are no Hopf bifurcation points above the heavy solid
curve, and two Hopf bifurcation points below the heavy solid curve. The heavy solid
curve is doey =t + V8 + 2t2. For —2 < t < 0, there are no Hopf bifurcation points for
any do > 2. It is only the region 2 < dy < dp.1 and t < —2 where a one-spike solution
will be stable only on some intermediate range 0 < 7y < 7 < T4 < 0.

For the special case s = 0, for which dp = 0, then 7 is given by (3.24) where we identify ¢ as

PR L— (3.37)

2¢/2(r — 2)

In particular, for the GM exponent set (p,q,7,s) = (3,2,3,0), we calculate from (3.24) and (3.37) that

THZL[13+3\E} ~2.114, /\,:3\/1—72z2.482.
12 3TH

More generally, fixing p = r = 3 and s = 0, a plot of 7 versus ¢ is shown by the heavy solid curve in
Fig. 9.

Next, consider the GM exponent set (p, q,7,s) = (3,2,3,1). For this set, the Hopf bifurcation threshold
for a one-spike solution on a finite domain was computed using the full numerical approach of [37], and is
shown in Fig. 4 of [37]. The y-intercept of this plot of [37] is the corresponding result for our infinite-line
problem. For the exponent set (p,q,7,s) = (3,2,3,1), for which dy = —2, the quadratic polynomial
M(€) = 0 in (3.23b) degenerates to a straight line, and we calculate that & = 23%d; /(d; — 43) = 54/5.
We calculate from (3.23) that 77 = 2.5 and A\; = 3/v/5 ~ 1.34 in agreement with the results given on
the y-intercept of Fig. 4 of [37]. More generally, the dotted curve of Fig. 9 is a plot of 7y versus ¢ for the
exponent set (p,q,r,s) = (3,q,3,1), as obtained from (3.23).

To illustrate the use of Fig. 8, we consider the GM model with exponent set (p, g, r, s) with p = 2r — 3,
r>2 qg>0and s < —1. Since dg = —2s and d; = —gr?, we conclude that dy > 2 and d; < 0. If
—2 < d1/(28) < 0, then we predict that there are no Hopf bifurcations for any 7 > 0, and the spike is
always unstable. This inequality holds when ¢ < 4(r — 2)/r. Next, suppose that ¢ > 4(r — 2)/r. Then,
we obtain that there are no Hopf Bifurcations when

qr 1 q3r?
. L - NE .
S Tir—2  2\°Tap o
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FIGURE 9. Plot of 7y versus ¢ for the GM model with p = r = 3 and for s = 1 (dotted
curve) and for s = 0 (heavy solid curve). For s = 0 and s = 1, 7 is calculated from (3.24)
and (3.23), respectively

and that there are two Hopf bifurcations when

o L e @

Ar—2) 2 2(r—22 %% -1 (3.38)

For the range of s in (3.38) and for ¢ > 4(r — 2)/r, a one-spike solution will be stable only on some
intermediate range of 7.
Generalized GS Model: Next, we consider the generalized GS model (1.2) for which

p=r=3, f=-u, gu)=Au, u=1. (3.39)

To construct the one-spike equilibrium solution on the infinite line we must calculate Uy from (3.4).
In this way, we find that Up, on 0 < Uy < 1, again satisfies (2.31) when A > A,,, where A,, is defined in
(2.32). The graph of Uy versus A has a saddle-node bifurcation structure, with two solutions Uyt for Uy
on 0 < Up_ <1/3 <Ups <1 when A > A, (see Fig. 4).

For the stability analysis, we identify 3 = r? — 3r = 3, and calculate dy and d; from (2.15b) as

PR L A T = R
Since G(0) = (1 — Uy)/Up < 2 when Uy > 1/3, we conclude from (I) of Proposition 3.5 that on the entire
upper branch 1/3 < Uy < 1 the spike is unstable due to a positive real eigenvalue for any 7 > 0.

On the lower branch, where 0 < Uy < 1/3, a one-spike solution undergoes a Hopf bifurcation at some
unique 7 = 75 > 0. Since dg = —2(1 — Uy)/Up and 0 < Uy < 1/3, we conclude that dy < —4, dy < 0, and
G(0) > 2 on this branch. Consequently, Case III in the proof of Proposition 3.11 applies, and M(§) = 0
in (3.23b) has two positive roots in ¢ > 42, with the smaller root corresponding to the Hopf bifurcation
point. By using (3.40) in (3.23), and calculating the smallest root of M (&) = 0, we obtain for each Uy in
0 < Up < 1/3 that

CSI(I-Up)? (3 2 C(1-TUp)? | 189 189 2 (1—20,)
= 202 (52 - 95) ' = 2(1-200) | 4 \/<4> s ((1 - U(])2) - (84

In Fig. 10 we plot 74 versus Uy on 0 < Uy < 1/3 and versus A where A > A,,. At the saddle node
bifurcation point where Uy = 1/3 and A = A,,, ~ 3.218, we calculate 74 = 2 from (3.41).
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FicUrE 10. Plot of the Hopf bifurcation threshold 7 for the generalized GS model
versus Uy (left panel) and versus A (right panel), corresponding to the lower branch
0 < Uy < 1/3 of Fig. 4. Here 7y is given in (3.41),

3.3. NLEP Stability Theory with Sub-Diffusion

Finally, we remark that completely analogous results to those in §2.4 for the sub-diffusive shadow problem
hold for the sub-diffusive infinite-line problem (1.3).

More specifically, to analyze the stability of a one-spike solution for (1.3) we simply replace A in (3.13)
with A7 = \. We recall from §2.4 that an instability for the sub-diffusive problem can only occur when
the roots of (3.13) are in the wedge of instability defined by (see Fig. 7)

—% < arg(\) < % I\ > O(e), (3.42)
where the anomaly exponent v is on the range 0 < v < 1.

As such, we conclude that if the regular NLEP admits a positive real eigenvalue A* > 0, then this
eigenvalue must lie in the wedge of instability for the sub-diffusive NLEP for any v in 0 < v < 1. Such
an eigenvalue A(©) = (A*)1/7 > 0 yields an exponentially growing perturbation (to leading order) to the
one-spike equilibrium solution of (1.3). Consequently, the instability results of Propositions 3.5 and 3.6,
which result from a positive real eigenvalue of the regular diffusion NLEP, still hold for the sub-diffusion
problem for all v in 0 < v < 1. We summarize this result as follows:

Proposition 3.15. Suppose that either
(I) di1 <0 and GO)<2; or (II) diy >0 and G(0O)>2; or (III) dy >0 and dy <2.

Then, for any T > 0, there is an exponentially growing perturbation to the one-spike equilibrium solution
of the sub-diffusive system (1.3). Similarly, when d; < 0, G(0) > 2, and dy < 2, the one-spike equilibrium
solution of (1.3) is unstable when T > 0 is sufficiently large.

Next, we consider Hopf bifurcations associated with the sub-diffusive RD system (1.3) under the
conditions that d; < 0, dy < 2 and G(0) > 2. For this parameter range, Proposition 3.11 proves that the
regular diffusion problem undergoes a Hopf bifurcation at a unique value 7 = 7y > 0, and by Proposition
3.6 there are two positive real eigenvalues for the regular NLEP when 7 > 1. More specifically, there
are two positive real roots of (3.13) for 7 > 7, where 7, > 0 is the unique value of 7 at which 2v/1 4+ 7A
and G(\) in (3.13) intersect tangentially at some A = A, > 0. The key observation is that an unstable
eigenvalue of the regular NLEP only generates an instability for the sub-diffusive NLEP when it lies
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FicUure 11. Hopf bifurcation for the GM model corresponding to setting p = r = 3,
g(u) =u=2, f(u) =u"t and up, = 0 in (1.2) and (1.3). Left panel: the plot of the path
A(7) (solid curve) of the complex conjugate eigenvalue pair for the NLEP with regular
diffusion on the range 7 < 7 < 7. The wedge of instability for the sub-diffusive problem
when v = 1/3 lies between the two heavy solid lines. For values of 7 for which \(7) is
inside this wedge, the one-spike solution for the sub-diffusive GM model has an oscillatory
instability. Right panel: the Hopf bifurcation threshold 7z, versus v corresponding to
when the path A(7) intersects the edge of the wedge of instability.

within the wedge of instability (3.42). This wedge of instability becomes narrower as v decreases, and
concentrates on the positive real axis in the A-plane as v — 0. The anomaly-dependent Hopf bifurcation
threshold, labelled by 7p, is computed numerically from the implicit condition that
™y
A= —
arg 5
which involves the eigenvalue path A = A(7) of the roots of (3.13) with Re(A) > 0 and Im()\) > 0. This
condition (3.43) corresponds to when this eigenvalue path intersects the edge of the wedge of instability
shown in Fig. 7. In this sense, we conclude that the sub-diffusive RD system (1.3) undergoes an oscillatory
instability at a larger value of 7 than for the case of regular diffusion. We summarize this result as follows:

(3.43)

Proposition 3.16. Suppose that dy < 2, di < 0 and G(0) > 2. Then, for all v in 0 < v < 1, the
Hopf bifurcation threshold g~ for the sub-diffusive NLEP satisfies g < T~y < T¢. Here T is the Hopf
bifurcation threshold for the reqular diffusion case, as given by Proposition 3.11, and 74 is the value of T,
where the compler conjugate eigenvalue path for the reqular NLEP merge onto the positive real azis.

In addition, suppose that the eigenvalue path for the regular NLEP in the first quadrant Im(A) > 0
and Re(\) > 0 is monotonic in the sense that Re(\) increases monotonically while Im(A) decreases
monotonically as 7 increases. Then, the Hopf bifurcation threshold 7g., for the sub-diffusive NLEP
increases as <y decreases.

In Fig. 11 we illustrate Proposition 3.16 for the GM model corresponding to setting p = r = 3,
g(u) = u?, f(u) = u=t and up, = 0 in (1.2) and (1.3). For this example dy = —2, d; = —18, and
G(0) =4 > 2. In the left panel of Fig. 11 we plot the path A(7) of the complex conjugate eigenvalue pair
for the NLEP with regular diffusion on the range 7 < 7 < 7¢, as computed from (3.13). We calculate
7+ &~ 10.68 and from Proposition 3.11 we get 7y = 2.5. In Fig. 11, we also plot the wedge of instability for
the sub-diffusive problem when v = 1/3. For this example, the eigenvalue path of the regular NLEP is
monotonic in the sense described above. Therefore, 75, increases as v decreases. This Hopf bifurcation
threshold of the sub-diffusive problem is shown in the right panel of Fig. 11.
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We remark that the analysis for the case dy > 2 and d; < 0 is more intricate. Recall that the Hopf
bifurcation result for the regular NLEP for this parameter range was given in Proposition 3.13. In
particular, when dj satisfies (3.32), the regular NLEP has two Hopf bifurcation thresholds 74+ > 0 with
a one-spike solution being stable on the intermediate range 77— < 7 < 7g4, and unstable otherwise.
However, since an unstable eigenvalue of the regular NLEP only generates an instability for the sub-
diffusive problem when it lies within the wedge of instability (3.42), it follows for any v in 0 < v < 1 that
this intermediate stability zone in 7 will be larger for the sub-diffusive problem.

4. Discussion

We have studied the existence and linearized stability of a one-spike equilibrium solution to the class of
RD systems (1.2) on the infinite-line. A similar analysis has been done for the corresponding shadow
system (2.2). For arbitrary p > 2 and r > 1 in (1.2) and (2.2), the problem of the existence of a one-spike
solution was reduced to the study of the scalar nonlinear algebraic equation (3.4) and (2.6), respectively.
To determine the linearized stability of the one-spike solutions, we used the method of matched asymptotic
expansions to derive a nonlocal eigenvalue problem (NLEP). For the special case where p = 2r — 3 and
r > 2, we showed that the spectrum of this NLEP can be reduced to the study of the roots of a rather
simple transcendental equation involving 7, r, and two key parameters dy and d; related to the specific
choices of the kinetic functions of the nonlinearities f(u) and g(u) in (1.2) and (2.2).

From an analysis of these transcendental equations by using a winding number approach together with
detailed analytical calculations, explicit stability and instability results were obtained in terms of ranges of
the two parameters dy, di, and the reaction-time constant 7. Most notably, in certain parameter regimes
of dy and d; our theory provides sufficient conditions for the existence of a unique Hopf bifurcation value
of 7, as well as a simple analytical formula to calculate this threshold. The theory was illustrated for the
GM model and for a generalization of the GS model.

There are several related problems that can be investigated within the simple framework afforded by
an explicitly solvable NLEP. The first problem is to characterize analytically the slow dynamics and
stability of a two-spike pattern on the infinite line for the regular diffusion problem (1.2) and its sub-
diffusive counterpart (1.3). For the case p = 2r — 3 with r > 2, for which the associated NLEP is
explicitly solvable, it should be possible to provide an explicit theory characterizing both competition
and oscillatory instabilities of the two-spike pattern. Results in this direction are given in [25]. A second
open problem is to investigate delayed bifurcation effects for the stability of pulses due to either the
slow drift of the pulse locations or due to slowly varying extrinsic control parameters, such as 7 or the
length of the domain. Finally, as mentioned in Remark 2.8, it would be interesting to investigate whether
more general non power-law nonlinearities can also lead to an explicitly solvable NLEP. Results in this
direction are given in [32].
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