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A review of recent developments in the field
of front dynamics in anomalous diffusion–reaction
systems is presented. Both fronts between stable
phases and those propagating into an unstable
phase are considered. A number of models of
anomalous diffusion with reaction are discussed,
including models with Lévy flights, truncated Lévy
flights, subdiffusion-limited reactions and models
with intertwined subdiffusion and reaction operators.

1. Introduction
Reaction–diffusion systems describe numerous pheno-
mena in physics, chemistry, biology and engineering [1,2].
Typically, these systems possess multiple spatially
homogeneous steady states. The stability of each of
these states with respect to small disturbances can
be easily studied by means of linear stability theory.
However, the behaviour of a transition front between
two such states occupying different spatial domains
is much less trivial and has been a subject of many
studies [3–8]. The theory is especially well developed in
the case of one-component reaction–diffusion systems.
One has to distinguish between the fronts separating
two locally stable states and the fronts between a
stable and an unstable state. In the former case, the
front solution is typically unique and exponentially
stable. In the latter case, there are two kinds of front
solutions [8]: (i) a family of ‘pulled’ front solutions
moving with different velocities and (ii) isolated ‘pushed’
front solutions. The second kind of solutions can appear

c© 2012 The Author(s) Published by the Royal Society. All rights reserved.
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only for a non-convex reaction function. If the front is developed from a spatially localized
disturbance imposed on an unstable state, a definite front solution is selected at large values of
time. If the system has no pushed fronts, the selected pulled front has typically the lowest value of
the velocity and the highest steepness of the front tail among all the front solutions. The attraction
to the selected front solution is not exponential but characterized by a power law. If a pushed front
exists, it is exponentially attracting. For a review of basic properties of fronts in one-component
normal reaction–diffusion systems, see recent studies [8,9].

During the last decades, the phenomenon of anomalous diffusion attracted much attention
of researchers [10–13]. The basic manifestation of this phenomenon is an unusual scaling of
the mean square displacement (MSD) of the random walk with time: 〈(�r)2〉 ∼ tγ , γ �= 1, which
is incompatible with normal diffusion properties and apparently contradicts the central limit
theorem [14]. For γ < 1 (γ > 1), the diffusion process is called ‘subdiffusion’ (‘superdiffusion’).
The reasons for anomalous diffusion are manifold. A standard explanation of this phenomenon,
which can be given in the framework of the continuous time random walk (CTRW) model [12],
is the appearance of ‘fat tails’ in the probability distribution function (pdf) of the random
walk, which causes divergence of low-order moments and hence the violation of the validity
conditions of the central limit theorem. Specifically, for a long-tail waiting time pdf leading
to the divergence of the characteristic waiting time, the normal diffusion equation is replaced
by an integro-differential equation containing fractional derivatives in time, which provides a
subdiffusive anomalous scaling. The random walk with a Lévy distribution [15] as the jump
length pdf, which is characterized by a divergent jump length variance, can be described on a
large scale by a diffusion equation with a fractional power of the Laplacian, which gives rise to a
superdiffusive anomalous scaling (for moments which converge). However, there exist alternative
explanations of the phenomenon of the anomalous diffusion. For instance, the same subdiffusive
anomalous law for a MSD can be observed also for a fractional Brownian motion, which is a
Gaussian process [16]. It can be driven by the action of an external Gaussian noise ξ(t) with a
slowly decreasing negative autocorrelation function, 〈ξ(t)ξ(t′)〉 ∼ −|t − t′|γ−2 (fractional Gaussian
noise), or by an internal fractional Gaussian noise, if the motion of a particle is characterized by
a power-law memory for the friction, due to the fluctuation–dissipation theorem (see Goychuk &
Hänggi [17] and the references therein). The diffusion on fractal sets and in disordered systems is
also anomalous [10,11]. Checking the ergodicity properties of the process has been suggested for
the clarification of the underlying mechanism of the anomalous behaviour [18].

Construction of a mathematical model incorporating reactions is straightforward for
superdiffusive systems where diffusion is characterized by a spatial non-locality, but no memory
is present [19,20]. In the case of subdiffusion (systems with memory), the situation is much
more intricate. It has been shown by Henry et al. [21] that a ‘naive’ addition of a reaction
term into the evolution equation with a reaction rate independent of the diffusion is physically
inconsistent and may lead to unphysical negative values of the pdf. As a matter of fact, there is
no universal model for reactions in a subdiffusive system; the description depends on the details
of the underlying physics. Generally, there are two main groups of models. In the first group of
models, appropriate for diffusion-limited kinetics, the diffusion and reaction terms appear in the
equations in an additive way, but the time evolution is described by fractional order derivatives,
i.e. the memory kernel is the same for the diffusion and reaction terms [22,23]. The other group of
models appropriate for activation-limited reactions is based on the assumption that the reaction
constants are unaffected by the diffusion, but the change of the chemical composition due to the
reaction affects the diffusion process. Thus, the diffusion and the reaction are intertwined [24].
In the case of a linear reaction, a closed system of fractional PDEs governing concentrations of
species can be constructed [24,25]. In the case of a nonlinear reaction, the use of two temporal
variables, the actual time and the time elapsed since the last jump (the ‘age’ of the particle), is
convenient [26–29]. A somewhat controversial point is the age prescribed to a particle after the
reaction event. In recent studies [26,27], the particle is ‘rejuvenated’ after it reacts, i.e. its waiting
time distribution is set as if the particle has performed a jump. In other recent studies [24,28,30,31],
it is assumed that the reaction does not change the age of the particle. The consequences of both
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assumptions are discussed in Campos & Méndez [32]. The microscopic simulations are in favour
of the latter assumption [33], but generally the validity of both assumptions can depend on the
particular physical problem.

This review is devoted to the consideration of reaction front propagation in systems with
anomalous diffusion in the framework of models based on the concept of non-Gaussian processes.
The case of superdiffusion is considered in §2, whereas §3 is a survey of works devoted to
subdiffusive systems. Section 4 contains a discussion of applications. We do not include into the
survey the propagation of reaction fronts in the case of diffusion on fractals or in disordered
media. The description of the latter topic can be found in the book by Méndez et al. [29].

2. Front propagation in superdiffusion–reaction systems

(a) Fronts between stable homogeneous states
As mentioned in §1, a random walk with a Lévy distribution of jump lengths is described on
large scales by a diffusion equation with a fractional power of the Laplacian. In the presence of a
reaction, a one-component system is governed by the equation

∂tu = Dγ
|x|u + f (u), −∞ < x < ∞; 1 < γ < 2, (2.1)

where

Dγ
|x|u(x) = − sec γ̃

2Γ (2 − γ )

∂2

∂x2

∫∞

−∞
u(y)

|x − y|γ−1 dy
(
γ̃ = πγ

2

)

is the Riesz fractional derivative, which acts in the Fourier space as

Fx→q{Dγ
|x|u(x)} = −|q|γ Fx→q{u(x)}.

The boundary conditions appropriate for the problem of front propagation are u(±∞, t) = u±,
where f (u±) = 0. We assume that f ′(u±) < 0, which corresponds to a front between linearly stable
stationary homogeneous states (‘phases’).

(i) Travelling wave solutions

We are interested in finding travelling wave solutions of equation (2.1), u(x, t) = w(z), z = x − ct,
which are described by the problem

Dγ
|z|w + c

dw
dz

+ f (w) = 0, −∞ < z < ∞; w(±∞) = u±∞. (2.2)

Essential properties of the solutions to (2.2) can be found by considering an exactly solvable
particular case where f (w) is a piecewise linear function [19,34],

f (w) = −k[w − H(w − a)], 0 ≤ w ≤ 1. (2.3)

Here, k > 0, 0 < a < 1, H is the Heaviside function (figure 1). Without loss of generality, one can
take w(0) = a, so that (2.2), (2.3) can be written as a linear inhomogeneous problem

Dγ
|z|w + c

dw
dz

− k[w − H(z)] = 0, w(−∞) = 0, w(∞) = 1,

which can be solved by means of the Fourier transform [19,34],

w(z) = 1
2

+ 1
π

∫∞

0

(sγ + 1) sin(sξ) + αs cos(sξ)

s[(sγ + 1)2 + α2s2]
ds, (2.4)

where ξ = zk1/γ and α = ck1/γ−1 is the scaled propagation velocity, which is determined by the
relation w(0) = a, i.e.

F(α, γ ) ≡ α

π

∫∞

0

ds
(sγ + 1)2 + α2s2 = a − 1

2
.
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0 1 w

f

a

−k (w −1)
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Figure 1. The source term (2.3) (adapted from Volpert et al. [34]).

0.5

a

10−10

−0.5

0

0

−5 5

Figure 2. The graph of the function F(α; γ ) for γ = 2, 1.5, 1. The graphs of F(α; 2) and F(α; 1.5) are almost
indistinguishable, i.e. the propagation speed does not noticeably depend on γ , unless γ is sufficiently close to 1. For large
α, F(α; 2) > F(α; 1). Adapted from Volpert et al. [34].

Owing to monotonicity of F as a function of α (figure 2), the propagation velocity is a
single-valued monotonic function of a that is negative (positive) for a < 1

2 (a > 1
2 ).

An important property of the superdiffusive fronts that can be revealed from the analysis of
the exactly solvable model problem is the asymptotics of the front tails. In the case of the normal
diffusion, γ = 2, the tails are exponential, but in the case of the superdiffusion, 1 < γ < 2, the
asymptotics of solution (2.4) is characterized by a power law [34],

w(z) ∼ 1
π |ξ |γ sin γ̃ Γ (γ ), z → −∞; w(z) ∼ 1 − 1

πξγ
sin γ̃ Γ (γ ), z → ∞. (2.5)

The properties of solutions described above are satisfied for other reaction functions that
have two stable homogeneous states. For instance, the superdiffusion version of the Allen–Cahn
equation, f (u) = u(1 − u2) − μ, has been studied analytically and numerically in Nec et al. [35]. The
travelling wave solution w(z) that describes a front between two stable phases w = u± with the
front velocity c(μ) has been found; a power-law asymptotics, similar to (2.5), has been revealed.
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f

a

bw*

−(k1 + k2)w + k1 + k2

−(k1 + k2)w + k1
−(k1 + k2)w

Figure 3. The source term with three stable states (adapted from Volpert et al. [34]).

For μ = 0, the front (‘domain wall’) is motionless (c = 0), w(z) is an odd function of z, and its
asymptotics in the region z � 1 is

w ∼ 1 − sec γ̃

2Γ (1 − γ )
z−γ .

For small μ, the front moves with the velocity proportional to μ. The direction of the front motion
can be easily obtained using the variational formulation of the problem. Indeed, equation (2.1)
can be written as

∂tu = − δL̃
δu

,

where the Lyapunov functional (‘free energy’) L̃(t) is the integral over the coordinate x of the
density function equal to (see Nec et al. [35])

−U[u(x, t)] − sec γ̃

2Γ (2 − γ )

(
∂u
∂x

∂

∂x

∫∞

−∞
u(y)

|x − y|γ−1 dy + u
2

∫∞

−∞
∂2u/∂y2

|x − y|γ−1 dy

)
,

where f (u) = U′(u). To avoid divergence, the integral over x is taken over a large but finite region.
It can be easily shown that dL̃/dt ≤ 0; therefore, the state with the higher value of U(u) ousts the
state with the lower value of U(u).

If the reaction function has multiple stable states, different kinds of fronts can appear in
the system.

In figure 3, a graph of a reaction function is shown for a system that has three stable states,
w = 0, w = w∗ and w = 1, 0 < w∗ < 1. The existence of a travelling wave between w(−∞) = 0 and
w(∞) = w∗ ([0, w∗]-wave), and that between w(−∞) = w∗ and w(∞) = 1 ([w∗, 1]-wave), follows
from the analysis presented above. A question appears: does a travelling wave with w(−∞) = 0
and w(∞) = 1 (a [0, 1]-wave) exist in that case? The analysis [34] shows that a necessary and
sufficient condition for the [0, 1]-wave to exist is that the velocity of the [0, w∗]-wave is larger
than the velocity of the [w∗, 1]-wave. A similar result was found previously in the case of normal
diffusion [36].

It should be noted that the superdiffusion–reaction model (2.1) with the Riesz operator, which
corresponds to symmetric Lévy flights, is not sufficient for the description of some superdiffusive
phenomena in plasmas and geophysical flows [37,38] characterized by asymmetric transport.
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In that case, skewed Lévy distributions are used, which leads to the equation

∂tu = l −∞Dγ
x u + r xDγ

∞u + f (u), −∞ < x < ∞; 1 < γ < 2, (2.6)

where the fractional derivatives

−∞Dγ
x u(x) = 1

Γ (2 − γ )

∂2

∂x2

∫ x

−∞
u(y)

(x − y)γ−1 dy

(left-hand-sided Weyl derivative) and

xDγ
∞u(x) = 1

Γ (2 − γ )

∂2

∂x2

∫∞

x

u(y)

(y − x)γ−1 dy

(right-hand-sided Weyl derivative) that appear in the equation act in the following way in the
Fourier space:

Fx→q{−∞Dγ
x u(x)} = (iq)γ Fx→q{u(x)},

Fx→q{xDγ
∞u(x)} = (−iq)γ Fx→q{u(x)}

and l = − 1
2 (1 − θ) sec γ̃ , r = − 1

2 (1 + θ) sec γ̃ ,

−1 ≤ θ ≤ 1 is an asymmetry parameter [39,40]. The propagation of fronts in a bistable
superdiffusive system governed by the asymmetric model (2.6) with the reaction function (2.3)
has been considered in recent studies [34,41].

(ii) Dynamics of multiple fronts

Multiple fronts between different stable states can appear as a result of the decay of an unstable
state that is transformed into different stable states in different spatial domains in a random way.
A typical example of the processes leading to the creation of multiple domains separated by
domain walls is phase segregation. The dynamics of an ensemble of domain walls governed by
the normal Allen–Cahn equation (equation (2.1) with γ = 2 and f (u) = u(1 − u2)) was studied in
Kawasaki and co-workers [42,43]. Because of the exponential asymptotics of tails, the interaction
of distant domain walls is exponentially weak, and the coarsening of domains is governed
by a logarithmic law. In the superdiffusive case, because of the power-law asymptotics of the
tails, the interaction between domain walls is much stronger. In the case of a superdiffusive
Allen–Cahn equation

∂tu = Dγ
|x|u + u − u3, −∞ < x < ∞; 1 < γ < 2, (2.7)

the single front between two energetically equivalent phases u± = ±1 is motionless, but if there
is a pair of domain walls (figure 4), they are attracted to each other and eventually annihilate,
because the elimination of domain walls diminishes the Lyapunov functional.

The distance L(t) = ξ2(t) − ξ1(t) between two domain walls decreases according to the equation

K
dL(t)

dt
= − C

Lγ
, (2.8)

where

C = 4 sec γ̃

Γ (1 − γ )
, K =

∫∞

−∞
(w′(z))2 dz

(the integral is calculated for a single domain wall w(z)). Formula (2.8) shows that, during a
sufficiently large time interval t, all the front pairs that are initially at the distances L < O(t1/(γ+1))

will annihilate, and only more distant pairs, with L > O(t1/(γ+1)), will still survive. For a fixed
length of the region, this leads to the prediction that the mean number of domain walls has to
decrease with time as N ∼ t−1/(γ+1).

Direct numerical simulations of (2.7) have been carried out where the number of zeros of
function u(x, t), which characterizes the number of domain walls, was counted as a function
of t for small random initial conditions [44]. The computations showed the transition from the
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u

x
–1

0

1

x1(t) x2(t)

Figure 4. Interaction of fronts.

2

8

ln
 N

N ~ t−0.99

N ~ t−0.54

ln t
–2 8

N ~ t−0.48

N ~ t−0.80

ln
 N

N ~ t−0.67

N ~ t−0.43

2

8

N ~ t−0.38

N ~ t−0.57

–2 8
ln t

(a) (b)

(c) (d )

Figure 5. Coarsening rates of a system ofmultiple fronts for several values ofγ [44]. (a)γ = 1.00, (b)γ = 1.25, (c)γ = 1.50
and (d) γ = 1.75.

law N ∼ t−1/γ , which is a natural scaling law for the linear superdiffusion equation, on the early
(linear) stage to the law N ∼ t−1/(γ+1) on the late (nonlinear) stage characterized by slowly moving
domain walls (figure 5).

If the phases are not energetically equivalent (U(u) = −(1 − u2)2/4 + μu), a single front is no
longer stationary, and equation (2.8) becomes

K
dL(t)

dt
= 4μ − C

Lγ
. (2.9)

Equation (2.9) determines the size of the stationary critical nucleus L∗ = (4μ/C)1/γ, which is
always unstable. A linear growth of the characteristic domain size with time is predicted for
large time.
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(iii) Pinning of fronts

The process of coarsening can be arrested by the inhomogeneities in the system, which can pin a
propagating front. The phenomenon of domain wall pinning was studied in Volpert et al. [34] in
the framework of the model with a piecewise linear reaction function. A travelling wave stopped
by a localized inhomogeneity was described by the equation

Dγ
|x|w − k[w − H(x − x0)] + Aδ(x) = 0,

with conditions
w(−∞) = 0, w(x0) = a, w(x, ∞) = 1,

where the strength A of the inhomogeneity can be either positive or negative. Using the exact
solution of the problem obtained by the Fourier transform, one obtains the equation for x0,

a − 1
2

= A
π

∫∞

0

cos(qx0)

qγ + k
dq. (2.10)

The right-hand side of equation (2.10) has a maximum at x0 = 0. Calculating the maximum value,
one finds that the stationary solution exists (i.e. a pinning of the travelling wave takes place) if

A > acr(γ ) = γ k1−1/γ

(
a − 1

2

)
sin

π

γ

(
a >

1
2

)
; A < acr(γ )

(
a <

1
2

)
,

i.e. if pinning is sufficiently strong.

(iv) Dynamics of curved superdiffusive fronts

Let us consider now the problem with two spatial variables. It is well known that, in the case of a
normal diffusion–reaction system, the system acts to decrease the Lyapunov functional. Because
the contribution of a domain wall to the Lyapunov functional is roughly proportional to the length
of the domain wall, the system acts to decrease the length of the domain wall. It results in a motion
of the curved front with the normal velocity vn proportional to the local curvature κ of the front
(‘curvature flow’) [6]. Exactly the same law,

bvn = −κ ,

has been obtained for the two-dimensional superdiffusive Allen–Cahn equation [35]. The inverse
mobility coefficient b depends on γ . Thus, one can expect that, in the late stages of coarsening, the
coarsening law for a two-dimensional superdiffusion system is the same as for a normal system,
i.e. the characteristic domain size L ∼ t1/2. This prediction has been confirmed by numerical
simulations. The analysis of the coarsening shows the transition from the law L ∼ t1/γ at the linear
stage to a slightly slower law at the intermediate stage and to the law L ∼ t1/2 at the final stage [35].

(v) Fronts in multi-component systems

Investigations of fronts between stable states in superdiffusive multi-component systems are still
rather incomplete. A superdiffusive version of the FitzHugh–Nagumo system [45,46] has been
considered in Volpert et al. [34]. A piecewise linear reaction function has been used [47,48]. The
system is described by two variables (v, w) and has two stable homogeneous states, the rest state
v = w = 0 and the excited state v = (v∗, w∗). In the coordinate system moving with the travelling
wave, one obtains a system of equations

Dγ
|z|v + c

dv

dz
− v + H(z) − w = 0

and

c
dw
dz

+ εv − bεw = 0, −∞ < z < ∞,

with the boundary conditions
v(−∞) = w(−∞) = 0
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2

0

0−4−6
c

6−2

−0.4

0.4
(a) (b)

4 2 640−6 −4 −2

0

0.4

c

−0.4

Figure 6. The dependence of the function P on c for b= 1, ε = 5.0, 1.0, 0.1, 0.01 and two values of γ . The smaller the ε, the
more pronounced the extrema of the functions (adapted from Volpert et al. [34]). (a) γ = 2 and (b) γ = 1.

and

v(∞) = v∗ = b
1 + b

, w(∞) = w∗ = 1
1 + b

and an additional condition v(0) = a. The exact solution of the problem obtained by the Fourier
transform yields an equation that determines the front velocity as a function of the parameters of
the problem,

a − v∗/2
v∗

= 1 + b
πb

∫∞

0

c(1 − ε1) dq
(qγ + 1 + ε2)2 + c2q2(1 − ε1)2 ≡ P(c, γ , b, ε), (2.11)

where

ε1 = ε

b2ε2 + c2q2 , ε2 = bε2

b2ε2 + c2q2 .

Unlike the case of a one-component system, the function on the right-hand side of
equation (2.11) is a non-monotonic function of c (figure 6). Therefore, for the same values of
parameters, there could exist several travelling wave solutions moving in different directions.
It should be noted that the multiplicity of travelling wave solutions is not a specific feature of
superdiffusive systems; it also occurs in the normal diffusion case γ = 2.

(b) Front propagation into an unstable state
(i) Lévy flights

In the case of superdiffusion generated by the Lévy distribution of the jump length, propagation
of fronts between stable phases is similar in many respects to that in the case of normal diffusion,
as we have seen in §2a. For fronts between a stable state and an unstable state, the influence of
superdiffusion is much more drastic.

Recall that, in the case of normal diffusion, the tails of the fronts typically decay exponentially,
i.e. u − u+ ∼ exp(−βx). On the background of the unstable state, a small exponential-shape
disturbance is expected to grow exponentially in time, i.e. u(x, t) − u+ ∼ exp(σ t) exp(−βx) ∼
exp{−β[x − (σ/β)t]}, which looks like motion of the tail with a constant velocity. In the case of
superdiffusion described by a fractional derivative (equation (2.1)), the asymptotics of the front
tail is typically characterized by a power law, u − u+ ∼ 1/xγ . In the case of an exponential growth
of the disturbance, u(x, t) − u+ ∼ exp(σ t)/xγ ∼ [exp(σ t/γ )/x]γ . Thus, the point where the function
u(x, t) has a definite constant value u∗ apparently ‘moves’ with an exponentially growing velocity.
Therefore, travelling wave solutions of the form u(x − ct) are not expected.
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The self-acceleration of front tails in a stochastic Lévy flight process with a reaction has been
discovered by Mancinelli et al. [49]. del Castillo-Negrete et al. [39] investigated the phenomenon
of the front acceleration in the framework of a fractional superdiffusion–reaction equation with a
fully asymmetric superdiffusion operator,

∂tu =−∞ Dγ
x u + f (u), f (u) = u(1 − u), (2.12)

which corresponds to equation (2.6) with θ = −1 and a rescaled spatial variable, for a front
between the stable phase, u(−∞) = 1, and an unstable phase, u(∞) = 0. del Castillo-Negrete et al.
considered the evolution of a small disturbance governed by a linearized equation

∂tu =−∞ Dγ
x u + u (2.13)

with the initial condition

u(x, 0) = u0(x), (2.14)

for example

u0(x) = 1, x < 0; u0(x) = e−κx, x > 0 (k > 0). (2.15)

The solution of the problem (2.13) and (2.14) is found by the Fourier transform

u(x, t) = et
∫∞

−∞
dk
2π

exp[ikx + (ik)γ t]
∫∞

−∞
u0(y) e−iky dy

= et
∫∞

−∞
dηu0(x − ηt1/γ )Gγ (η), (2.16)

where

η = x − y
t1/γ

, Gγ (η) =
∫∞

−∞
dq
2π

exp[iqη + (iq)γ ]. (2.17)

Asymptotic analysis of the solution (2.16)–(2.17) of (2.13)–(2.15) for large x shows that

u(x, t) ∼ t
γ

etx−γ + O(x−γ−1).

Therefore, the point x = x∗(t) where the solution is equal to a definite value u∗, u(x∗(t), t) = u∗,
accelerates in an exponential way, as discussed above.

(ii) Truncated Lévy flights

The unbounded acceleration of the front is an apparent effect that does not contradict any natural
laws. Indeed, there is no physical object undergoing unbounded acceleration. Still, the physical
relevance of the Lévy distribution of jump length, which allows arbitrarily long flights leading
to an infinite variance, is questionable. In order to avoid the divergence of variance, one applies
a cut-off of the Lévy distribution at large distances. One can use a sharp cut-off [50] with the
jump length pdf p(x) = cLγ (x)H(l∗ − |x|), where cLγ (x) is a renormalized Lévy distribution, l∗
is a cut-off length, and H(l∗ − |x|) is the Heaviside function, an exponential truncation [51]
with p(x) = cLγ (x) exp(−λ|x|), or a power-law truncation [52]. Strictly speaking, the truncated
Lévy distribution with a finite variance satisfies the conditions of the central limit theorem and
converges to a Gaussian process, which leads to normal diffusion on large temporal and spatial
scales. However, that convergence can be rather slow, and the transition to normal diffusion may
be not observable during the time of experiment. Cartea & del Castillo-Negrete [53] considered

 on November 27, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


11

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120179

......................................................

the CTRW in the framework of the model with an exponentially truncated Lévy length jump pdf.
It was found that, in the framework of the above-mentioned model, the fractional superdiffusion
operator in (2.6) has to be replaced by the operator

− V∂x + σ 2

2
∂2

x + cDγ ,λ
x − ν, (2.18)

where

Dγ ,λ
x = l e−λx

−∞ Dγ
x eλx + r eλx

xDγ
∞ e−λx, (2.19)

V = a − cγ θλγ−1| sec γ̃ |, 1 < γ < 2 (2.20)

and ν = −cλγ sec γ̃ . (2.21)

Here, λ is the truncation parameter, and a, σ 2 and c are constants. del Castillo-Negrette [54] has
applied the model described earlier (with V = σ = 0, θ = −1 and lc = χ ) with the reaction function
f (u) = ku(1 − u) for studying the front propagation between the stable phase u = 1 and unstable
phase u = 0. It was shown that the power-law front tail is situated in the interval (χ t)1/γ � x �
1/λ, while for x > 1/λ the solution decays as exp(−λx)/x(1+γ ). The acceleration of the front is
transient; the velocity of the front slowly approaches its limiting value v∗ = (k − λγ χ)/λ as t → ∞.

(iii) Fluctuation effects

The fully deterministic reaction–diffusion models discussed above disregard fluctuations, which
are very important in the presence of an unstable phase. Brockmann & Hufnagel [55] added
a multiplicative noise to the superdiffusion–reaction equation (2.1) with f (u) = u(1 − u) and
considered the corresponding (Ito) stochastic PDE

du = u(1 − u) dt + Dγ
|x|u dt + σ√

N

√
u(1 − u) dW(x, t), (2.22)

where W(x, t) is a spatially uncorrelated family of Wiener processes, and N is the number of
particles. A transition from algebraic to exponential front decay, u ∼ exp[−λ(x − vt)], has been
observed in the region of low particle density, with constant asymptotic values of the velocity
v ∼ N1/γ and wavefront parameter λ ∼ N−1/γ .

3. Front propagation in subdiffusion–reaction systems
Now we pass on to a more difficult and controversial subject of the subdiffusion–reaction front
propagation. The difficulty is in the interplay of memory and reaction, which is non-universal
and depends on the details of underlying physical, chemical or biological processes.

(a) Diffusion-limited reactions
As mentioned in §1, the models of subdiffusion–reaction systems can be divided into two groups.
The first group of models [22,23], which are appropriate for diffusion-limited reactions, have
the structure

C
0 Dγ

t u = K∂2
x u + f(u), 0 < γ < 1, (3.1)

or
∂tu =0 D1−γ

t [K∂2
x u + f(u)], (3.2)

where
C
a Dγ

t g(t) = 1
Γ (1 − γ )

∫ t

a

∂τ g(τ )

(t − τ)γ
dτ

is the Caputo fractional derivative, and

aD1−γ
t g(t) = 1

Γ (γ )

∂

∂t

∫ t

a

g(τ )

(t − τ)1−γ
dτ
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is the Riemann–Liouville fractional derivative, u = {ui}, i = 1, . . . , n is the vector of molecule
densities of different chemical components, f = {f (ui)}, i = 1, . . . , n is the vector of reaction rates
and K = {Kij}, i = 1, . . . , n, j = 1, . . . , n is the matrix of diffusion coefficients. For this kind of model,
the factors that slow down the diffusion, slow down the reaction simultaneously in the same
way. Models of this kind were derived from the CTRW model for the recombination kinetics [22]
and instantaneous creation and annihilation processes in subdiffusive media [21]. It was also
suggested for the description of results of Monte Carlo simulations in Yuste et al. [23].

The system (3.2) exhibits long-time memory effects but no ageing, so that, for a sufficiently
large t, one obtains a front moving with the constant velocity, which depends on the parameter γ .
As an example, let us consider a one-component model with n = 1. The final shape of the front in
the form of a travelling wave solution achieved a long time after the beginning of the process is
obtained by the replacement of the initial time instant by −∞,

C
−∞Dγ

t u = D∂2
x u + f (u), (3.3)

and substitution of the travelling wave ansatz u(x, t) = w(z), z = x − ct into (3.3). The problem can
be solved analytically for a piecewise linear function f (w) given in (2.3) [56]. An exact analytical
expression is obtained for the velocity of the front,

c = sgn(2a − 1) b1/γ

[
k

(2 − γ )(1/2 − b)

]1/γ−1/2 [ D
1 − γ (1/2 − b)

]1/2
, b =

∣∣∣∣a − 1
2

∣∣∣∣ .

Ahead of the front (i.e. for z > 0 when c > 0, and for z < 0 when c < 0), the solution is described by
the exact analytical formula

w(z) = 1
2
(1 + sgn(z)) − sgn(c)

k e−Q∗|z|

2DQ2∗ − γ (|c|Q∗)γ
, (3.4)

where Q∗ is a solution of the equation

−D Q2
� + k + (|c| Q�)

γ = 0,

which is proved to be unique. Behind the front (for z > 0 when c < 0, and for z < 0 when c > 0),
the solution can be written as

w(z) = 1
2

+ k
π

∫∞

0

{
sgnc|c|γ qγ sin γ̃ cos(qz)

(Dq2 + k + |c|γ qγ cos γ̃ )2 + |c|2γ q2γ

+ [Dq2 + k + |c|γ qγ cos γ̃ ] sin(qz)
(Dq2 + k + |c|γ qγ cos γ̃ )2 + |c|2γ q2γ

}
dq
q

. (3.5)

The tail behind the front is characterized by an algebraic, rather than by an exponential, decay,

w(z) ∼ 1
2
(1 + sgn(z)) + 1

2kπ

∣∣∣ c
z

∣∣∣γ Γ (γ ) sin(2γ̃ )(sgn(c) − sgnz) + o(|z|−γ ). (3.6)

Yuste et al. [23] applied model (3.2) for the consideration of a transition zone between two
initially separated substances A and B reacting according to the formula A + B → C, where C is
an inert product. In the case of normal diffusion, it is known that the width of the reaction zone
grows with time as Wr ∼ t1/6, whereas the width of the depletion zone, where the concentrations
of components A and B are small, grows as Wd ∼ t1/2. In the case of subdiffusion, it has been
found that Wr ∼ tγ /6, Wd ∼ tγ /2. The centre of the reaction zone moves according to the law
xr(t) ∼ tγ /2 [57]. The same scaling law has been found in the case of one non-diffusive and one
subdiffusive reactant [58].
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(b) Activation-limited reactions
(i) Models

Another class of models, which is appropriate for activation-limited reactions, is based on the
assumption that the instantaneous reaction rate is unaffected by the diffusion factors. Because the
subdiffusion process depends on the whole history of the system evolution, owing to the memory
effect, and the composition of the mixture changes with time, the diffusion and reaction are
intertwined. The corresponding reaction–subdiffusion equations were first derived by Sokolov
et al. [24] for the simplest linear reaction, when the density u of the component A evolves according
to the equation

du
dt

= −κu (3.7)

(similar to that of a radioactive decay) in the spatially homogeneous case. A simplistic reaction–
subdiffusion equation

∂tu = ∂2
x (K 0D1−γ

t u) − κu

is incorrect; it leads to unphysical negative values of the density u in finite time [21]. The correct
equation is as follows:

∂tu = ∂2
x [K e−κt

0D1−γ
t (eκtu)] − κu (3.8)

[24,25,30]. A reaction–subdiffusion equation of this kind can be derived also in the case when κ

is a function of x [59]. In the case where the evolution of the spatially homogeneous system is
governed by the linear equation

du
dt

= Mu, (3.9)

where M is a constant matrix, the following subdiffusion–reaction equation can be derived from
the CTRW model [25],

∂tu = ∂2
x [eMtK 0D1−γ

t (e−Mtu)] + Mu, (3.10)

where K is the matrix of diffusion coefficients. Nonlinear generalizations of equation (3.8) have
been suggested by Froemberg et al. [60] and Fedotov [61].

In the case of nonlinear dependence of reaction rates on reactant densities, it is typically
impossible to write a closed system of equations for concentrations ui(x, t). Because the probability
of a molecule to perform a jump depends on the time passed since the molecule’s last jump
(the ‘age’ of the molecule), according to the waiting time distribution, it is necessary to take into
account the molecule’s age and to describe the system by the densities ni(x, t, t′) of molecules that
performed their last jump to the point x at the time instant t′ and still reside at that point at the
time instant t (the molecule age τ = t − t′ is the argument of the waiting time pdf). As mentioned
in §1, a somewhat controversial point is the age of the molecule transformed into a molecule of
another kind owing to a chemical reaction without jumping. If the waiting time distribution for
jumps is determined by the probability distribution of fluctuations in the environment that make
the molecule release possible, it is natural to assume that the age of the molecule, understood as
the argument of the waiting time pdf, is not changed owing to the participation of the molecule
in the reaction [24,30]. In that case, the ‘age structure’ of the population of molecules depends on
time and has a tendency of ‘ageing’, which leads to the decrease in the jump probability and hence
slowing down of all the processes, including the front propagation (‘propagation failure’) [33,60].

Another approach is adopted in recent studies [26,27], where it is assumed that a molecule born
in the course of reaction has zero age, as if it had arrived at the reaction point from somewhere
else: the argument of the waiting time distribution is set to zero after the chemical transformation
of the molecule. This assumption leads to the ‘rejuvenation’ of the molecule population, which
achieves a stationary age distribution, and hence the front velocity tends to a constant value [29].

For any particular natural problem, the applicability of each of the assumptions has to be
validated through a microscopic probabilistic theory or an experiment.
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(ii) Fronts between stable phases

An attempt to investigate the front dynamics between stable phases has been undertaken by Nec
et al. [56] in the framework of the following system of equations:

∂tni(x, t, t′) = −W(t − t′)ni(x, t, t′) +
N∑

j=1

Mij(u1, . . . , un)nj(x, t, t′), t > t′, (3.11)

where ni(x, t, t′) is the density of particles of the type i at the time instant t that performed their
last jump to the point x at the time instant t′, W(τ ) is the jump rate function related to the waiting
time distribution w(τ ) by

W(τ ) = w(τ )

1 − ∫τ
0 w(τ ′) dτ ′

and

ui(x, t) =
∫ t

0−
ni(x, t, t′) dt′, t > 0

is the total density of the component i. For a typical waiting time distribution,

w(τ ) = γ τ0

(τ + τ0)γ+1 , 0 < γ < 1,

the jump rate function is
W(τ ) = γ τ + τ0.

The first term on the right-hand side of (3.11) corresponds to the decrease in the density of
particles that belong to a definite generation owing to subdiffusion, and the second term describes
its change owing to the chemical reaction, which can be either negative or positive, unlike the
models with ‘rejuvenation’ of particles [26,27], where it can be only negative. Equation (3.11) is
supplemented by the boundary condition

ni(x, t, t) =
∫∞

−∞
mi(x − x′) dx′

∫ t

0−
W(t − t′)ni(x, t, t′) dt′ + u0(x)δ(t), (3.12)

which describes the subdiffusion. Here, mi is the jump length pdf for particles of the type i.
The analysis does not reveal the existence of fronts moving with a constant velocity. On the

contrary, in the large scale limit, the problem is reduced to a normal diffusion–reaction system
with the matrix of the diffusion coefficients decaying such as tγ−1. That leads to a decrease in the
front velocity c ∼ t−α and in the front thickness δ ∼ t−α , where α = (1 − γ )/2.

(iii) Fronts between stable and unstable phases

In the case of the fronts propagating into an unstable phase, the situation is more intricate.
It is quite natural that, in the framework of models where the ‘internal clock’ of particles is set

equal to zero after each participation in a reaction, the mean ‘age’ of the particles and hence the
effective diffusion saturate with time; hence a motion with a constant velocity is set [27,32,62].

Surprisingly, solutions with a constant velocity have been found also in models without
‘rejuvenation’ [29,60,61]. The minimum front velocity can be either finite [61] (for reaction
A + B → B + 2A) or zero [60] (for reaction A + B → 2A). A subtle difference between the above-
mentioned models has been considered by Shkilev [63]. The crucial point is that A-type particles
propagating into the region occupied by B-particles are always ‘young’ at the leading edge of
the front, while B-type particles age continuously. In the model of Fedotov [61], the produced
particles inherit the age of A-particles, and their mobility remains high. In the model of Froemberg
et al. [60], the produced particles inherit the age of B-particles, and their mobility decreases
with time. In the latter case, another kind of front solution, with velocity decreasing as t−α ,
α = (1 − γ )/2 has been found both by means of continuous reaction–subdiffusion equations [64]
and in probabilistic numerical simulations [32,33]. One more law of the front motion, c ∼ t−2α ,
which takes place at small concentrations of components (in the fluctuation-dominated region),
has been found in simulations [33] and explained in Froemberg et al. [64].
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4. Applications
In this review, we have concentrated on the theoretical aspects of front propagation in
anomalous diffusion–reaction systems. Here, we present several examples of applications
of anomalous diffusion–reaction systems to particular natural phenomena.

A model of the formation of a carious lesion of the tooth enamel based on the
subdiffusive transport of organic acids into the enamel has been suggested in Kosztol/owicz &
Lewandowska [58]. The theoretically predicted scaling law xr(t) ∼ tγ /2 for the location of the
centre of the reaction zone has been used for finding the parameter γ from the experimental data.

A standard epidemic model [1] contains two basic components, the density of susceptibles
S(x, t) and the density of infectives I(x, t), governed by coupled reaction–diffusion equations. In
Hanert et al. [65], the case of a fully asymmetric superdiffusion with a left-sided Weyl operator,
−∞Dα

x , 1 < α < 2, has been considered. Similar to one-component fronts discussed in §2b, a family
of left-propagating travelling wave solutions has been found, while an exponential acceleration
has been observed for right-propagating fronts.

Fedotov & Iomin [66,67] have suggested a model of tumour cell spreading based on a two-
component CTRW. The cells in state 1 (migratory phenotype) spread in a subdiffusive way but
do not multiply, while the cells in state 2 (proliferating phenotype) multiply but do not migrate.
The cells change their phenotypes with definite switching rates. In the limit of a thin front, the
front velocity has been calculated by means of a generalized Hamilton–Jacobi equation using an
approach previously developed for normal reaction–diffusion systems [68].

Fernández-García & Pérez-Muñuzuri [69] have carried out experiments on the Belousov–
Zhabotinsky reaction in a fluid forced by Faraday waves. The motion of the excited region has
been described by a superdiffusive law with γ = 1.55.

A superdiffusive analogue of the Burton–Cabrera–Frank theory describing a step-flow growth
of a crystal surface is developed in Levine et al. [70]. It is shown that the Lévy flights-controlled
step-flow velocity is lower than that in the case of normal diffusion.

In conclusion, we have reviewed recent developments in the field of the reaction front
propagation in systems with non-Gaussian diffusion processes. We considered mostly the
simplest fronts between homogeneous phases. Recently, an investigation of more complex objects
has been initiated, e.g. shocks in superdiffusive wavy systems [71] and fronts between different
superdiffusive patterns [72]. These subjects are beyond the scope of the present review.
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