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Linear stability theory is developed for an activator–inhibitor model where fractional deriv-

ative operators of generally different exponents act both on diffusion and reaction terms. It

is shown that in the short wave limit the growth rate is a power law of the wave number

with decoupled time scales for distinct anomaly exponents of the different species. With equal

anomaly exponents an exact formula for the anomalous critical value of reactants diffusion

coefficients’ ratio is obtained.

1 Introduction

Reaction–diffusion equations have been used for a long time to model numerous natural

phenomena, far beyond the immediate chemical application. A remarkable property of

systems governed by these equations is the onset of a short wave (Turing) instability

leading to a spontaneous breakdown of the translational invariance [14].

In the past decade a plethora of transport phenomena not amenable to modelling

by standard Brownian motion and conventional diffusion equation has been discovered.

These anomalous diffusive processes are characterised by temporal scaling of the mean

square displacement of the type 〈r2(t)〉 ∼ tγ , where 0 < γ < 1 (sub-diffusion) or γ > 1

(super-diffusion). The anomalous scaling has been theoretically predicted for diffusion in

fractals and disordered media (refer to the book in [2] and review papers [12, 13]) and

studied in numerous experiments. Sub-diffusion has been observed in porous media [3],

in glass-forming systems [23], in cell membranes [18], inside living cells [24] as well as in

many other physical and biological systems. An essential progress in understanding and

mathematical modelling has been achieved. It is found that sub-diffusive processes can be

modelled by a memory term containing a fractional derivative.

The notion of a fractional derivative enables differentiation and integration to an

arbitrary order through generalisation of Cauchy’s formula and analytic continuation of

the Γ function. An integral of order γ,

Iγf(t) =
1

Γ (γ)

∫ t

0

f(τ)(t − τ)γ−1dτ, t > 0, γ ∈ �, (1.1)

along with the fact that the differentiation operator is the left-inverse but not the

right-inverse of the integral operator, lead to the definition of a derivative of order γ
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as

Dγf(t) = DmIm−γf(t) =
1

Γ (m − γ)

dm

dtm

∫ t

0

f(τ)dτ

(t − τ)γ+1−m
,

m − 1 < γ � m, m ∈ �. (1.2)

Formal substantiation of the definitions, rules of fractional calculus and proof of con-

sistence with the basic calculus theorems can be found in the book [16]. From a physics

standpoint derivatives of arbitrary order grant a dynamical system memory, as the kernel

(t − τ)γ+1−m convolves the system state from t = 0 and onwards. In the present context

such a memory mechanism enables an essential hindrance of the molecular motion due

to specific properties of the medium and leads to the understanding that normal diffusion

is a special limit of a whole family of processes; though widely used, it is insufficient in

many cases.

Fractional order differentiation is closely related to the continuous time random walk,

where the time period between consecutive jumps is given by a probability function. For

0 < γ < 1 this density attentuates faster than the Gaussian distribution and possesses

a cusp at x = 0, yielding an essentially slower dispersion of particles, alias sub-diffusion.

One example is the generalised Fokker–Planck equation

∂γ

∂tγ
P (r, t) = κγ∇2P (r, t), (1.3a)

or equivalently

∂

∂t
P (r, t) = κγ

∂1−γ

∂t1−γ
∇2P (r, t). (1.3b)

If a group of particles is released at the origin at time t = 0 and their dispersion is

traced, the time-dependent distribution is Gaussian with a growing variance for γ = 1,

and a cusped function for 0 < γ < 1. The cusp gradually disappears as the uniform

dispersion equilibrium is approached. Numerous types of fractional differential equations,

their solutions and the corresponding physical interpretation can be found in the reviews

[12, 13] and the book [17].

Reaction processes are observed in a number of anomalous systems, for example

recombination in sub-diffusive media [19, 20], transport processes by formation of carious

lesion of the enamel [10] and spreading of tumour cells [4]. Standard reaction kinetics

derived from the law of mass action [7] is inapplicable both for diffusion-limited reactions,

where the reaction term is subject to memory effects and has to be modified by application

of a fractional derivative [25], and for activation-limited reactions, modelled by an integro-

differential equation [21]. Thus, even the functional form of the reaction term is not

universal, and is determined by the reaction type and underlying physical factors.

The investigation of instability in anomalous reaction–diffusion systems could provide

a test for mathematical models used for their description. The present paper analyses

the onset of Turing instability for diffusion-limited reaction, suitable for modelling by a

fractional derivative. In general, it is not obvious that the reaction anomaly exponent

coincides with that of the diffusion. Moreover, each species may diffuse with its own

anomaly exponent. As confirmed by a number of experiments, diffusion within a cell
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cytoplasm or its organelles is often anomalous and reactions are diffusion-limited [5]. The

diffusing molecules differ greatly in size, spatial structure, polarity, binding energy, escape

time and other properties affecting their progress through hydrophilic and hydrophobic

regions of the cell. Thus the expected differences in diffusion and reaction anomaly

exponents are quite natural. One example of size effect is the change in exponent value

due to different ratio of bead probe diameter to filament size in actin networks [1].

Hence, it is of interest to create a model embracing all possible exponent combinations

and elucidate the connection between the few special cases studied hitherto. Anomalous

diffusion with normal reaction and identical anomaly exponents for all species, i.e., equally

slowed dispersion of all reactants, was studied in [7, 8], for the first time describing

oscillatory unstable modes that never appear in normal diffusion. The new stability

threshold due to these modes was found in [15] and the notion of diffusion coefficients’

ratio was further extended to the case of unequal anomaly exponents, i.e., essentially

differing scales of particles dispersion for each species. In [6] numerical simulations of

patterns of this type are presented. On the other hand, the simplest model with diffusion

and reaction both anomalous (identical memory terms for all components) predicted

unchanged stability criterion [11]. To paraphrase, when both processes are slowed down

to the same extent, the stability threshold remains normal. With the new model the earlier

results [6–8, 11, 15] are recovered in particular limits and the transition between these

limit cases is described.

2 Mathematical model

A two-species activator–inhibitor system evolves according to

∂

∂t

(
n1

n2

)
= C∇2

(
D1−γ1n1

D1−γ2n2

)
+

(
D1−δ1f1

D1−δ2f2

)
in Ω, (2.1)

n(r, t) =

(
n1

n2

)
, f (n) =

(
f1

f2

)
, C =

(
1 0

0 d

)
,

where n1 and n2 are respectively the activator and inhibitor density numbers, depending

on position r and time t. Here f (n(r, t)) denotes the reaction kinetics. The matrix of

diffusion coefficients is taken diagonal and constant to isolate the anomaly effects, with d

being the ratio of the diffusion coefficients. The fractional operator is defined as follows

[7, 8]:

D1−γ = D1−γ + L−1(D−γ[ · ]t=0), (2.2)

where the operator

D−γy(t) =
d−γy(t)

dt−γ
=

1

Γ (γ)

∫ t

0

y(τ)

(t − τ)1−γ
dτ (2.3)

denotes the Riemann-Liouville fractional integral and

D1−γy(t) =
d1−γy(t)

dt1−γ
=

d

dt

d−γy(t)

dt−γ
; (2.4)
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L−1 denotes the inverse Laplace transform. The regularisation term L−1(D−γ[ · ]t=0)

arises due to the manner initial conditions are handled in Laplace transform formalism,

i.e., the function n(r, t) is discontinuous at t = 0 in the sense that limt→0− n(r, t) = 0,

whereas limt→0+ n(r, t) should equal the prescribed initial function n(r, 0) = n|t=0 (see [7]

for a detailed derivation). The exponents 0 < γj, δj < 1, j ∈ {1, 2}, are generally different

for each species. For the sake of simplicity, the domain Ω is the whole space or has a

rectangular shape,

Ω ⊂ �p, p ∈ {1, 2, 3}. (2.5)

Boundary conditions are assumed periodic or zero flux across the domain boundary

∇n · ν = 0 on ∂Ω (ν is the outward normal). Distinct anomaly exponents grant the

processes of diffusion and reaction the ability to evolve on different time scales.

3 Instability criterion

Temporal evolution of a small perturbation ∆n about a uniform steady-state n0, f (n0) = 0

is governed by the linearised system

∂

∂t

(
∆n1

∆n2

)
= C∇2

(
D1−γ1∆n1

D1−γ2∆n2

)
+ ∇f

(
D1−δ1∆n1

D1−δ2∆n2

)
(3.1)

wherein

∇fjk =

(
∂fj
∂nk

)
n0

(3.2)

is the kinetic sensitivity matrix. It is assumed that the steady state n0 is stable in the

absence of diffusion (and δ1 = δ2 = 1). Thus the eigenvalues of ∇f must have negative

real parts, and the entries of ∇f satisfy tr∇f < 0, det ∇f > 0. Later on, following [14], it is

assumed that ∇f11 > 0, ∇f22 < 0 and d > 1.

Upon subsequent application of temporal Laplace transform (denoted by tilde) and

spatial Fourier transform (denoted by hat), equation (3.1) becomes

̂̃
∆n = S−1

L ∆̂n|t=0, (3.3)

where SL is a 2 × 2 matrix with dependence on the Laplace and Fourier transform

variables s and q ∈ �p, q = |q|:

SL =

(
s + q2s1−γ1 − ∇f11s

1−δ1 −∇f12s
1−δ1

−∇f21s
1−δ2 s + d q2s1−γ2 − ∇f22s

1−δ2

)
. (3.4)

The system dispersion relation is then given by

s2−δ1−δ2 D(q, s; γ1, γ2, δ1, δ2) = det SL = 0. (3.5)

If the domain Ω is infinite, appropriate decay of n(r, t) is assumed for |r| → ∞, and the

spectrum q is continuous. Otherwise, both for zero-flux and periodic boundary conditions

the spectrum is discrete.
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In anomalous systems existence of roots with positive real part does not imply instability

[8]. Therefore, further analysis of the disturbance temporal evolution is required to

characterise the truly unstable roots. In the Fourier domain the perturbed density vector

will have the form

∆̂n(q, t) =
1

2πi

∫ c+i∞

c−i∞
I(q, s)est ds, (3.6a)

I(q, s) = S−1
L ∆̂n|t=0 =

A(q)s + B(q) + C1(q) + C2(q)

s2−δ1−δ2D(q, s; γ1, γ2, δ1, δ2)
, (3.6b)

A(q) = ∆̂n|t=0, Bj(q) = q2s1−γjCkk∆̂nj |t=0,

C1j(q) = s1−δj ∇fjk∆̂nk|t=0, C2j(q) = −s1−δk∇fkk∆̂nj |t=0,

j, k ∈ {1, 2}, j � k, (3.6c)

D(q, s; γ1, γ2, δ1, δ2) = sδ1+δ2 + d q2sδ1+δ2−γ2 + q2sδ1+δ2−γ1 − ∇f22s
δ1 − ∇f11s

δ2

+ d q4sδ1−γ1+δ2−γ2 − ∇f22q
2sδ1−γ1 − d∇f11q

2sδ2−γ2 + det ∇f . (3.6d)

The essential difference between (3.6) and its particular case with δ1 = δ2 = 1 treated in

[8, 15] is the possible singularity at s = 0 in (3.6b). The latter can be eliminated by means

of the variable transformation ξ = s	 , 	 being a constant constructed in such a way that

the integrand has no singularity at ξ = 0. Later on 	 will be taken rational. For example,

when εj
def
= δj − γj > 0, j ∈ {1, 2}, the appropriate power is 	 = min{δ1, δ2}. To see that,

note that the numerator and denominator lowest s powers are z = 1 − max {δ1, δ2} and

p = 2 − δ1 − δ2 respectively. Upon taking 	 = 1 − (p − z) and changing the integration

variable to ξ the integrand has no zero or branching point at ξ = 0. This property allows

its straightforward transformation into a rational function and application of Watson’s

lemma later on.

If one or both εj are negative, the situation is more complicated. If εj < 0, but εk > 0,

p = 2 − γj − δk (j � k). As to z, it is different for the two species. zj = 1 − max{δ1, δ2}, as

before, but

zk =

{
1 − γj δk < γj
1 − δk δk > γj

, j � k. (3.7)

Therefore the transformation will be either ξk = sδk or ξk = sγj . Since the power 	

participates in determination of the instability sector (see below), it turns out that the

anomaly of the processes of species j may manifest itself in the stability characteristics of

species k. If both εj , εk < 0, p = 2 − γj − γk and

zj =

{
1 − γj δk < γj
1 − δk δk > γj

, j ∈ {1, 2}. (3.8)

Thus ξj = sγk or ξj = sγj−εk , and the interference of species in the stability characteristics

of one another is mutual.

As mentioned above, for any combination of the anomaly exponents it is possible to

remove the singularity of I(q, s) at s = 0 by means of the variable transformation ξ = s	 .

It is reasonable to assume that all powers of s are reduced fractions, as the set of rational

numbers is dense within �. Then I(q, s) becomes a ratio of two functions of rational
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Figure 1. Integration contour Γ (dotted) and modified contours Γξ (dashed), Γσ (solid) after

successive transformations ξ = s	 , σ = ξ1/R.

powers of s. The integration path is closed in order to use the residue theorem. The

original and transformed contours are shown in Figure 1 as dotted and dashed curves

respectively. The vertical line 
s = c becomes a curve, whose argument at infinite distance

from origin equals ±	π/2, and the branch cut along the negative s axis becomes a sector

of argument [	π, (2 − 	)π].

Now the inversion integral can be evaluated as follows:

2πi∆̂n =

∫

s=c

I(q, s)est ds = lim
R→∞,εc→0

(∮
Γ

I(q, s)est ds −
∫
Γ\{
s=c}

I(q, s)est ds

)
. (3.9)

Using the zero/pole-eliminating transformation and replacing I(q, s) �→ I(q, ξ), one finds∫

s=c

I(q, s)est ds =

∫
cξ

I(q, ξ)eξ
1/	 t dξ

= lim
R→∞,εc→0

(∮
Γξ

I(q, ξ)eξ
1/	 t dξ −

∫
Γξ\cξ

I(q, ξ)eξ
1/	 t dξ

)
. (3.10)

The integral along the arc CD vanishes in the limit εc → 0:

lim
εc→0

∫ −	π

	π

I(q, εce
iθ) exp

(
ε1/	
c eiθ/	t

)
εcie

iθ dθ = 0. (3.11)

The integrals along the arcs AB and EF vanish in the limit R → ∞. For the arc AB (and

similarly for EF)

lim
R→∞

∣∣∣∣∫ 	π

	π/2

I(q, Reiθ) exp
(
R1/	eiθ/	t

)
Rieiθ dθ

∣∣∣∣
� lim

R→∞
max

	π/2<θ<	π
|I(q, Reiθ)|R

∫ 	π

	π/2

exp
(
R1/	 cos(θ/	)t

)
dθ. (3.12)
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Changing variables ϕ = θ/	 and denoting ρ = R1/	 ,

R

∫ 	π

	π/2

exp
(
R1/	 cos(θ/	)t

)
dθ = 	ρ	

∫ π

π/2

exp (ρ cos(ϕ)t) dϕ � K(t)ρ	−1. (3.13)

For the proof of the last inequality see [8]. Combining with

lim
R→∞

max
	π/2<θ<	π

|I(q, Reiθ)| = 0 (3.14)

yields the proposed result.

The integrals along the radii BC and DE attenuate algebraically in time. For the radius

BC (and similarly for DE) ξ = r exp(i	π), and the integral can be evaluated at large t

through Watson’s lemma, as the integrand is expandable in a series of rational powers

(I(q, ξ) is replaced by I(q, r)):

lim
t→∞

∫ ∞

0

I(q, r)e−rt dr ∼ aΓ
( α

R

)
t−α/R, (3.15)

with R being the least common denominator of all fractional powers in I , α a positive

integer, whose exact value depends on that power series and is unimportant, and a a

constant. The above argument holds as long as the radius is located in the left open half

plane, i.e., 1/2 < 	 < 1 for both species. Otherwise the inverse Laplace transform does

not exist.

To exemplify, in the simpler case εj = δj − γj > 0, j ∈ {1, 2}, 	 = min{δ1, δ2}, this

limitation means that δj cannot drop below the value of 1/2. In a situation with δj = γj
(εj = 0) or δj = 0 (εj < 0), the limitation on the value of 	 = γj leads to 1/2 < γ < 1.

Limiting the value of the anomaly exponents so that 1/2 < 	 < 1, the inverse Laplace

transform equals to the residue integral. To evaluate the latter, introduce σ = ξ1/R, with

R being the least common denominator of all fractional powers in I . Thus I will become

a ratio of two polynomials, which upon decomposition into a sum of rational functions

and Laplace transform inversion will yield exponentially growing terms if at least one of

the poles is located in the open right half plane, i.e., if

arg σ ∈ (−π/2, π/2). (3.16)

Now combining the two successive power transformations 	 and 1/R, the contour

will change accordingly (solid curve in Figure 1) and the instability sector will become

(−	π/(2R), 	π/(2R)). The generalised instability criterion then becomes, in terms of the

dispersion relation roots s∗,

arg s
	/R
∗ ∈ (−	π/(2R), 	π/(2R)). (3.17)
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4 Dispersion relations

The following cases are considered:

(a) γ1 = γ2 = δ1 = δ2

(b) γ1 = γ2 = γ, δj = 0, j ∈ {1, 2}
(c) γ1 = γ2 = γ, δj = 1, j ∈ {1, 2}
(d) γ1 = γ2 = γ, δ1 = δ2 = δ, γ� δ

(e) γ1 � γ2, δ1 � δ2, γj � δj , j ∈ {1, 2}.

(4.1)

The respective dispersion relations are (the asterisk in the designation of the roots s∗ is

omitted for convenience):

s2γ + ((1 + d)q2 − tr∇f )sγ + d q4 − trw∇f q2 + det ∇f = 0, (4.2a)

d q4s−2γ + (1 + d − trw∇f )q2s−γ + det ∇f − tr∇f + 1 = 0, (4.2b)

s2 + (1 + d)q2s2−γ − tr∇f s + d q4s2(1−γ) − trw∇f q2s1−γ + det ∇f = 0, (4.2c)

s2δ + (1 + d)q2s2δ−γ − tr∇f sδ + d q4s2(δ−γ) − q2trw∇f sδ−γ + det ∇f = 0, (4.2d)

sδ1+δ2 + d q2sδ1+δ2−γ2 + q2sδ1+δ2−γ1 − ∇f22s
δ1 − ∇f11s

δ2

+ d q4sδ1−γ1+δ2−γ2 − ∇f22q
2sδ1−γ1 − d∇f11q

2sδ2−γ2 + det ∇f = 0, (4.2e)

wherein tr∇f , trw∇f = d∇f11 + ∇f22 and det ∇f are the trace, weighted trace and determ-

inant of the sensitivity matrix ∇f .

Case (a). Equation (4.2 a), corresponding to anomalous reaction and diffusion with the

same exponent, is a quadratics in sγ , identical to the normal one. Hence the curve sγ(q2)

has a bell shape and a range of unstable wave numbers q2
− < q2 < q2

+, again identical

to that obtained for normal diffusion. If sγ > 0, then there is a real root s > 0, which is

unstable. If sγ < 0, no instability ensues, since 	 = γ. So all oscillatory modes are stable

(supported by numerical simulations in [11]). This is a particular extension of the normal

model with εj = 0, j ∈ {1, 2}, drawing a borderline between more general models with

εj � 0 treated below.

Case (b). Equation (4.2b) has a solution in closed form

2d q2s−γ = −(1 + d − trw∇f ) ±
√

∆(d), (4.3)

∆(d) = (1 + d − trw∇f )2 − 4(det ∇f − tr∇f + 1).

The discriminant may be of either sign. When ∆(d) < 0, θ∆ denotes the argument of s

(with the proper caution concerning the arctangent branches):

θ∆ = ±1

γ
arctan

√∣∣∆(d)

∣∣
1 + d − trw∇f

. (4.4)

The relevant parameter is 	 = γ, giving the instability sector as
(
−γπ/(2R), γπ/(2R)

)
with R being the denominator of the reduced fraction γ. Then one arrives to the following
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Figure 2. Normal (s(q2), dashed) and anomalous (s(q2), solid) growth rate curves.

possibilities of root locations:

∆(d) > 0, 1 + d − trw∇f > 0, arg s = π/γ > πγ/(2R) stable

∆(d) > 0, 1 + d − trw∇f < 0, s ∈ 
 unstable

∆(d) < 0, θ∆ ∈ (−γπ/(2R), γπ/(2R)) unstable

θ∆ � (−γπ/(2R), γπ/(2R)) stable.

(4.5)

Any of the above cases might be reached upon adjustment of the system parameters. Note

that the instability type does not depend on the wave number and is either monotonic or

oscillatory.

Case (c). Relation (4.2c) corresponds to the model with anomalous diffusion but normal

reaction. Below is a brief analysis of its major properties, pertinent mostly as a limiting

case of the more general model (d). For a detailed derivation see [15]. The essential

difference between equation (4.2c) and its normal counter-part is the appearance of short

wave (q → ∞) instability. Designate q2 def
= q2s1−γ and note that (4.2c) takes the form of

a normal relation where q is replaced by q. Hence in the plane (q2, s) the curve s(q2) is

bell-shaped (identically to normal diffusion). As an immediate conclusion follows that if

d is large enough, there exists a range of unstable q, i.e., {q | s(q2) > 0}. At the range end

points {q | s(q2) = 0} the quantity q2 remains finite, whereas s vanishes. The only way to

have s → 0 and q2s1−γ � 0 is q → ∞ at the same rate as s1−γ → 0. Hence on the plane

(q2, s) at the abscissa points q2
± the curve s(q2) approaches zero as q tends to infinity,

forming two real branches of decaying magnitude. Outside the range of unstable q the

growth rate s is complex. Figure 2 depicts a typical example. It is seen that the neutral

curve changes essentially when the anomaly exponent γ drops below unity, rendering the

infinitely short wave numbers unstable. This effect is analysed in more detail below for

the more general case of anomalous reaction.
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Case (d). Analysis of (4.2d) focuses on the behaviour of s(q) in the limit q 
 1. In this limit

the roots belong to one of two groups: roots of decaying magnitude, i.e., limq→∞ |s| = 0

(later on ‘decaying roots’), or roots of diverging magnitude, i.e., limq→∞ |s| = ∞ (later on

‘diverging roots’). First, seek decaying roots of (4.2d) in the form

s ∼ qµ1w1

⎛⎝1 +

∞∑
j=2

qµjwj

⎞⎠ , µj < 0, wj ∼ O(1) ∀ j, µj+1 < µj ∀ j � 2. (4.6)

Comparison of the powers of q yields

µ1 = − 2

δ − γ
. (4.7)

Thus a decaying solution exists only for δ > γ. Solving O(q0) equation

dw
2(δ−γ)
1 − trw∇f wδ−γ

1 + det ∇f = 0, (4.8)

w
δ−γ
1 =

1

2d

(
trw∇f ±

√
tr2

w∇f − 4d det ∇f
)
.

When the discriminant is positive, both roots are real and positive, entailing monotonically

unstable modes. The vanishing of the discriminant

tr2
w∇f − 4d det ∇f = 0 (4.9)

defines a critical coefficient dM, where monotonic instability disappears. There are two

options: to view the entries of the matrix ∇f as fixed and then trw∇f varies with d, or

a rather peculiar approach to render the parameter trw∇f fixed. With the first approach

(4.9) is a quadratic equation for d and its solution (only one root dM satisfies dM > 1)

defines the monotonic instability domain d > dM. Conversely, taking trw∇f fixed, an

explicit expression

dM =
tr2

w∇f

4 det ∇f
(4.10)

is obtained, but the corresponding instability domain becomes d < dM. The latter approach

simplifies greatly the derivation of the oscillatory instability threshold, and is adopted

below.

With the special values γ = δ = 1 the normal monotonic modes are recovered. By (4.8)

the threshold of monotonic instability remains unchanged with the inclusion of anomaly.

However, whilst a normal system turns stable above this threshold, in an anomalous one

a negative discriminant introduces oscillatory modes, unstable as long as s	 is located

within the instability sector. Define the oscillatory critical coefficient dO as the threshold

of absolute stability, i.e., the point where the argument of s exceeds the sector boundary.

To leading order,

argwδ
1 ∼ δ

δ − γ
arctan

√
d

dM
− 1 =

δπ

2
, (4.11)

giving

dO ∼ dM cos−2
(π

2
(δ − γ)

)
. (4.12)
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Figure 3. Stability threshold diffusion coefficients’ ratio dO (oscillatory, solid) and dM (monotonic,

dashed) versus the anomaly exponent γ in a system with normal reaction (δ = 1).

The first correction is found via O(q−2δ/(δ−γ)) equation:

µ2 = − 2δ

δ − γ
, w2 = ∓ (1 + d)wδ

1 − tr∇f wγ
1

(δ − γ)trw∇f
√

1 − d/dM

. (4.13)

The contribution of argw2 is negligible when tan argw1 diverges at dO . Since all higher

orders will have the same property,

dO = dM cos−2
(π

2
(δ − γ)

)
. (4.14)

Similarly to (4.10), this may be regarded as a quadratic equation in d for fixed entries of

∇f ,

dO =
tr2

w∇f (dO)

4 det ∇f
cos−2

(π

2
(δ − γ)

)
, (4.15)

and then the oscillatory instability domain is dO < d < dM, or as an explicit expression if

trw∇f is fixed and then the corresponding domain is dM < d < dO.

For a system with anomalous diffusion (γ < 1), but normal reaction (δ = 1), equation

(4.14) simplifies to

dO = dM sin−2
(πγ

2

)
, (4.16)

coinciding with the result obtained in [15]. To clarify this result in the case of the usual

approach with ∇f fixed, the solution of (4.14) is plotted as a function of the anomaly

exponent in Figure 3. Note the instability threshold decrease as the system grows more

anomalous (smaller values of γ).

A typical example of the way the growth rate function changes with d is shown in

Figure 4. For a normal sub-critical value of d two real branches correspond to monotonic

unstable modes. The complex branch located within the instability sector corresponds to

oscillatory unstable modes. With an anomalous sub-critical value of d the real branches
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Figure 4. Growth rate function versus wave number (upper) and its polar map (lower) for

γ = 0.5, δ = 0.9 and three values of d: normal sub-critical (solid, one complex and two real unstable

branches), anomalous sub-critical (dashed, one complex unstable branch) and anomalous super-

critical (dash-dotted, one complex stable branch). The instability sector is shown by a dotted line.

All complex roots are shown with their conjugate counterparts.

disappear, but the complex branch still lies within the instability sector. For an anomalous

super-critical d the remaining complex branch is stable.

It is possible to obtain a diverging solution, i.e., a branch with |s(q)| → ∞ as q → ∞.

Using the expansion

s ∼ qν1w1

⎛⎝1 +

∞∑
j=2

qνjwj

⎞⎠ , ν1 > 0, wj ∼ O(1) ∀ j, νj+1 < νj < 0 ∀ j � 2 (4.17)

and comparing the powers of q in (4.2d),

ν1 =
4δ

γ
. (4.18)

Of course, a solution of this nature is valid for a non-vanishing δ (otherwise by (4.17) it

does not diverge in magnitude). In particular, the solution of case (b) cannot be obtained

from (4.17) by a simple substitution of δ = 0.

Solving the O(q4δ/γ) equation,

dw
−2γ
1 + (1 + d)w−γ

1 + 1 = 0, w
γ
11 = −1, w

γ
12 = −d , (4.19)

where wjk is the k-th branch of the j-th term in expansion (4.17). So far there was no
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restriction on the relation between δ and γ. The first correction is found via O(q2δ/γ)

equation:

ν2 = −2δ

γ
, (4.20)

w21 = − w−δ
11

γ(1 + d)
(d − 1)∇f11, w22 = − w−δ

12

γ(1 + d)
(1 − d)∇f22.

Bearing in mind the constraint d > 1 and the signs of the entries of ∇f [14], wδ
1 will

determine the sign of the argument of w2:

argw2 = π
δ

γ
. (4.21)

Hence the sign of w2 will be determined by the relation between δ and γ. There seems to

be no further importance to that relation for the diverging solution.

As to stability properties, πδ/(Rγ) > πδ/(2R) (R is an integer and γ < 1), so that

diverging solutions exhibit no instability at the short wave limit.

All results obtained for case (d) generalise the derivation for the case of equal anomaly

exponents γ with δ = 1 [15]. Thus for γ < δ there are both decaying and diverging

solutions, similarly to δ = 1 case (there δ = δmax = 1, and the results are valid for the

widest possible range of γ). Conversely, for 0 < δ < γ there is just the diverging solution,

which is stable (the possibility of instability at moderate wave numbers is not excluded).

The reason for such asymmetry about γ, δ is as follows.

Similarly to the δ = 1 case, denote

q2 = q2 sδ−γ. (4.22)

Then (4.2d) reads

s2δ + sδ[(1 + d)q2 − tr∇f ] + d q4 − q2trw∇f + det ∇f = 0, (4.23)

which gives the bell-shaped curve sδ(q2 sδ−γ) . This argument holds also for case (a), so

that δ � γ. When s → 0 and q2 → q2
±, the two tails of the decaying solutions with q → ∞

are obtained. This clarifies the appearance of the relation γ < δ – without this condition

it is impossible to have s infinitesimal and keep q2 sδ−γ finite. If 0 < δ < γ, the bell-shaped

curve is irrelevant, and only the diverging solution exists. The solution in the limiting case

δ = 0 also diverges in magnitude for q 
 1, yet is of a different nature and has been

treated separately in case (b). The limit δ = γ, on the other hand, is worth further insight.

The case δ = γ is singular in the following sense. Denote ε = δ− γ. For an infinitesimal,

but non-vanishing, value of ε the function sε drops from unity to zero at s = 0 over

an infinitesimally narrow range of s. The bell-shaped function sγ(q2) for ε = 0 becomes

sγ+ε(q2sε), replacing the finite intersection points with the abscissa by two decaying tails.

Nevertheless, the transition from ε = 0 to ε > 0 is smooth in the sense that the bell shape

changes very little. Figure 5 shows the curves for δ − γ = 0 and δ − γ � 1. In the latter

case the curve is close to normal, but possesses two short wave tails.

Case (e). The most general model in this context is (e). Again, the analysis focuses on the

growth rate dependence on the wave number at the limit q 
 1. Just like in (b), the sign
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Figure 5. Transition from δ = γ (solid) to δ = γ + ε (dashed) for γ = 0.9, ε = 0.01. For the latter,

s ∈ � in the range q < q−.

of εj = δj − γj , j ∈ {1, 2}, determines the solution character. Hereby the solutions are

presented to leading order only. All higher order corrections appear in the appendix.

First, consider a system with εj > 0, j ∈ {1, 2}. One may expect that decaying solutions

exist. By expansion (4.6), comparison of the powers of q in (4.2e) reveals two branches

for each of the cases ε1 � ε2, generalising γ1 � γ2 with δj = 1, j ∈ {1, 2} [15]. For ε1 > ε2

the leading terms are given by equations of O(q0)

µ11 = − 2

ε2
, wε2

11 =
det ∇f

d∇f11
, (4.24)

and O(q2(1−ε2/ε1))

µ12 = − 2

ε1
, wε1

12 = ∇f11 . (4.25)

For ε1 < ε2 the leading terms are given by equations of O(q0)

µ11 = − 2

ε1
, wε1

11 =
det ∇f

∇f22
, (4.26)

and O(q2(1−ε1/ε2))

µ12 = − 2

ε2
, wε2

12 =
∇f22

d
. (4.27)

The functions w1j are an immediate generalisation of the case δj = 1, j ∈ {1, 2} [15]. As

to stability characteristics, if ε1 > ε2, both branches are real positive and thus unstable.

Conversely, if ε1 < ε2, both branches are complex with arguments lying outside the

instability sector:

argw
	/R
1j = 	π/(εjR) > 	π/(2R), j ∈ {1, 2}. (4.28)
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Now suppose εj < 0, j ∈ {1, 2}. With these relations between the anomaly exponents

it is impossible to obtain a consistent expansion of form (4.6), and hence no decaying

solutions exist. This property makes the relations εj � 0 rather interesting. First, suppose

ε1 < 0, ε2 > 0. By (4.6), a decaying root of (4.2e) ensues at order O(q2(1−ε1/ε2)):

µ1 = − 2

ε2
, wε2

1 = ∇f22/d, (4.29)

coincident with the leading order of one of the solutions obtained above with εj > 0, j ∈
{1, 2}. Conversely, suppose ε2 < 0, ε1 > 0. A decaying root ensues at order O(q2(1−ε2/ε1)):

µ1 = − 2

ε1
, wε1

1 = ∇f11, (4.30)

again coincident with the leading order of one of the solutions obtained above with εj > 0,

j ∈ {1, 2}. Thus, the number of positive εj determines the number of decaying roots. To

leading order the solution of a single εj < 0 coincides with one of the solutions for both

εj > 0, and the stability characteristics follow, since the sign of εj does not change the

instability sector.

For diverging solutions the sign of εj is unimportant, and the relevant distinction is

γ1 � γ2. For γ1 < γ2 the two branches ensue by equations of order O(q2(δ1+δ2)/γ1 )

ν11 =
2

γ1
, w

γ1

11 = −1 , (4.31)

and O(q2+2(δ2+ε1)/γ2 )

ν12 =
2

γ2
, w

γ2

12 = −d . (4.32)

For γ1 > γ2 the two branches ensue by equations of order O(q2(δ1+δ2)/γ2 )

ν11 =
2

γ2
, w

γ2

11 = −d , (4.33)

and O(q2+2(δ1+ε2)/γ1 )

ν12 =
2

γ1
, w

γ1

12 = −1 . (4.34)

To leading order these diverging solutions coincide with the ones obtained in [15] for

δj = 1, j ∈ {1, 2} and γ1 � γ2, and thus the stability characteristics follow, as the instability

sector might only grow narrower with δj < 1. The expressions for the corrections generalise

the results in the case δj = 1. It is also interesting that, to leading order only, these are

the solutions obtained above for case (d).

Case (e), i.e., the situation where one species’ rate of reaction is faster than its diffusion,

whereas the other species’ behaviour is just opposite, enables the general conclusion on

the source of short wave monotonic instability: the relation 0 < ε1 > ε2 corresponds to a

larger reaction–diffusion scale difference for the activator and suffices for the monotonic

instability to persist over a semi-infinite range of wave numbers q.

Table 1 summarises the number of branches, their type and stability properties for the

different combinations of anomaly exponents.
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Table 1. Root types and stability properties for different combinations of anomaly

exponents (with fixed entries of ∇f)

Anomaly exponents Branches Instability

δ1 = δ2 = γ Bell- 2 complex Monotonic Oscillatory

γ1 = γ2 = γ shaped tails or q− < q < q+ any q

1 real all complex d > dM none

δ1 = δ2 = δ Decaying Diverging Monotonic Oscillatory

γ1 = γ2 = γ 2 real or q > qmin q 
 1

δ� γ 1 complex 2 complex d > dM dO < d < dM

ε1 = δ1 − γ1 > 0 Decaying Diverging Monotonic Oscillatory

ε2 = δ2 − γ2 > 0 2 real or q 
 1 q 
 1

ε1 � ε2 2 complex 2 complex ε1 > ε2 none

ε1 > 0 Decaying Diverging Monotonic Oscillatory

ε2 < 0 1 real 2 complex q 
 1, ∀ d q 
 1, none

ε1 < 0 Decaying Diverging Monotonic Oscillatory

ε2 > 0 1 complex 2 complex any q, none q 
 1, none

ε1 < 0 Decaying Diverging Monotonic Oscillatory

ε2 < 0 none 2 complex any q, none any q, none

Notation q± stands for end points of the normal unstable interval; qmin is system-dependent and

finite.

5 Concluding remarks

The investigation has treated a two-species anomalous reaction–anomalous diffusion sys-

tem. Generalised Turing instability condition revealed an anomaly-dependent restriction,

more severe than the analogue for normal reaction–anomalous diffusion. Here instability

ensues if the dispersion relation roots s satisfy

arg s	/R ∈
(

−	π

2R ,
	π

2R

)
,

with R being the least common denominator of all fractional powers.

In the special case of ‘maximally anomalous’ reaction–anomalous diffusion (γ1 = γ2 =

γ, δ1 = δ2 = 0) the system is unstable for a certain combination of parameters.

In the case of all equal exponents anomalous reaction–anomalous diffusion (γ1 = δ1 =

γ2 = δ2 = γ) instability mechanism is akin to normal, with the same dependence on the

coefficients’ ratio d. The curve sγ(q) is of a bell shape. When d > dM , the maximal growth

rate is positive and a range of unstable wave numbers q− < q < q+ exists. Outside that

range sγ < 0 and hence there are two complex tails. When d < dM sγ < 0 for all q, i.e.,

the growth rate is always complex. No oscillatory instability is observed.

The case of anomalous reaction–anomalous diffusion with equal exponents for both

species (γ1 = γ2 = γ, δ1 = δ2 = δ) is a generalisation of the normal reaction–anomalous

diffusion. The system is monotonically unstable when the coefficients’ ratio d is above the
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normal critical value dM , oscillatorily unstable at the range dO < d < dM and stable below

dO , the anomalous critical value.

In the general case of anomalous reaction–anomalous diffusion with distinct exponents

(γ1 � γ2, δ1 � δ2, γj � δj , j ∈ {1, 2}) the number of branches decaying at the short

wave limit is determined by the number of positive εj , i.e., the number of species whose

diffusion is more anomalous than reaction. The decay in the growth rate amplitude is a

necessary, yet insufficient, condition for instability, ensuing if and only if both ε1 > ε2

and ε1 > 0 hold (ε2 might be negative). Relation ε1 > ε2 generalises the constraint of

faster diffusion for the inhibitor as an essential condition for instability onset (modelled

in normal reaction–diffusion via a larger diffusion coefficient) and presents the boundary

for appearance of monotonic instability within the framework of this model.

Whenever there is a positive real branch of s(q), oscillatory instability is possible at a

finite interval of wave numbers. The reason is that without diffusion (q = 0) the system

was taken stable, whereas monotonic instability (s > 0) was shown to occur at q 
 1.

Oscillatory unstable modes provide a smooth transition from the absolute stability at long

wave disturbances to monotonic instability at short waves. A typical system that exhibits

this kind of transition is the limiting case of anomalous diffusion–anomalous reaction

with equal exponents for both species γ1 = γ2 = γ, δ1 = δ2 = δ (ε1 = ε2 = δ − γ). A

system with ε1 > ε2, ε1 > 0 possesses a similar property with the only difference that the

real branches exist regardless of the value of the diffusion coefficients’ ratio d, so that the

oscillatory instability is always accompanied by the monotonic one.

Diverging branches conform to oscillatory modes of a different nature. They exist for

all combinations of anomaly exponents, are always stable and do not alter the overall

system stability properties.

Thus, sole existence of monotonic modes is characteristic to systems with equal anomaly

exponents for reaction and diffusion processes. A normal reaction–diffusion system is

just a limit case of a continuum of such systems. Arbitrary combinations of anomaly

exponents lead to appearance of oscillatory modes, at least in a bounded interval of wave

numbers. Monotonic modes exist whenever the inhibitor diffusion is faster than that of

the activator. From that standpoint, a normal reaction–diffusion system is again a limit

case, where enhanced inhibitor diffusion is obtained by a larger diffusion coefficient. The

main innovation of the current work was establishing a smooth transient between stability

properties of more general systems.

In conclusion, it should be noted that while Turing patterns have been obtained

experimentally, e.g., in gel reactors [22], they have not yet been observed in systems with

anomalous diffusion. Bearing in mind the experimental evidence of anomalous diffusion of

molecules in gels [9], one can expect experiments in gel solvents to reveal Turing instability

in sub-diffusive systems. Such experiments could verify model (2.1) and measure the values

of the parameters γj ,δj used in the model. Precise measures of anomaly exponents for

molecules diffusing and reacting within living cells also remains an unmet challenge.

Non-linear theory and more complicated memory models are of interest for future

research. As a first step, weakly non-linear dynamics might be tackled, for instance

amplitude equations ought to be derived. Strongly non-linear analysis will definitely

require development of special numerical techniques to deal with the singular nature of

the fractional derivative.
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Appendix

Detailed root analysis for case (4.2e)

Substituting (4.6) into (4.2e), for ε1 > ε2 the leading terms are given by equations of O(q0)

µ11 = − 2

ε2
, wε2

11 =
det ∇f

d∇f11
, (A1)

and O(q2(1−ε2/ε1))

µ12 = − 2

ε1
, wε1

12 = ∇f11 . (A2)

Corrections are slightly more complicated in this case. For the first branch, if ε1 −ε2 < δ2,

the next balanced order is O(q2(1−ε1/ε2)):

µ21 = 2

(
1 − ε1

ε2

)
, w21 =

(det ∇f − ∇f11∇f22)w
ε1

11

ε2∇f11 det ∇f
. (A3)

If, however, ε1 − ε2 > δ2, the next balanced order becomes O(q−2δ2/ε2 ):

µ21 = −2δ2

ε2
, w21 = −w

γ2

11

dε2
. (A4)

Obviously, the latter possibility is not feasible with δ2 = 1. For the second branch the

correction is given by O(q0) equation:

µ22 = −2

(
1 − ε2

ε1

)
, w22 =

∇f11∇f22 − det ∇f

dε1∇f11w
ε2

12

. (A5)

For ε1 < ε2 the leading terms are given by equations of O(q0),

µ11 = − 2

ε1
, wε1

11 =
det ∇f

∇f22
, (A6)

and O(q2(1−ε1/ε2))

µ12 = − 2

ε2
, wε2

12 =
∇f22

d
. (A7)

Similarly, for the first branch, if ε2 − ε1 < δ1, the next balanced order is O(q2(1−ε2/ε1)):

µ21 = 2

(
1 − ε2

ε1

)
, w21 =

(det ∇f − ∇f11∇f22)dw
ε2

11

ε1∇f22 det ∇f
, (A8)

whereas if ε2 − ε1 > δ1, the next balanced order becomes O(q−2δ1/ε1 ):

µ21 = −2δ1

ε1
, w21 = −w

γ1

11

ε1
. (A9)

Again, the latter possibility is not feasible when δ1 = 1. For the second branch the

correction is given by O(q0) equation:

µ22 = −2

(
1 − ε1

ε2

)
, w22 =

∇f11∇f22 − det ∇f

ε2∇f22w
ε1

12

. (A10)
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For all combinations the functions w1j are an immediate generalisation of the case

δj = 1, j ∈ {1, 2} [15]. As to stability characteristics, if ε1 > ε2, both branches are

real positive and thus unstable. Conversely, if ε1 < ε2, both branches are complex with

arguments lying outside the instability sector:

argw
	/R
1j = 	π/(εjR) > 	π/(2R), j ∈ {1, 2}. (A11)

With εj < 0, j ∈ {1, 2}, no decaying solutions exist. To solve for only one negative

exponent, first, suppose ε1 < 0, ε2 > 0. By (4.6), a decaying root of (4.2e) ensues at order

O(q2(1−ε1/ε2)),

µ1 = − 2

ε2
, wε2

1 = ∇f22/d, (A12)

coincident with the leading order of one of the solutions obtained above with εj < 0,

j ∈ {1, 2}. However, the correction differs and is distinct for ε1 + γ2 � 0. If ε1 + γ2 < 0,

the next balanced order is O(q−2(ε1+γ2)/ε2 ),

µ2 = −2δ2

ε2
, w2 = − wδ2

1

ε2∇f22
, (A13)

whereas if ε1 + γ2 > 0, the next balanced order is O(q0):

µ2 = −2

(
1 − ε1

ε2

)
, w2 =

∇f11∇f22 − det ∇f

ε2∇f22w
ε1

1

. (A14)

Conversely, suppose ε2 < 0, ε1 > 0. A decaying root ensues at order O(q2(1−ε2/ε1)),

µ1 = − 2

ε1
, wε1

1 = ∇f11, (A15)

again coincident with the leading order of one of the solutions obtained above with εj < 0,

j ∈ {1, 2}. If ε2 + γ1 < 0, the next balanced order is O(q−2(ε2+γ1)/ε1 ),

µ2 = −2δ1/ε1, w2 = − wδ1

1

ε1∇f11
, (A16)

whereas if ε2 + γ1 > 0, the next balanced order is O(q0):

µ2 = −2

(
1 − ε2

ε1

)
, w2 =

∇f11∇f22 − det ∇f

ε1d∇f11w
ε2

1

. (A17)

For diverging solutions the sign of εj is unimportant, and the relevant distinction is

γ1 � γ2. For γ1 < γ2 the two branches ensue by equations of order O(q2(δ1+δ2)/γ1 )

ν11 =
2

γ1
, w

γ1

11 = −1 , (A18)

and O(q2+2(δ2+ε1)/γ2 )

ν12 =
2

γ2
, w

γ2

12 = −d . (A19)
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Correction for the first branch is at order O(q2δ2/γ1 ), whereas terms of orders

O(q2+2(δ1+ε2)/γ1 ) and O(q2δ1/γ1 ) cancel:

ν21 = −2δ1

γ1
, w21 =

∇f11

γ1w
δ1

11

. (A20)

For the second branch terms of orders O(q2(δ1+δ2)/γ2 ) and O(q2δ2/γ2 ) cancel, and the

correction ensues at order O(q2+2ε1/γ2 ):

ν22 = −2δ2

γ2
, w22 =

∇f22

γ2w
δ2

12

. (A21)

For γ1 > γ2 the two branches ensue by equations of order O(q2(δ1+δ2)/γ2 )

ν11 =
2

γ2
, w

γ2

11 = −d , (A22)

and O(q2+2(δ1+ε2)/γ1 )

ν12 =
2

γ1
, w

γ1

12 = −1 . (A23)

Correction for the first branch is at order O(q2δ1/γ2 ), whereas terms of orders

O(q2+2(δ2+ε1)/γ2 ) and O(q2δ2/γ2 ) cancel:

ν21 = −2δ2

γ2
, w21 =

∇f22

γ2w
δ2

11

. (A24)

For the second branch terms of orders O(q2(δ1+δ2)/γ1 ) and O(q2δ1/γ1 ) cancel, and the

correction ensues at order O(q2+2ε2/γ1 ):

ν22 = −2δ1

γ1
, w22 =

∇f11

γ1w
δ1

12

. (A25)

The expressions for the corrections generalise the results in the case δj = 1. Note that

similarly the solutions coincide to four orders of magnitude, yet it is impossible to propose

identity to any order.
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